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In the first half of this fiscal year (FY2021), I am assigned to the lecture on ”Physics of Semiconductors.”
It’s been a long time since I gave a lecture in one semester last time (8 years), and several new themes, which I
want to introduce, have appeared. I am not very good at giving lectures like a machine-gun and want to take a
course with a comparatively small amount of content. Though, maybe it’s not enough for motivated students
who want to learn a lot. Therefore, the notes follow the lecture and cover the advanced content that would
open the eyes for more expansive fields. I would also like to introduce references for those who want to expand
their studies.

Chapter 1 General Properties of Semiconductors

1 What characterizes semiconductors?

Semiconductors refer to a form of solid that is usually classified by electrical conduction. Metal have large densi-
ties of states around the Fermi levels (that is, the Fermi surfaces exist) and are good conductors while insulators
have their Fermi levels deep inside the wide energy gaps and interrupt electric currents. Semiconductors stand
somewhere between them. They usually have comparatively narrow energy band-gaps, low but finite electric
conductance at high temperatures, become insulating with lowering the temperautres.

However, such a viewpoint is not always usuful nowadays. For example, a fine insulator with a large bandgap
of 5.5 eV at room temperature, such as diamond, is also called a semiconductor, and devices are being made
from it while materials with zero bandgap, such as graphene, are also important targets of researches in the
semicondutor field. Rather, it seems to me that the property of “structure sensitive” fits better into the recent
usage of the term “semiconductors.” This is a long-used expression, which indicates the property that the
electric conduction is sensitive to the ultra-small amount of impurities. Although, after the appearances of
heterojunctions, MOS structures, superlattices, nanostructures, etc., I think the same expression is applicable
to the sensitiveness of the transport properties on such real space structures.

In most cases, the object of such structure sensitive transportation is the electric charge, but recently the
spin current in which the magnetic moment is transported by spin has also become an important research
object. Research on spintronic devices is also active, and there is a possibility that some will eventually become
practical.

For the spin current, which is the flow of magnetic momentum, the non-magnetic metals whose spins are
canceled by the time-reversal symmetry, are like an empty space. It can be seen as a system similar to a
semiconductor, which is a charge neutral space due to the charge cancellation of the nuclei and electrons. In
fact, the inside of the metal is almost equipotential under normal experimental conditions, but a spin Hall spin
current may exist. In spintronics, these systems are also “structurally sensitive” and look like semiconductors
from the eye of semiconductor researchers. However, this is rather a unique view of myself, and usually,
semiconductors are defined as those that are structurally sensitive in electric conduction.

2 Crystal Structures

2.1 Lattice

A solid classified into crystal commonly has a spatially periodic structure of basis, which is also a certain
structure of atoms. We represent such a state of matter as a lattice. “Spatially periodic structure” can be
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represented as follows. An arbitrary point in a crystal with spatial coorinate r has an infinite number of
equivallent points r′, which is represented, in the case of three-dimensional lattice, with three constant vectors
ai (i = 1, 2, 3) and three integers li (i = 1, 2, 3) as

r′ = r +
∑

i=1,2,3

liai = r +R. (1.1)

Then the unit of the period is a certain set of atoms around r. We take an arbitrary point in the unit. Such
points form the lattice. We call such points as the lattice point.

The basis is the unit of the periodicity in the crystal and should be taken as to have the minimum number of
atoms. ai in eq.(1.1) are called primitive vectors, while R is called a lattice vector. The parallelpiped with
ai as the edges contains a single basis is called primitive cell, with which we can fill up the space without gap.
Primitive vectors often can be taken in multiple ways and usually taken as to make the symmetry of the lattice
highest. A primitive cell is defined as a polygon which contains single basis and fills up the entire space without
gap. Then there are infinite ways to define a primitive cell other than the above mentioned paralledpiped.
When a block with multiple primitive cells is taken as the unit of period and the periodic structure has a higher
symmetry, the block is more convenient for the unit. We then consider a unit cell, which may consist of single
or multiple primitive cells.

As mentioned above, a crystal is composed of a unit structure and a lattice. The example of diamond
structure, which often appears in group-IV semiconductors, is illustrated in Fig.1.1. In Fig.1.1(a) the atomic
positions are indicated by middle-sized spheres, of which colors (black and white) indicate two different atomic
sites in the crystal. The basis is composed of a black and a white atoms and a primitive cell can be taken as to
contain these two sites. A point in the primitive cell, e.g. the position of black atom, can be taken as the lattice
point. The consequent lattice is, as shown in (b), face centered cubic (fcc). Let ex,y,z be the unit vectors of
the Cartesian coodinate system, then the primitive vectors can be taken as

a1 =
a0
2
(ex + ey), a2 =

a0
2
(ey + ez), a3 =

a0
2
(ez + ex). (1.2)

The primitive cell of the parallelpiped spanned by the vectors in eq.(1.2) is drawn with solid lines in Fig.1.1(a).
On the other hand, the cubic drawn in the figure is often taken as a unit cell.

The lattices are classified by seven crystal system and additonal lattice point (no point, face-centered,
body-centered, base-centered) into 14 species of Baravais lattice.

2.2 Bravais lattice

The number of crystal structures is huge, maybe infinite, if we count, e.g. differences in molecular structures
of organic crystals. On the other hand, the number of independent lattice structures is as small as 14 as shown
in Fig.1.2. These 14 lattices are called three dimensional Bravais lattice.

The definition of the Brave lattice classification is based on the discussion of spatial symmetry. The spatial
symmetry of a manifold is defined by whether the manifold is invariant for the symmetry operations, such as
rotation, reflection, translation, etc. For detailed discussion see, e.g. Ref.[1, 2]. Here we briefly summarize how
we reach the 14 Bravais lattice.

We first classify the lattices with the relative lengths of primitive translatinal vectors a1，a2，a3 and the
angles defined by two edges θ12，θ23，θ31 (see the right-down inset of Fig.1.2). And for the rotational symmetry
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Figure 1.1: (a) Diamond structure.
The circles corespond to atomic po-
sitions, while the thin cylinders cor-
respond to covalent bonds. There is
a single atom species though the two
positions identified with colors, are
different. The sold lines indicate the
primitive cell. (b) Face-centered cu-
bic lattice of the diamond crystal of
(a). a1−3 are the primitive vectors.
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Figure 1.2: Bravais lattices of three-dimension. The parameters for the classification are illustrated in the
right-down space.

around a primitive translational vector, the angle π/2 is a spacial value and whether the angles θij are π/2 or
not is the other condition. These conditions leads us to the classification in Tab.1. This classification is called
crystal systems. In three dimension, possible crystal systems are seven species in in Tab.1 and on the first
column in Fig.1.2.

In the classification of crystal system, the focus is on the symmetry in the positions of neighboring lattice
points. There are, however, some cases, in which we need to consider the relation between the next neighboring
lattice points. For example, we take two (simple) cubic lattices and put them so as to lattice points of one of
them are placed to the center of cubic in the other lattice. In this case if we look at the neighboring relation,
the cubic symmetry seems to be lost but the second next ones are originally in cubic symmetry and the lattice
is still classified into cubic crystal system but contains an additonal lattice point at the center of cubic. The
lattice, which contains an additional lattice point at the center of simple cubic, is called body-centered cubic
(bcc).

In this way, the additional lattice points to the simple crystal system is another condition for the classification.
The positions of such additional points are face-centerd, body-centered and base-centered. As a consequence,
we get 14 Bravais lattice shown in Fig.1.2.

Because we have ambiguity in taking “lattice”, the classification by Bravais lattice also has ambiguities. For
a simplest example, in an fcc lattice crystal, if we take the unit as a single face-centered cubic, then the lattice

θ12 θ23 θ31 a1，a2，a3
cubic π/2 π/2 π/2 a1 = a2 = a3
tetragonal π/2 π/2 a1 = a2 ̸= a3
orthorhombic π/2 a1 ̸= a2 ̸= a3
monoclinic π/2 π/2
triclinic π/2
hexagonal π/2 2π/3 a1 = a2
rhombohedral(trigonal) θ0 θ0 θ0 ̸= π/2 a1 = a2 = a3

Table 1: Conditions for Bravais lattice classification in three dimension. The difinitions of the parameters are
shown in the right-down panel in Fig.1.2.
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Figure 1.3: Examples of crystal structures. The centers of spheres indicate the positions of nuclei. (a) bcc-
structure (Li, Na, Ba etc.), (b) fcc-structure (Al, Ni, Ag, Au etc.), (c) hcp-structure (Mg, Co, Cd etc.). These
three often appear in crystals of metals. We get (a) and (b) with simply putting atoms at the lattice points of bcc
and fcc lattices in Fig.1.2. (c) is classified into simple hexagonal lattice with taking two atomic positions which
have a little darker color, as the basis. (d) is zinc-blende, which often appears in compound semiconductors. (e)
is the structure of BEDT-TTF-TCNQ, which is one of organic semiconductors. It is difficult to see the structure
in the BEDT-TTF molecults in the main panel. The inset at the left-down shows the molecule structure in the
view from the direction vertical to the molecular plane.

is simple cubic. Also, the rhombohedral lattice can viewed as a composite of three regular hexagonal prisms
with 120◦ rotations to each other.

In Bravais lattices, the abbrebiations fcc for face-centered cubic and bcc for body-centered cubic are fre-
quently used. These lattices often appear in metal crystals and the primitive cells often consist of single atoms.
Then for the crystal structures, fcc and bcc are also often used. The hexagonal close-packed structure shown in
Fig.1.3(c) is also used as a crystal structure that appears approximately well in metal crystals, and the abbre-
viation hcp is used. The abbreviations for crystal structure are bcc, fcc, and hcp, but there is no hcp “lattice”
in the sense defined here. That is, in Fig.1.3, the three atomic positions in the middle of the structure are not
equivalent to the peripheral atomic positions, and one atom cannot be taken as a unit structure 1. The basic
structure can be taken as a combination of one atomic position in the upper and lower surfaces of Fig.1.3(b)
and one atomic position in the middle, and the Brave lattice is a hexagonal lattice.

Bravais lattice is a classification that focuses on the symmetry of the lattice and is important in the discussion
of symmetry, but the fact that the symmetry of the lattice and the symmetry of the crystal are not the same
means. It is clear from the fact that the unit cell is regarded as a lattice “point” in the lattice and the details
in the unit cell are discarded. Let us take the diamond structure in Fig.1.1 again as an example. The position
of the lower left apex of the regular tetrahedron, which is a part of the ptimitive cell, is the basic cell position,
and the spatial arrangement is fcc in Fig.1.2. The gray colored parallelpiped is a primitive cell containing two
atoms. In Fig.1.1, the difference of the two atomic positions is indicated by shades of colors. In the diamond
structure, the atom species is the same for the two. In the case these are alternatively occupied by different
species of atoms, e.g. Ga and As, the crystal structure is caled zinc-blende(Fig.1.3(d)). That is, zinc-blende
structure also belongs to fcc Bravais lattice. On the other hand, two atoms in the primitive cell are of the same

1On the web, many “hexagonal close-packed lattices” are searched, but in these explanations, the term “lattice structure” was
used for ”crystal structure”, and this combination was created. Also, “closest packing” mathematically means packing the spheres
most densely. Crystals that have a mathematically perfect hcp structure are not known in real atoms because of their anisotropy.
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Figure 1.4: (a) Reciprocal lattice of
fcc-lattice. The structure is classified
to bcc. (b) A way to “cut” the recip-
rocal space to obtain Brillouin zone.
Namely, cut at G/2 with the plane
perpendicular to G, where G is a re-
ciprocal lattice vector. (c) The first
Brillouin zone obtained with the cut-
tings described in (b). The points in-
dicated as Γ，X，L, · · · are the points
with high symmetries.

species in the diamond structure, though of the different species in the zinc-blende structure. The former is
symmetric for the inversion operation at the midpoint along the axis connecting the two positions while the
latter is asymmetric.

Another expample is in Fig.1.3(e), which shows an organic molecular crystal called (BEDT-TTF)2TCNQ.
The atomic positions take a complecated form though the basis is single molecule and the lattice is triclinic.
It is easy to understand the basis has strong anisotropy due to the atomic structure of the molecule and the
symmetry of the crystal and that of the lattice is different. The symmetries of crystals are classified by the
symmetry operations to 230 space groups.

2.3 Reciprocal lattice, Brillouin zone

Because the lattices of crystals have discrete translational symmetry, a potential U(r)(r is spatial coordinate)
caused by the lattice can be expanded in the Fourier seriese as

U(r) =
∑
G

UGe
iGr. (1.3)

From the periodicity in (1.1), U(r +R) = U(r). Then we obtain the condition for G as

G ·R = 2πn (n : integer), ∵ eiG·R = 1. (1.4)

The vectors G which fulfill the condition (1.4) are called reciprocal lattice vector. Just like the real-space
lattice, if we define primitive reciprocal lattice vectors as

ai · bj = 2πδij (i, j = 1, 2, 3), (1.5)

then we can write down bj (j = 1, 2, 3) with |A| ≡ a1 · (a2 × a3) as

b1 =
2πa2 × a3

|A|
, b2 =

2πa3 × a1

|A|
, b3 =

2πa1 × a2

|A|
. (1.6)

A reciprocal lattice vector can be represented as G =
∑

i=1,2,3 hibi (hi : integer). Generally a function with
the periodicity of a lattice can be Fourier expanded with the reciprocal lattice. It is legitimate to say a lattice
and the corresponding reciprocal lattice are in the relation of Fourier transformation 2 .

As we considered primitive cells in spatial lattices, we can define the units of periodic repetition in reciprocal
spaces. That is the Brillouin zone. A general way to obtain Brillouin zones is described in Fig.1.4(b). Let
us see how to obtain the first Brillouin zone around the origin. The procesure is simply to cut the reciprocal
space with planes containing the points G/2 and perpendicular to G, where G are the reciprocal lattice vectors
starting from the origin. The minimum space (polyhedron) around the origin surrounded by such surfaces is

2As an analytic expression, it is enough to remember that the Fourier transform of a regular series of δ-functions is, again, a
regular series of δ-functions. This is a very general principle. An example is the optical frequency comb.
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the first Brillouin zone. This way of “cutting at G/2” will have meaning in considering the band structure,
which will be discussed in the next chapter.

The example of fcc-lattice is shown in Fig.1.4. First, the primitive reciprocal lattice vectors are obtained
from eq.(1.6). Then we find the reciprocal lattice for the fcc-lattice is bcc-lattice as shown in Fig.1.4(a). Next
we apply the method in (b). The reciprocal lattice vectors pointing the nearest neighbor reciprocal lattice
points are the primitive reciprocal lattice vectors ±b1，±b2，±b3. There are equivalent eight planes which
cut the vectors vertically at the midpoints. The polyhedron covered with these planes is a regular octahedron.
However, the planes which cut the vectors pointing the next nearest neighbor reciprocal lattice points at the
midpoints, also cut the octahedron around the vertices. The procesure thus results in the first Brillouin zone
shown in Fig.1.4(c), where Γ，X，L, · · · indicate the points with high symmetry. The points are often used in
the display of band structure.

2.4 Crystals often used as semiconductors

II III IV V VI

4Be
2s2

5B
2s22p

6C
2s22p2

7N
2s22p3

8O
2s22p4

12Mg
3s2

13Al
3s23p

14Si
3s23p2

15P
3s23p3

16S
3s23p4

30Zn
3d10

4s2

31Ga
3d10

4s24p

32Ge
3d10

4s24p2

33As
3d10

4s24p3

34Se
3d10

4s24p4

48Cd
4d10

5s2

49In
4d10

5s25p

50Sn
4d10

5s25p2

51Sb
4d10

5s25p3

52Te
4d10

5s25p4

Which materials shold be called “semiconductors” is a difficult
problem, and some scholars propose the classification of “every
material that is not metal”. In fact, diamond, which was a typical
insulator a while ago, has recently completely established itself
as a semiconductor. Here, let’s have a quick look at the simple
and clear “crystals” of the spatial periodic structure, and those
that are often used as semiconductors in the industry.

As specific examples, we take materials consist of compara-
tively small numbers of elements from Group II to Group VI in
the periodic table. In the right table, we show the part of the
periodic table under consideration with the electronic orbital oc-
cupation. We can guess from the table that the semiconductors
composed of these elements takes similar lattice structures. Here we mainly introduce crystal structures.

2.4.1 Group IV semiconductors

Elementary semiconductors of C, Si, Ge take diamond structure (Bravais lattice is fcc). The bonds in
these crystals are dominated by covalent binding of sp3 hybrid orbitals. Silicon (Si) is of course the king of
semiconductors in the industry. Tin (Sn) are metals in many phases but the form called α-Sn (gray tin) is a
semiconductor with diamond crystal structure.

Creation of low dimensional electron system is a big charm of semiconductor physics, and it is also very
important in the semiconductor industry. In the case of Si, a metal-oxide-semiconductor (MOS) structure has
long been used to create two-dimensional electron systems. Since the oxide layer generally takes an amorphous
structure, the interfacial scattering probability of two-dimensional electrons is high, and it is difficult to obtain
an electron system with high mobility. On the other hand, a two-dimensional electron system with high mobility
has been realized by a method of forming a bf heterojunction using mixed crystals of Si-Ge.

semiconductor lattice constant Å energy gap (RT eV) electron mass m0 hole mass
C 3.56683 5.47 0.25 0.2
Ge 5.64613 0.66 1.64, 0.082 0.04, 0.28
Si 5.43102 1.12 0.98, 0.19 0.16, 0.49
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2.4.2 III-V compound semiconductors

As

Ga

[100]

[010]

[001]

Semiconductors made by combining group III elements and group
V elements on a one-to-one basis, group III and group IV atoms
occupy the lattice points of the diamond structure alternately, that
is, zinc blende structure. Al, Ga, In are often used as group III, and
As, P, Sb, etc. are often used as group V. Many kinds of compound
semiconductors are formed by these combinations, and more kinds of
semiconductors can be synthesized by further mixing different kinds
of elements to form bf mixed crystal. Strictly speaking, these are no
longer crystals because they have lost the spatially regular structure,
but most of the concepts in the crystals work well by considering
some blunting due to lattice disorder.

In reality, these compound semiconductors and mixed crystal
semiconductors are often synthesized by bf epitaxial growth, and
for this purpose, the crystal form and lattice constant should be similar between the heterogeneous semicon-
ductors to be joined. This will be described later.

Many of III-V semiconductors have a direct gap at the origin of the reciprocal lattice space, Γ point, and are
therefore often used for optical devices. In addition, there are many combinations that can form high-quality
heterojunctions by epitaxial growth, and they are frequently used for devices for high-speed operation.

2.4.3 III-N compound semiconductors

Zn

O
In nitride semiconductors, whose applications have expanded rapidly for

blue light emitting diodes, high-frequency, high-power devices, GaN, InN,
and AlN are currently the main research targets. They take hexagonal
Wurtzite crystal forms. They are usually grown by use of epitaxial growth
and annealed at high temperature to improve their quality. The figure in
the right shows the crystal structure of Wurzeit (for the case of ZnO).

2.4.4 II-VI compound semiconductors

Group II-VI semiconductors take various crystal forms such as zinc-blende,
wurtzite, and chalcopyrite. There are various compounds such as ZnO and
CdTe, and before GaN became the leading player in blue-color optical de-
vices, the II-VI system was mainly studied as a candidate. ZnO is still
considered to be a material that threatens the GaN system if the device
characteristics and manufacturing method are improved because the ma-
terial is easily available. The ZnO system tends to have a small structure
such as nanotubes, and it is not easy to form it into a thin film device. On the other hand, its application as
a nanostructure device is also attracting attentions. The Hg system is said to have a “negative bandgap” and
has become well known for its use in constructing topological materials.

2.5 Organic semiconductor materials

Organic thin films as semiconductors are attracting attention because they are lightweight, flexible, and inex-
pensive. Most organic solids are molecular solids in which intermolecular bonds are formed by van der Waals
forces. The qualities of organic semiconductors have been imporoved and the various concepts of semiconductor
physics are now applicable to organic ones. However, it is often more realistic to consider the electronic state in
the molecule and the solid state as an aggregate of them separately, reflecting the fact that they are molecular
solids. Especially in the case of macromolecules, on one hand Bloch electrons and bands in the molecule are
good approximation, on the other hand, the electrical conduction of the whole solid should be analyzed with
the theory for amorphous solids developed in the 1970s and 1980s.

3 Crystal growth

In order to utilise the structural sensitivity of semiconductors as functions to explore condensed matter physics,
to setup them as laboratories of quantum and many-body effects and to use them as devices, we need to obtain,
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as the starting point, obtain crystals with very low concentrations of defects and impurities. For that, the
original materials with ultra high purity, higher than those in reagents by orders, should be prepared with
cheap cost, huge amount, in very short time, and with very low environmental load. The crystal growth is
hence a high field in the semiconductor industrial science. The physics, the main issue of this lecture, is not
directly connected to that field but I would like to introduce some in a very short time.

Crystal growth methods of inorganic semiconductors can be classified to one for three-dimensional bulk
growth and another for two-dimensional growth on wafers of crystals cut from three dimensional ingot. The
latter is called epitaxial growth.

3.1 Growth of bulk crystals

Mining and refinement of source materials are very important processes before the crystal growth, and we
need to choose the best degree of material quality and refinement method considering the cost and the final
product. In the case of crystalline silicon, it is said that astonishing purity of 11N(99.999999999%) is required
for substrates of MOS-LSI 3, which is called “semiconductor grade”.

On the other hand, a solar cell device generally has an area 10 orders of magnitude wider than that of
MOS-LSI, and the tolerance for leakage current per area also differs by a few orders of magnitude. Hence
for them, the purity of 6N∼7N is enough under reduction of impurities that form non-radiative recombination
centers or pn characteristics degrading deep levels. Such wafers are called in “solar grade”.

In the latter, usually low quality Si called “metal grade” is used as a starting material. There have been
long term seekings for purification method with low power consumption and some new progress has been made
though the world market is now dominated by companies which provides cheap wafers produced with traditional
method in 2013. Such situation is largely affected by international affairs or economic atmosphere. I am sorry
but must say that “basic researches” are affected by such political situation in reality.

Bulk single crystals of inorganic semiconductors are usually obtained from gradual solidification by cooling
from high temperature melts. This is comparatively easy for single element semiconductor Si or Ge. In the
growths of compound semiconductors, mixed melts of multiple elements should be prepared and the difference
in melting point, vapour pressure and mutual solubility are the possible problems.

3.1.1 Czochralski process

In Czochralski (CZ) process, as illustrated in Fig.1.5 a thin seed crystal is put down to the surface of a melt
from source materials, and a thick cylindrical crystal is pulled up. The grown crystal is formed in a cylindrical
shape because the seed is rotated during the pulling up growth process. This is a representative method to

Seed

Single Si Crystal

Quartz Crucible

Water cooled chamber

Heat shield

Carbon heater

Graphite Crucible

Crucible support

Spill Tray

Electrode

Figure 1.5: Schematic drawing of Czochralski process. Left: Three-dimensional schematic illustration. Right:
Cross-sectional illustration.
From http://people.seas.harvard.edu/ jones/es154/lectures/lecture 2/materials/materials.html

3Here they are using a special definition of “purity”. I have experienced that such an ultra-pure Si ingot contains a considerable
amount of oxygen measured from low temperature magnetic susceptibility measurement with a SQUID magnetometer. 11N is
hence the value on the ignorance of these impurities. Oxygen has little effect on logic LSIs but is a problem in the application for
power devices.
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obtain a dislocation free crystal of Si. The thin disk form popular for LSI wafer appears after slicing the
cylindrical columnar shape.

As

seed crystal

GaAs crystal
GaAs melt

quartz tube
quartz boat

heater

jacket with heater movements
T

x

610 Cº

1250 Cº

Figure 1.6: Schematic illustration of a boat
method (horizontal Bridgeman process).

Such a primitive CZ method cannot generally be applied
to compound semiconductors due to large difference in the
evaporation pressure. Actually CZ method is often adopted
in growth of III-V semiconductors GaAs, InP, GaP, etc. but
not in the primitive form because the group V materials
have much higher vapour pressures than those of the group
III, resulting in the rapid escape of group V materials from
the melts. Instead, Liquid Encapsulated Czochralski
(LEC) process, in which the melt of the sources is encap-
sulated with an inert liquid like B2O3.

3.1.2 Boat method

Another popular method for bulk-growth of compound
semiconductors is the one called “boat method”. The boat
method is further classified into horizontal Bridgeman (HB)
method and temperature gradient freeze method. In the
former, a furnace with two temperature regions is moved
along a boat, in which the source materials are melt, and

from one end the melt is freezed into a single crystal.
Figure 1.6 shows a schematic illustration of HB method for the case of GaAs. Initially a metallic solid As

is set to one end of a quartz tube, which also contains a quartz made boat. In the beginning Ga melt and a
seed crystal are in the boat. The side of the As metal is heated to 610 ◦C while the other side to 1250 ◦C. As
sublimates severely above 600 ◦C and gets into Ga melt forming GaAs melt. At 1250 ◦C, GaAs is in melting
phase and at 610 ◦C in solid phase. As the furnace moves to the right in the figure, a GaAs single crystal is
solidified from the end of the seed crystal to the right.

3.1.3 Zone melting method

TMG AsH3

H2 N2

RF heating coil

GaAs substrate

susceptor

Figure 1.7: Extremely simplified schematic illustration
of MOVPE (MOCVD) apparatus of GaAs deposition.
The “suscepter” absorbs the power of RF and gets heat.

As mentioned in the footnote in pageE1-8, “ultrahigh
purity” Si actually often contains high concentration
of oxygen, which mainly comes from the crucibles dur-
ing the growth. For power MOS FET or other devices
in which such oxygen causes troubles, single crystals
are grown by floating zone melting (FZ) method. In
the initial stage, a rod of polycrystal with a high pu-
rity is prepared in standing manner and a seed crys-
tal is put on top of the rod. At first a zone of the
polycrystal rod from the top is melted e.g., by con-
centration of infrared beam with confocal method or
by rf loss heating. The melt in contact with the seed
crystal changes into single crystal and the melted zone
slowly goes down to form a single crystal rod. During
the process the melt does not touch any other materi-
als and the high purity of polycrystal is kept. On the
other hand, such big radiuses of grown rods as those
in CZ method cannot be obtained.

3.2 Epitaxial growth of thin films

Epitaxial growth, in which thin crystal films are grown with deposition of materials onto crystal substrates,
is classified into liquid phase epitaxy (LPE), vapor phase epitaxy (VPE), and epitaxy in vacuum or in
very low pressure gas. Here I will pick up metal organic vapor phase epitaxy (MOVPE) and molecular beam
epitaxy (MBE) from the number of epitaxial growth methods.
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3.2.1 Metal-organic vapor phase epitaxy

Also often called as Metal organic chemical vapour deposition (MOCVD). Often used for the growth of compound
semiconductors. Let us see the case of GaAs.

In general in epitaxial growth of a thin film crystal, component materials are carried onto the substrate
with some carriers or with some other method, and react with the substrate surface to form single crystal films.
Therefore the keys for the growth are the surface states of the substrate, the way of carrying the materials, the
dynamics of deposited atoms, etc. In the case of MOVPE, the sources are carried by hydrogen and nitrogen
gases. Ga is put on tri-methyl gallium ((CH)3Ga, TMG), and As on arsine (AsH3). They are carried onto
the substrate and decomposed into atoms on the surface by heating. Then they are chemically bonded to the
surface atoms to form GaAs crystal films. Omitting all the intermediate chemical reactions and the initial and
the final states can be written as

(CH3)3Ga+AsH3 −→ GaAs+3CH4.

TMG and arsine have low vapor pressures and as shown in Fig.1.7, liquids of them are bubbled with hydrogen
to be vaporized. Hydrogen gas is deoxidizing atmosphere for GaAs surface. Thus flat and high quality films can
be grown though the actual chemical reaction is not so simple. Doping of impurities, growth of mixed crystals
are possible with preparation of materials. All of metal organic gases of group II or III, arsine or phosphine of
group V are explosive and at the same time nerve gases. They are extremely dangerous and should be treated
with highest care and rigid safeguards.

3.2.2 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is a representative growth method of ultra-thin semiconductor films. Charac-
teristic features are: (1) deposition in ultra-high vacuum; (2) single crystalline substrates and various methods
for surface cleaning; (3) heating of substrates to activate the motions of deposited atoms; (4) stoichiometric
deposition of materials is not always required; (5) in situ characterization of grown films in various ways is
possible because the growth front is always on the surface to the vacuum.

molecular beam cells

RHEED
screen

electron gun

shutters

load lock
chamber

gate valve

quadrupole
mass spectrometer

substrate holder

beam flux monitor

growth
chamber

outlet of liquid nitrogen

outlet of liquid nitrogen

shutter rotation

RHEED screen

molecular beam cell

substrate rotation

growth chamber

load lock chambergate valvecontrol panel

(a) (b)

Figure 1.8: (a) Schematic illustration of an MBE machine. (b) Photograph of
a real machine (RIBER S32).

Figure1.8(a) is a schematic
illustration of an MBE ma-
chine, (b) shows a photograph
of a real machine. In order
for keeping ultra-high vacuum
in the growth chamber, (a)
“pre-evacuation chamber(s)” is
used for loading and unload-
ing of substrates. Molecular
beam cells (Knudsen cells, K-
cells; Langmuir cells, L-cells),
which have sources of evapo-
ration in them, are kept at
intermediate temperatures for
them to avoid adsorption of gas
molecules. While the growth,
the shrouds covering substrate,
heating system and molecular

beam cells are cooled down with continuous flow of liquid nitrogen to adsorb outgassed molecules. When evap-
orations are going on, the source molecules are inside the chamber and the total gas pressure increases, which
makes the quality of vacuum obscure. To monitor the quality, we need a partial pressure gauge for gas species.
That requirement, not 100 % is fulfilled by a mass spectrometer, with which partial pressure can be measured
as a function of the ratio of the molecular mass to the charge.

Substrates for growths are introduced into the preparation (pre-evacuation) chamber after surface cleaning
with chemical etching and protection of the cleaned surface with oxidation. The oxide film at the surface is
evaporated simply by heating the substrate in ultra-high vacuum.

To confirm the evaporation and to see the growth mode during the growth, we need some in-situ monitor
of the surface state. For that purpose a conventional method is refractive high energy electron diffraction,
RHEED. In the RHEED technique, as illustrated in Fig.1.8(a), electron beam with 15∼30keV acceleration is
injected onto the surface with very shallow angle and the diffraction pattern of reflected beam is imaged on the
illumination screen. The image reflects the atomic structure of the surface, that is, it is the pattern of reciprocal
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lattice. Because the incident beam goes onto the surface with very shallow angle, when the surface is a mirror,
the diffraction is close to two-dimensional, that is, the diffraction pattern is a set of vertical reciprocal lattice
“rods”.The image on the screen is a slice of the reciprocal rods with a plane almost parallel to the rods. Actual
diffraction patterns of rods have some widths due to various reasons and in such a two-dimensional growth,
images like upper-left of Fig.1.9 are obtained.

The image in Fig.1.9 has a strong diffraction spot at upper-center. This is due to the simple mirror-like
reflection from the surface (mirror spot) and the more flat is the surface, the higher the intensity is. After opening
the shutters molecular beams reach the substrate and the growth starts. Molecules or atoms migrate on the
surface of the substrate with thermal activation after adsorbation and hit the lattice points at last, forming
strong bonding to substrate crystals. This is one of the possible mechanisms for crystal growth and such a
“state of growth” is called “growht mode”. The growth mode mentioned above is called layer-by-layer mode.
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Figure 1.9: Upper-left: RHEED image for two-dimensional MBE
growth. The intense spot at upper-center is the mirror spot. The
right shows the oscillation of the intensity at the mirror spot as the
film grows. The cartoons illustrate the surface states at indicated
points in the intensity oscillation of the mirror spot.

In the initial stage of layer-by-layer
mode, one atomic monolayer growth con-
tains a cycle from a flat surface through a
rough surface to a new flat surface. Such
a single cycle causes one period in inten-
sity oscillation of mirror spot. The oscil-
lation hence makes it possible for us to
monitor the growth of each atomic layer.
The oscillation damps in proceeding of the
growth due to some incoherency though in
many cases growth interruption recovers
the flatness for lowering the surface energy
of roughness. These properties opens up a
way to “flat surface growth” of “migration
enhanced epitaxy”, in which the intensity
of mirror spot is monitored and the shut-
ters are controlled to keep the highest in-
tensity in the oscillation.

With increasing substrate tempera-
tures, generally the dominant growth mechanism changes into “step flow mode”, in which migrating atoms
on the surface attach to the edges of surface steps causing widening of terraces, that is, flow of steps. In this
mode no oscillation occurs.

References

[1] N. W. Ashcroft and N. D. Mermin, “Solid State Physics” Chapter 4 (Brooks/Cole Publishing, 1976).

[2] D F Johnston, Rep. Prog. Phys., 23, 66 (1960).

[3] D. K. Ferry, “Semiconductors: Bonds and bands” (IOP Publishing, 2013).

E1-11



Chapter 2 Band structure, effective mass approximation

In solid-state physics, the term “band structure” refers to the energy dispersion relations of the crystal eigen-
states in the reciprocal lattice space introduced in the previous chapter. The theme of this chapter is intro-
duction of the concept and how to calculate it theoretically. In addition, we will introduce the effective mass
approximation, which is indispensable for handling band electrons in a simple and clear view.

1 Band electrons

In free space, the kinetic energy of an electron takes a continuous value from zero. On the other hand, the
kinetic energy takes a discrete value in the bound state in the localized potential of the nucleus. There are two
views on the energy eigenstates in the periodic potential. One is the perturbation to the state in free space,
which creates a section (energy gap) where the eigenvalues do not exist, and the energy eigenvalues are cut to
bands. The other is that the discrete level due to the localized potential spreads in a band due to the tunnel
between the adjacent sites. The former is called nealy free electron approximation (NFEA), and the latter
is called tight-binding approximation (TBA).

1.1 Bloch theorem

It is needless to proove the Bloch theorem, which is very basics of the solid state physics. For the reference, the
theorem is described as follows. Energy eigenstates in a periodic potential are expressed in the real space (r)
expression as

ψnk(r) = unk(r) exp(ik · r), (1.1)

where n is the band index, unk is a function with the lattice periodicity, i.e.

∀R ∈ {(lattice vector)}, unk(r) = unk(r +R). (1.2)

Here k is the wavenumber.

1.2 Nearly free electron approximation (NFEA)

We write the equation for the eigenstates in a lattice potential as

H ψ(r) =

[
− ℏ2

2m0
∇2 + V (r)

]
ψ(r) = Eψ(r), (1.3)

where V (r) is the lattice potential.
From the periodicity of V (r), uk(r), they can be Fourier expanded as

V (r) =
∑
G

VGe
iG·r, uk(r) =

∑
G

CGe
iG·r, (1.4)

where G are the reciprocal lattice vectors. With substituting (1.1) and (1.4) into the Schrödinger equation
(1.3), we obtain ∑

G

[{
ℏ2

2m0
(k +G)2 − E)

}
CG +

∑
G′

VG−G′CG′

]
ei(k+G)·r = 0.

Because each term in the sum of G should be zero, the following simultaneous equations for {CG} are obtained.∑
G′

[{
ℏ2

2m0
(k +G)2 − E

}
δGG′ + VG−G′

]
CG′ = 0. (1.5)

The condition for eq.(1.5) to have non-trivial solutions is∣∣∣∣[{ ℏ2

2m0
(k +G)2 − E

}
δGG′ + VG−G′

]
GG′

∣∣∣∣ = 0. (1.6)

In NFEA, we consider the pertubation δVG−G′ to (V (r) = 0)

ψ(r) = eik·r, C0 = 1, CG = 0 (G ̸= 0), E =
ℏ2k2

2m0
. (1.7)
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As a result of pertubation, δCG is caused. In (1.5), the terms δV δC, δEδC are in the higher order to be ignored.
Then

ℏ2

2m0
[(k +G)2 − k2]δCG + VG = 0 ∴ δCG =

2m0

ℏ2
−VG

(k +G)2 − k2 .

However the approximation collapses at
(k +G)2 − k2 = 0. (1.8)

Therefore around the point (1.8), we approximate that only C0 and CG are non-zero. The we can write down
(1.6) as ∣∣∣∣∣∣∣

ℏ2

2m0
k2 − E V−G

VG
ℏ2

2m0
(k +G)2 − E

∣∣∣∣∣∣∣ = 0, (1.9)

which gives the energy eigenstates as

E =
1

2
[E(0)(k) + E(0)(k +G)]± 1

2

√
[E(0)(k)− E(0)(k +G)]2 + 4|VG|2, (1.10)

where E(0)(k) ≡ ℏ2k2/2m0. The result indicates the appearance of the energy separation of ±VG(bandgap
or forbidden band). For a system with the lattice constant a, the condition (1.8) is 2a cos θ = nλ(n is an
integer, λ is the wavelength of electron). This is nothing but the Bragg condition for diffraction of waves. Thus
the result can be interpreted as the electron wave get a Bragg reflection from the lattice and the interference
between the waves creates a standing wave, which results in the bandgap.

1.3 Reduced zone expression

A Bloch function can be written as fowllows with G a reciprocal lattice vector as

ψnk(r) = unk(r)e
ik·r = unk(r)e

−iG·rei(k+G)·r.

Function v(r) ≡ unk(r)e−iG·r also has the periodicity v(r) = v(r+R), where R is lattice vectors. ψnk can
thus be expressed as

ψnk(r) = ξn′k+G(r) (1.11)

with another Bloch function ξn′k. Namely, the expression in (1.1) has the arbitrariness of reciprocal lattice
vectors. In other words, when a wavefunction has a spatial modulation of lattice period, there is ambiguity
whether the modulation is included in the lattice periodic part u(r) or in the plane wave part eik·r.

On the other hand, the system represented by Schrödinger equation (1.3)has the time-reversal symmetry and
E(k) = E(−k). The above two relations on E(k) leads to E(G+ k) = E(G− k). That is, E(k) is symmetric
to the zone boudaries.

The arbitrarity in (1.11) leads to the arbitrarity in the representation of E(k). As Fig.1.2(a), in extended
zone representation, E(k) is represented as a single-valued function of k while as in Fig.1.2(b), in reduced
zone representation, representation of E(k) is folded into the first Brillouin zone.

k

k

E k( )

E k( )

p/a

p/a

2V0

2V0

(a) (b)

Figure 1.1: (a) In NFEA, a bandgap
of (1.10) appears at k = G/2. (b)
Blowup of the region around the
bandgap in figure (a). The cartoons
explain why the standing waves get
the energy gap
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k k

E k( ) E k( )

p/a p/a-p/a -p/a2p/a-2p/a 3p/a-3p/a 0 0

(a) (b)

Figure 1.2: Two ways of expression for the energy bands of NFEA. (a) Extended zone expression. (b) Reduced
zone expression.

distance : reciprocal lattice number of points
0 : (0,0,0) 1√
3: (1,1,1)，(1,1,-1)，(1,-1,1)，· · · 8
2 : (2,0,0)，(0,2,0)，(0,0,2)，(-2,0,0),· · · 6√
8 : (2,2,0)，(2,0,2)，(0,2,2)，(-2,2,0)，· · · 12√
11 : (3,1,1)，(1,3,1)，(1,1,3)，(-3,1,1)，· · · 24

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Classification of reciprocal lattice points with the distance from Γ-point (unit G0 ≡ 2π/a).

In Fig.1.2(b), the second and the third bands is obtained from cutting for the first Brillouin zone [−π/2, π/2]
of the overlap of the extended zone representations from the two neighboring reciprocal lattice points k = ±2π/a.
This is a natural consequence that the reduced zone representation is possible from the arbitrariness of the
reciprocal lattice vectors as in (1.11).

1.4 Empty lattice approximation

In NFEA, in the limit of V0 → 0, this is nothing but a free space and the energygap disappears, the dispersion
relation is simply paraboric. However, the free space is not a system in which the spatial periodicity of the
lattice is lost, and the continuous translational symmetry also includes the periodic translational symmetry of
the lattice. Rather, it can be considered that the lattice of the empty primitive cell remains. In the empty
lattice approximation, we hence consider the reduced zone representation of the parabolic energy dispersion.
In Bloch function representation, the plane wave function eik

′·r is separated into the lattice periodic part unk(r)
and the crystal wavenumber part eik·r and apply reduced zone representaiton.

Let’s take an example with a three-dimensional crystal. Consider the reciprocal lattice and Brillouin zone
in Fig.1.4 in the case of fcc. First, to obtain the reduced zone representation, since the principle of reduced
zone representation is indefiniteness of the reciprocal lattice vector as in (1.11), consider the reciprocal lattice of
fcc and the bcc lattice of Fig.1.4 (a), and draw parabola with the origin at each reciprocal lattice point. Then
we cut the diagrams with the first Brillouin zone shown in Fig.1.4(c). The reciprocal lattice points we need to
consider in this drawing are summarized in Tab.2. The farer from the origin, the higher the energy branch of
the parabora from the reciprocal lattice point.

The problem with a three-dimensional band structure expression is how to display it. It is not possible to
draw multiple parabolas in a three-dimensional space. Usually we only draw the energy dispersion on some
representative lines in the reciprocal space. Fig.1.3 shows a way of drawing often used to display the band
structure. The energy dispersions on the lines which connect points with high symmetries are drawn. As in
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the figure the line goes along L→ Γ →X→K→ Γ. (a) shows the empty lattice approximation while (b) shows
the realistic band dispersion in Si calculated with empirical pseudo-potential approximation (we will see in the
next week). There is no bandgap in the empty lattice approximation naturally. On the other hand, we see clear
resemblance between them. When we go into realistic calculations with gaps, the diagram is usuful to seew
which branch corresponds to which reciprocal point. Furthermore, when a level repulsion causes energygap, we
need to consider symmetry of the lattice and the empty lattice approximation is also usuful for seeing that.
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Figure 1.3: (a) Empty lattice approximation of fcc-lattice. Three numbers in [· · · ] indicate corresponding origins
of parabolas. (b) Realistic band structure of Si calculated by empirical pseudo-potential method.

1.5 Tight binding approximation

In the next week we begin with tight-binding approximation.
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2.1.5 Tight-binding approximation

In the nearly free electron approximation (NFEA), the lattice potential causes interference of electron waves in free

space and opens “slits", namely energy gaps in the original continuous energy spectrum. On the other hand in the view of

tight-binding approximation (TBA), the energy bands with finite widths are formed from originally discrete energy levels

in spatially localized potential at each site by electron tunneling between the different sites.

u( )r

f( )r

u( )r+R

f( )r+R

u( )r+2R

f( )r+2R

u( )r R-

f -( )r R

V( )r

Fig. 2.4 Schematic dia-
gram of TBA. The peri-
odic potential (blue lines)
is the sum of atomic po-
tentials represented by bro-
ken lines. In TBA, the lin-
ear combination of local-
ized orbitals drawn by red
lines should be in the form
of Bloch function.

The concept is illustrated in Fig. 2.4. The Hamiltonian for single-site is written as

Ha = T̂ + u, (2.12)

where T̂ , u are the kinetic energy and the site-localized potential respectively. Let Ri be the potision of site i, then the

real-space representation of Ha can be written as Ha(Ri) = T̂ + u(r − Ri). If we write the normalized orthogonal

eigenstates of Ha(0) as {ϕn}, then
Ha(Ri)ϕn(r −Ri) = ϵnϕn(r −Ri), (2.13)

where n is the level index of the discrete states. We write the periodic potential obtained by overlapping of u as V (r),

the total Hamiltonian for such system illustrated in Fig. 2.4 is

H = T̂ + V (r). (2.14)

Let us consider the solution of the eigenequation of the above Hamiltonian. For simplicity we ignore the direct overlapp

integral of wavefuntions ϕn between the neighboring sites(⟨ϕn(r −Ri)|ϕn(r −Rj)⟩ = δij). We also ignore the matrix

elements of H between the states of different n. Then the total wavefunction can be written in the linear combination

of ϕn Because all of the lattice sites are equivalent, each coefficient of the linear combination should be in the form of

c/
√
N where |c| = 1, c is constant for r. Furthermore, the linear combination should be written in the form of the Bloch

function. From the above requirements the eigenstate should be written in the following form.

ψnk(r) =
1√
N

∑
i

eik·Riϕn(r −Ri) =
eik·r√
N

[∑
i

e−ik·(r−Ri)ϕn(r −Ri)

]
. (2.15)

Since the last part of [· · · ] has the periodicity of lattice, the form of (2.15) is in the Bloch form.
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Fig. 2.5 Band dispertion relation in one-
dimensional tight-binding approximation. In
the model the hopping integral is finite only for near-
est neighbor and t, in which situation cosine-shaped
band structure is obtained. The insets illustrate the
standing wave amplitude, phase at the band bottom
and the top.

The expectation value of H (energy expectation value) with ψnk is

⟨ψnk|H |ψnk⟩ = N−1
∑
i,j

eik·(Rj−Ri)⟨ϕn(r −Ri)|[T̂r + V (r)]|ϕn(r −Rj)⟩

= N−1
∑
i,j

eik·(Rj−Ri)⟨ϕn(r −Ri)|[T̂r + u(r −Ri) + V (r)− u(r −Ri)]|ϕn(r −Rj)⟩

= ϵn +N−1
∑
i,j

eik(Rj−Ri)⟨ϕn(r −Ri)|[V (r)− u(r −Ri))]|ϕn(r −Rj)⟩

= ϵn +
∑
j

eik·Rj ⟨ϕn(r)|[V (r)− u(r))]|ϕn(r −Rj)⟩. (2.16)

From the second line to the third line, we have used the fact that T̂r +u(r−Ri) is the local Hamiltonian of the site i and

ignored the overlapp integral. Then to the fourth line, because of the infinite integration over r is taken, we have shhifted

the origin to each Ri for the integration, which results in simplyN -times of the result and the normalization is considered.

So if we write the difference between the lattice potential V (r) and the localized potential u(r) as v(r) ≡ V (r)− u(r),

En(k) = ϵn + ⟨ϕn(r)|v(r)|ϕn(r)⟩ −
∑
Rj ̸=0

eik·Rj tn(Rj), (2.17)

where the hopping integral tn(Rj) is defined as

tn(Rj) ≡ −⟨ϕn(r)|v(r)|ϕn(r −Rj)⟩. (2.18)

Let us restrict ourselves to one-dimensional systems. For simplicity, we assume the hopping integral has a finite value

t only for the nearest neighbor sites. Then the sum in (2.17) is only for Rj = ±a, where a is the lattice constant. The

result gives
En(k) = ϵn − αn − t(eika + e−ika) = ϵn − αn − 2t cos ka. (2.19)

The cosine band in (2.19) is common for one-dimensional systems. αn ≡ −⟨ϕn(r)|v(r)|ϕn(r)⟩ is the on-site energy

shift due to the change from the localized potential to the crystal potential and called crystal field contribution.

Figure 2.5 shows the cosine band thus obtained. In the case of NFEA, unperturbed is the band bottom k = 0 and the

perturbation is stronger with coming close to the edge of Brillouin zone. In the case of TBA, the starting point is the band

center. When t = 0 the band is flat, and with increasing t it broadens to ±2t.
At the band bottom, as we know from (2.19), the eigenstate is in the mode of standing wave. As illustrated in one of

the insets, the localized wavefunctions on the sites are synchronously summed up wih the same phase at the bottom. On

the other hand, they are summed up with opposite phase for neighboring site at the band top to be standing wave with

higher energy. These features are the same as those in a double well potenntial with a tunneling matrix element t between

them. The bottom corresponds to the bonding orbital while the top to the anti-bonding orbital.
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2.2 Band structure measurement, calculation

The importance of the energy band structure, that is, the energy dispersion relation in the first Brillouin zone, to mate-

rials science and engineering cannot be overstated. The views from the two extremes in the previous section are useful

for understanding the band concept and for obtaining a general physical perspective on the phenomena that occur there.

For quantitative analysis of experimental data or for selection of materials to design devices with desired characteristics,

precise band parameters are required.

In the band structure, to analyze the optical response and hot electron characteristics, the dispersion in a wide range

of crystal wavenumbers is important. Even in the optical response, it is necessary to know the dispersion of the band

edge precisely for the light emission from the band edge, problems such as excitons, and electrical conduction to a low

electric field. Let’s call the former “global band structure" and the latter “band edge structure". Here are some typical

experimental and theoretical methods to obtain for each. Appendix 2A introduces one of the ab-initio calculation methods

that calculate without directly relying on the measured values of the experiment.

2.2.1 Measurement of global band structure: angle-resolved photoemission spec-
troscopy
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In recent years, the resolution of photoemission spectroscopy has

improved remarkably, and angle-resolved photoemission spectroscopy

(ARPES) is now a means for directly obtaining a global band structure.

The right figure shows the concept of photoemission spectroscopy. Let

Eν be the energy of photo-electron measured from the vacuume level, EB

the binding energy of electrons measured from the Fermi level EF, hν the

energy of incoming light, ϕ the work function of the specimen. Then in

the light absorption process, the energy conservation law

Eν = hν − ϕ− EB (2.20)

holds. In the experiments, Ekin = ϕ+ Eν is measured and the relation is

simply written as
EB = hν − Ekin, (2.21)

which gives the binding energy. In the above ordinary photoemission spectroscopy, because the photo-electrons are

collected independent of the angles, the total density of states is measured.

In the emission of photo-electron, the sum of the parallel component of crystal wavenumber k∥ and the recprocal lattice

vector G is conserved. Let ki be the wavenumber of the initial state, kf the wavenumber of electrons emitted into the

vacuum, then
(ki +G)∥ = kf∥. (2.22)

The energy conservation reads

Ei(ki) + hν = Ef(ki) =
ℏ2k2f
2m0

+ ϕ. (2.23)

If we know the workfunction ϕ, the dispersion relation of the final states in the crystal Ef(k), then we can obtain the

dispersion relation Ei(k). Since the energy of the final state is high, the effect of lattice potential on it is small, hence
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Fig. 2.6 (a) Illustration o the procesure to determine the dispersion relation in ARPES measurement. (b) Band
structure obtained for GaAs with the vertical emission method.

Ef(k) is often replaced with that of free electron. Care should be taken that the wavenumber is still a crystal wavenumber

and the energy conservation law (2.23) becomes

Ei(ki) + hν =
ℏ2(ki +G)2

2m0
+ V0 =

ℏ2k2f
2m0

+ ϕ. (2.24)

Here, still the potentail V0 for the zero-kinetic energy “free electron in the crystal" is not known. But V0 is also determined

for various interpretations of experiments to be consistent.

As a simplest method among ARPES, a possible way to obtain the dispersion relation is to measure photo-electrons

emitted veratically to the surface. In this case, as k∥ = 0, the energy conservation gives

Ei(ki) + hν =
ℏ2|(ki +G)⊥|2

2m0
+ V0 =

ℏ2k2f
2m0

+ ϕ, (2.25)

and from

|(ki +G)⊥| =

√
2m

ℏ2

(
ℏ2k2f
2m0

+ ϕ− V0
)
, (2.26)

ki and then the dispersion can be obtained.

2.2.2 Global band structure calculation: empirical pseudo potential method

Time-independent part Schrödinger equaiton in a periodic potential V (r) = V (r+R)(R is an arbitrary lattice vector)

is written as

H ψ(r) =

(
− ℏ2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r). (2.27)

And we write a solution of the above in the Bloch form with dropping the band index as

ψ(r) = eik·ruk(r). (2.28)

The lattice periodic part V (r), uk(r) can be written in the Fourier expansion with the reciprocal lattice vector G as

V (r) =
∑
G

VGe
iG·r, uk(r) =

∑
G

CGe
iG·r. (2.29)
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Substituting (2.28) and (2.29) into (2.27), we obtain

∑
G

[{
ℏ2

2m
(k +G)2 − E)

}
CG +

∑
G′

VG−G′CG′

]
ei(k+G)·r = 0.

Because each term in the summation of G should be zero, we obtain simultaneous equations for {CG} as∑
G′

[{
ℏ2

2m
(k +G)2 − E

}
δGG′ + VG−G′

]
CG′ = 0, (2.30)

and the condition for the existence of non-trivial solution is∣∣∣∣[{ ℏ2

2m
(k +G)2 − E

}
δGG′ + VG−G′

]
GG′

∣∣∣∣ = 0. (2.31)

If we can perform perfect expansion of (2.30) in an actual crystal, the solution of the secular equation (2.31) gives the

accurate band structureE(k). Equation (2.31) tells that requirements for this calculation are the coefficient VG of Fourier

expansion of periodic lattice potential.

In pseudo potential method we calculate “effective" VG under the following concepts.

(1) Structures of valence band and conduction band below and above the Fermi level determine the properties of semi-

conductors. The outermost electrons of consisting atoms are forming these bands. The inner electrons are strongly bound

around nuclei and can be included into the periodic crystal potential. Hence we apply the above secular equation only for

the outermost electrons.

(2) (Characteristic for pseudo potential method) In the vicinity of nuclei, V (r
¯
) can be approximated with r being the

distance from the nucleons and Z being the atomic number as

V (r) = Ze/r,

and the outermost electron wavefunction should have stronger space modulation in the amplitude. On the other hand,

far from the nucleus, the inner electrons (let the number be Zc) screens the potential and the effective atomic number

decreases to Z ′ = Z − Zc. Furthermore if we take into account the electron-electron mutual interaction in, e.g., mean

field approximation, the screening gives faster decay of potential than r−1 resulting in much weaker spatial modulation

of the wavefunction. As we have seen in the tight-binding approximation (Sec.2.4), the band structure is dominated with

the overlapping of wavefunctions in neighboring sites, that is, this weak potential part determines the band structure in

practice.

If we perform the Fourier expansion of V (r) itself, strong spatial modulation around the nuclei introduces lots of high

frequency components, which are nothing to do with the band structure. Such high frequency coefficients VG not only

introduce useless calculations but also make it difficult to solve the secular equation eq.(2.31).

The above consideration brings about the central concept of pseudo potential method. We look for a “pseudo potential"

which simplifies the wave function around the nucleus but reproduces the tailing part of the wavefunction. Then obtain

VG for this pseudo potential and solve the secular equation (2.31).

W r
p
( )

rrc
0

r

eZ '

The simplest example can be as in the left figure

Wp(r) = 0 (r < rc), Wp(r) = Z ′e/r (r ≥ rc). (2.32)

Taking rc to an appropriate value, we can approximately reproduce

the tail of wavefunctions, keeping the eigen energies. Because the

potential around the ion core is flat, a pseudo potential with small

wavenumber expansion can be constituted. Summing up Wp on the positions of unit cells Rj , we obtain a pseudo

potential for the crystal potential as
Vp(r) =

∑
j,α

Wα
p (r −Rj − τα), (2.33)
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Fig. 2.7 (a) Unit cell of a zinc blende crystal (GaAs).
Alternate occupation of lattice points in diamond struc-
ture with group III (Ga) atoms and group IV (As) atoms.
In the tetrahedron indicated by broken lines, apices are
occupied with As and the center with Ga. (b) A primitive
cell contains a Ga an an As atoms. Let the edge length of
the unit cell in (a) a, and take the lattice point at the cen-
ter between Ga and As then their coordinates are from
the lattice point (a/8)(1, 1, 1) and (−a/8)(1, 1, 1) re-
spectively.

where α is the index of atomic positions in the unit cell and τα are relative positions of constituting atoms from a certain

point in the unit cell.

Because potential (2.33) has the lattice periodicity, it can be Fourier expanded with wavenumber of reciprocal lattice

points K.

vp(K) =

∫ ∑
j,α

Wα
p (r −Rj − τα)e

−iK·r dr

V

Let r′ ≡ r −Rj − τα, N : number of unit cells, Ω : unit cell volume, From e−iK·Rj = 1

=
1

N

∑
j

e−iK·Rj

∑
α

e−iK·τα
1

Ω

∫
Ω

Wα
p (r

′)e−iK·r
′
dr =

∑
α

e−iK·τα
1

Ω

∫
Ω

Wα
p (r

′)e−iK·r
′
dr′,

=
∑
α

e−iK·ταwα
p (K). (2.34)

wα
p (K) is the Fourier transform of (2.32), and depends on the atomic species α, that is the strength and functional form

of nuclear potential, not on the crystal structure, and called form factor. On the other hand e−iK·τα depends only on the

crystal structure and called structure factor. This separation of factors make it possible to estimate band structure based

on the analogies between the crystals.

In the case of zinc blende structure, from Fig. 2.7(b), we can write τ1 = −a(1/8, 1/8, 1/8) = −τ2 ≡ τ . Then (2.34)

is written as

vp(K) = eiK·τ1v1p(K) + e−iK·τ1v2p(K) = (v1p + v2p) cosK ·τ + (v1p − v2p) sinK ·τ
= vsp(K) cosK ·τ + vap(K) sinK ·τ . (2.35)

Here vsp and vap are symmetric and anti-symmetric part of the form factor vp, sin and cosine functional part is the structure

factor. In the case of diamond structure (like Si or Ge), from the symmetry v1p = v2p and vap = 0.

To obtain the value of form factor we need detailed functional form of the pseudo potential. Here comes the idea of

“empirical" pseudo potential method, in which we rather determine the form factors from experiments as fitting parameters

than to calculate them deductively from the specific form of pseudo potential.

2.2.2.1 Global band structures of semiconductors with diamond and zinc blende structures

In the case of diamond structure vap(K) = 0, and because of the original concept of pseudo potential, we only need

to calculate vsp(K) for reciprocal lattice points with small |K|. Here we restrict |K| ≤
√
11, then aK/2π = (000)，

(111)，(200)，(220)，(310) and their reversed points, 51 in total as in page ?? (for a while we drop the commas between

the vector components. Accordingly the size of the matrix in the left hand side in (2.30) is 51×51.

The potential for |K| = 0 just shifts the energy and is set to zero. And from the above approximation, the terms for

|K| >
√
11 are also dropped. The atomic potential is as in (2.32), supposed to have spherical symmetry. The form factors,

which are the Fourier transform fo the potential, should also be a function of the absolute value of wavenumber. We thus
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vsp(111) vsp(220) vsp(311) vap(111) vap(200) vap(311)

Si −2.856 0.544 1.088 0 0 0

Ge −3.128 0.136 0.816 0 0 0

GaAs −3.128 0.136 0.816 0.952 0.68 0.136

CdTe −2.72 0 0.544 2.04 1.224 0.544

Tab. 2.3 Empirically obtained form factors of pseudo potential from optical reflection coefficients for representative
fcc semiconductors in unit of eV．The values are taken from M L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(1966).
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Fig. 2.8 Band structures (solid lines )of (a) Si and (b) GaAs, obtained from the form factors in Tab.2.3. Broken
lines show the results of linear muffin-tin orbital (LMTO) method, which is one of the simplest “first principles
calculations". The two results are shifted to have the same value at the top of valence band. Energy zero E(k) = 0 is
taken to the Fermi energy in the pseudo potential calculations.

only need to know the form factors for (111), (200), (220), (311) below the distance
√
11. Even among them for (200) the

structure factor cosK·τ is zero and we do not need to know the value or can put it as zero. And the last three are required.

Then form factors are determined to fit to experimentally measured quantities. A way for further decreasing of the number

of parameters is to determine rc in (2.32) to obtain vsp(K) and perform the iteration to explain the experiments. Table

2.3 shows three parameters vsp(K) chosen as to fit to the optical reflection coefficients in experiments for representative

diamond and zinc blende structure semiconductors.

Procedures of pseudo potential calculation for zinc blende semiconductors are similar to the above though vap(K) is

now finite. In the case of GaAs in Tab.2.3, since Ga and As locate in the both sides of Ge in the periodic table, the

value of Ge is also adopted for vsp(K). From (2.35), the anti-symmetric term is proportional to sinK ·τ , there is thus

no contribution from (220), and those from (110)，(200)，(311) should be considered. Table 2.3 shows the results to

reproduce optical measurements. Similarly in the case of a II-VI semiconductor CdTe, the value of Sn (gray tin) for

vsp(K) is adopted and others are obtained from experiments.

Having the values of vp(K), we substitute them into (2.31) and solve the eigenvalue problem of the 51×51 matrix and

obtain E(k). Global band structures thus obtained are shown in Fig. 2.8.

Because the above calculations do not take care of the spin-orbit interaction, which actually has important contributions
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Fig. 2.9 Global band structure of Ge calculated with empirical
pseudo potential method. The spin-orbit interaction is taken into
account and the top of the valence band shows spin-orbit split-
ting. From ref.[2].

to the band structure, in particular at the top of valence band, the three bands are degenerated. In pseudo potential

calculations which take into account the spin-orbit contribution, one of the three branches goes down. In the results for

Ge shown in Fig. 2.9, clear spin-orbit splitting at the top of the valence band is observed.

Above obtained band structures of Si, GaAs, Ge (representative diamond, zinc blende type semiconductors) are shown

in Fig. 2.8 and Fig. 2.9. The bottoms of conduction band of Si are close to X-points though a bit inside the first Brillouin

zone, while it is at Γ-point in GaAs and they are at L-points in Ge. Schematic drawing of equipotential surfaces are thus

shown in Fig. 2.10, which are probably familiar to the readers. From Fig. 2.8 and Fig. 2.9, we see that the expressions in

Fig. 2.10 are a bit exaggerated.

As can be seen above, Si has six equivalent bottoms in the first Brillouin zone, which are called valleys. In metallic

doped n-type samples, the number of Fermi surfaces is that of valleys, to which we should pay attention in performing,

e.g., some integration over the Fermi surfaces. GaAs has a single valley atGamma-point and the effective mass is almost

isotropic. Ge has valleys at L-points and there are 8 equivalent L-points just at the Brillouin zone boundaries. Hence

each valley is divided by the neighboring zones and the effective valley number is 4.

2.2.3 Band structure at band edges: Effective mass

Whan a Bloch type electron wavefunction ψnk(r) has a dispersion relation En(k), the group velocity is written as

vn(k) = ℏ−1∇kEn(k). (2.36)

Hence, the acceleration is given as

dvn

dt
=

dk

ℏdt
· ∇k(∇kEn(k)) =

∇k

ℏ2
∑

j=x,y,z

∂En(k)

∂kj
Fj . (2.37)

Here, F = dp/dt = ℏdk/dt is a vector of a “force". Now we define the inverse effective mass tensor 1/m∗, which is

the inverse matrix of the effective mass tensor with(
1

m∗

)
ij

≡ 1

ℏ2
∂2E(k)

∂ki∂kj
. (2.38)

Then (2.37) can be re-written as
dvi(k)

dt
=
∑
j

(
1

m∗

)
ij

Fj , (2.39)
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Fig. 2.10 Schematic drawings of equipotential surfaces for (a) Si, (b) GaAs, (c) Ge conduction band valleys from
the information obtained in the pseudo potential calculation of Fig. 2.9. In the case of Ge, which has the valleys
at L-points, because the region is limited to the first Brillouin zone, the boundaries cut the centers of the spheroidal
valleys.

which is equivalent to

Fi =
∑
j

m∗ij
dvj(k)

dt
. (2.40)

For simplicity, we consider an energy band with an isotropic energy dispersion E(k) = ak2. m∗, in general is a tensor,

becomes a scalar ℏ2/(∂2E(k)/∂k2) = ℏ2/2a. Let it be more specific. Consider the case of eq. (1.9), where a gap opens

up in the nearly free electron approximation (NFEA). Around ∆k ∼ 0,

E± ≈ ϵz ± V0

[
1 +

ϵz
2V0

(
∆k

kg

)2
]
, kg ≡

√
2m0V0
ℏ

, (2.41)

which reads to the effective mass of

m∗ = ±ℏ2

2

2V0
ϵz

2m0

ℏ2
= ±2V0

ϵz
m0 = ±ϵg

ϵz
m0. (2.42)

Here ϵz is the band width，ϵg the band gap. In this naive approximation, the ratio between the band width and the band

gap determines the effective mass, namely, the wider the energy gap in comparison with the band width, the heavier the

effective mass. This is a kind of “toy model" but can predict at least some trend in the effective masses in the same type

of energy bands, i.e., withe the same symmetry at the same point in the reciprocal lattices. For example we can see such

tendency in the effective masses at Γ point of conduction band in GaAs, InP, InAs.
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2.2.4 Measurement of band-edge structure: cyclotron resonance

The information given from ARPES introduced in Sec. 2.2.1 is limited to the region below EF as we can see from the

principle. And the precision is, at present, not enough for quatitative discussion on electric conduction or optical actions.

Cyclotron resonance has long been used as a means of experimentally obtaining information on the band-edge of the

conduction band and valence band. This method is based on the fact that the motion of the particle with charge q and

mass m in the magnetic field with flux density B projected to the plane perpendicular to the magnetic field is a circular

motion with cyclotron frequency

ωc =
qB

m
. (2.43)

Let’s consider in classical approximation. The motion of equation for the particle with charge q and effective mass

tensor←→m is
←→m dv

dt
+
←→m v

τ
= q(E + v ×B). (2.44)

The electric field of microwave oscillates as Ee−iωt and the velocity as ve−iωt then(
−iω +

1

τ

)
←→m v = q(E + v ×B). (2.45)

Once we assume the oscillatio in v as above, the resonance condition does not depend on E and we put E = 0 for

simplicity. For simpler expression we write ω′ = ω + i/τ , B = B(α, β, γ), and put

←→m−1 =

m−11 0
0 m−12

0 0 m−13

 . (2.46)

When the lattice system is cubic or rhombic this is justified. Then the equation of motion is written as

iω′m1vx + q(vyBz − vzBy) = 0,

iω′m2vy + q(vzBx − vxBz) = 0,

iω′m3vz + q(vxBy − vyBx) = 0.

For the above to have non-trivial solution, ∣∣∣∣∣∣
iω′m1 qBγ −qBβ
−qBγ iω′m2 qBα
qBβ −qBα iω′m3

∣∣∣∣∣∣ = 0. (2.47)

From the condition ωcτ ≫ 1,

ωc =
qB

mc
= qB

√
m1α2 +m2β3 +m3γ2

m1m2m3
. (2.48)

mc is obtained from the experiment with eq.(2.43) and called cyclotron mass.

In experiment, the condition ωcτ ≫ 1 should hold and for that the impurities in the specimen should be very small. At

low temperatures the carrier concentration discussed later is very low, and carriers are excited by light illumination. In

Fig. 2.11(a), we show an example of thus obtained cyclotron resonance in the absorption of 24 GHz microwave. Several

peaks are observed and assigned to electron (excitation in conduction band) and to hole (excitation in valence band).

While the electrons have negative charge, the holes have positive. Hence if we use circular polarized microwave, the

absorption intensity changes according to the direction of rotation. The assignment was done as above.

In the practical analysis, the symmetry of the crystals tells that the constant energy surfaces should be spheroids. We

thus take the spatial coordinate to the main axes of a spheroid. Then the effective mass is represented by a tensor with
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(a)

Fig. 2.11 (a) Example of microwave
absorption signal in cyclotron reso-
nance. (b) Magnetic field angular de-
pendence of cyclotron mass in Ge con-
duction band. (c) The same for Si.
From [1].

(b) (c)

diagonal terms:ml along the main axis and two mt along the other two axes. Let θ be the angle between the magnetic

field and the main axis, (2.48) gives (
1

mc

)2

=
cos2 θ

m2
t

+
sin2 θ

mtml
. (2.49)

The magnetic field angular dependences of cyclotron mass are displayed for the conduction bands in Ge and in Si in Fig.

2.11(b) and (c) respectively. From the analysis, we can get the directions of spheroids (and the number from the crystal

symmetry) and the values of mt and ml.

2.2.5 Band-edge structure calculation: k·p perturbation

k·p perturbation is an adequate method to obtain highly accurate band structures around band edges. Though in

empirical pseudo potential method we can reproduce band structure from very few parameters with comparatively simple

calculation, in k·p perturbation we need to increase the number of bands included in the calculation, which increases the

dimension of matrices and large scale calculation is required.

The basics of k·p perturbation is eq.(1.4) in the first hour of this lecture. Substituting Bloch function eikrunk(r) into

the original Schrödinger equation, we obtain the equation for the lattice periodic part unk(r). In three dimensional space

(1.4) can be written as [
−ℏ2∇2

2m0
+ V (r) +

ℏ2k2

2m0
− i ℏ

2

m0
k ·∇

]
unk(r) = Enkunk(r). (2.50)

Here the Bloch wavenumber k is a parameter (c-number) and not an operator.

Now we redefine the unperturbed Hamiltonian H0 and k-dependent eigen energy as

H0 ≡ −
ℏ2∇2

2m0
+ V (r), E′n(k) = Enk −

ℏ2k2

2m0
.

Then the perturbation term can be written as

H ′(k) = −i ℏ
2

m0
k ·∇ =

ℏ
m0

k · p̂, (2.51)
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from which we can easily guess the source of the naming “k· p".

(2.51) is zero for k = 0. Hence we set the unperturbed state as k = 0. Assume that we obtain the exact eigenstates

{uj0(r)} for k = 0, then they form a complete set and an eigenstate for finite k can be expanded as

unk(r) =

∞∑
j=0

cnj(k)uj0(r).

These cnj(k) can be obtained from the perturbation of H ′(k). This is the concept of k·p perturbation.

In the above k = 0 is taken to the unperturbed point assuming some avoided level crossing due to the high symmetry.

Such avoided level crossing results in ∂E/∂k = 0 and the approximation is practically good around the point because

H ′(k) is small around it. Similar may occur in other points with high symmetry and k·p expansions around such points

are also available. Also as we have seen so far, physical properties of semiconductors are determined with band structures

around such symmetric points. We cannot perform, of course, the infinite summation hence cut the summation around

the band n which is under consideration. The accuracy of the k·p perturbation usually determined by the number of bands

taken into account.

(a) the case of non-degenerate ui0(r)

uik(r) = ui0(r) +
∑
j ̸=i

⟨j|H ′|i⟩
Ei − Ej

ui0(r), Ei(k) = Ei(0) + ⟨i|H ′|i⟩+
∑
j ̸=i

|⟨i|H ′|j⟩|2

Ei − Ej
(2.52)

are obtained as the first order perturbation. Here we have used abbreviation |i⟩ for |ui0(r)⟩. From ⟨i|j⟩ = δij and

⟨i|∇|i⟩ = 0,

Ei(k) = Ei(0) +
ℏ2k2

2m0
− ℏ4

m2
0

∑
j ̸=i

⟨i|k ·∇|j⟩⟨j|k ·∇|i⟩
Ei − Ej

. (2.53)

(b) the case ui0(r) has degeneracy
When u00(r) has n-fold degeneracy, we take an orthogonal basis {uj00(r)} (j = 1, · · · , n) and write the functions

in short form as |0j⟩. Perturbed wavefunction is approximated with the linear combination |ui0k⟩ =
n∑

j=1

Aij(k)|0j⟩.

Substituting this into (2.50) gives [H0 + H ′ − E0(k)]u0k = 0. With taking inner product with |0i⟩, equation

n∑
j=1

Aij(k)[⟨0i|H0|0j⟩+ ⟨0i|H ′
0 |0j⟩ − ⟨0i|E0(k)|0j⟩]

=

n∑
j=1

Aij(k)[⟨0i|H ′|0j⟩+ (E0 − E0(k))δij ] = 0 (2.54)

is obtained. The secular equation for this simultaneous equation to have non-trivial solution is

|⟨0i|H ′|0j⟩+ (E0 − E0(k))δij | = 0, (2.55)

which gives the dispersion relation E0(k). From the solution Aij(k), we obtain approximate set of eigenfunctions

corresponding to k.

2.2.6 Spin-orbit interaction

For rigorous derivation of spin-orbit interaction we should go back to Dirac equation, for which we do not have

enough time unfortunately. Here without any derivation, we adopt the Hamiltonian for spin-orbit interaction as

Hso = − ℏ
4m2

0c
2
σ · p× (∇V ). (2.56)
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And just discuss the effect on the band structure. σ = (σx, σy, σz) is a vector which has Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.57)

as its elements. (2.56) is added to (2.50) and with (1.5), we obtain[
p2

2m0
+ V +

ℏ2k2

2m0
+

ℏ
m0

k · π +
ℏ

4m2
0c

2
p·σ×∇V

]
|nk⟩ = En(k)|nk⟩,

π ≡ p+
ℏ

4mc2
σ ×∇V. (2.58)

We expand the solution, again with the basis of the band bottom |ν0⟩. This time we need to take care of spin freedom and

write |ν, σ⟩ ≡ |ν0⟩ ⊗ |σ⟩ , and expand as |nk⟩ =
∑

ν′,σ′ cn,νσ|ν′, σ′⟩. With taking inner product with ⟨ν, σ|, we obtain

the eigen equation as

∑
ν′,σ′

{[
Eν′(0) +

ℏ2k2

2m

]
δνν′δσσ′ +

ℏ
m
k · P νν′

σσ′ +∆νν′

σσ′

}
cnν′σ′ = En(k)cnνσ. (2.59)

where

P νν′

σσ′ ≡ ⟨νσ|π|ν′σ′⟩, ∆νν′

σσ′ ≡
ℏ2

4m2c2
⟨νσ|[p · σ × (∇V )]|ν′σ′⟩. (2.60)

The dispersion relation again is obtained with solving the eigen value problem. In this stage, it is often a good approxi-

mation to drop the spin-orbit part. In such cases it can be written as π = p，P νν′

σσ′ = δσσ′Pνν′ .

2.2.7 Wavefunctions at Γ-point in fcc semiconductors

In empirical k·pmethod, without detailed knowledge of wavefunctions, the parameters required for the band calculation

are extracted theoretically and the values are obtained from experiments. Many of such parameters are zero around highly

symmetrical points making the calculation easier. Hence the knowledges of spatial symmetries in crystal and in atomic

orbitals are important. Though the theory of space group gives systematic discussion to this problem, again due to the

time limitation, we restrict ourselves to the discussion around Γ-point in fcc semiconductors.

Bravais lattice is fcc for group IV semiconductors with diamond structure and group III-V semiconductors with zinc

blende structure. Here we name them “DZB" semiconductors. As is guessed from the structure in Fig.5.10(b), in chemical

bond theory the crystal formation can be understood along covalent bonding between neighboring sp3 hybrid orbitals.

In the group III-V semiconductors, for each atom to form sp3 hybrid, it needs to be ionized. Hence the crystals are also

formed with the ionic bonding. The most effective atomic orbitals on the band structures in these semiconductors are s

and p. In DZB structure, there are two atoms per a single lattice point in the simplest fcc structure (Fig.5.10). In Fig.5.9,

substituting 2× 4 = 8 into Z, we see that the energy gap opens around the degeneracy points in the distance around
√
3

from Γ point.

We consider a function |S⟩, which has the lattice translational symmetry though also has the same angular symmetry

as s orbital in the vicinities of nuclei. For that, we first take a linear combination of atomic orbitals (LCAO) of s orbital

|s⟩
|us⟩ =

∑
i,β

aiβ |siβ⟩,

where i is the index of unit cells, β is the relative index of atoms in a unit cell (as is in the pseudo potential calculation).

Though the above function satisfies the crystal translational symmetry, it is not a solution for the Schrödinger equation

with lattice potential. Hence we assume that we can modify the form of |s⟩ to make the linear combined function a
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solution for the Schrödinger equation with keeping the rotational symmetry in |s⟩ characteristic to the s-orbital. We write

thus obtained LCAO wavefunction as |S⟩, which must satisfy

H0|S⟩ =
[
−ℏ2∇2

2m0
+ V (r)

]
|S⟩ = Ec|S⟩. (2.61)

In the same way we define |X⟩, |Y ⟩, |Z⟩, which have angular symmetries of px, py , pz respectively around nuclei,

translational symmetry at the same time.

At Γ-point, the bottom of conduction band is mostly made from s orbitals while the top p orbitals. Hence, though the

approximation is rough, we assume the above defined functions satisfy the unperturbed (k = 0) equation

H0|ζ⟩ =
[
−ℏ2∇2

2m0
+ V (r)

]
|ζ⟩ = Eb|ζ⟩, (2.62)

where ζ ∈ {S,X, Y, Z}, Eb is Ec for ζ = S and Ev for others. It may be a problem whether such functions as |S⟩, |X⟩,
· · · actually exist. The space group theory says we can adopt lattice periodic functions with the same angular symmetries

as s or pα orbitals around the point at which parabola with bottoms at (±1,±1,±1) degenerate in the empty lattice

approximation. *1．

For the convenience to take into account the spin-orbit interaction, we transform basis from |X⟩, |Y ⟩, |Z⟩ to

|+⟩ ≡ (|X⟩+ i|Y ⟩)/
√
2, |0⟩ ≡ |Z⟩, |−⟩ ≡ (|X⟩ − i|Y ⟩)/

√
2,

which correspond to eigen functions of angular momentum |p+1⟩, |p0⟩, |p−1⟩ respectively. With the direct product of

these four basis functions for the orbital part and two for the spin part (↑, ↓), eight basis functions in total, roughest

k · p perturbation calculation, in which the orbital degeneracy and the spin-orbit interaction are taken into account can be

performed.

The perturbation Hamiltonian to |nk⟩ is taken as

H ′ + HSO = −i ℏ
2

m0
k ·∇− ℏ

4m2
0c

2
σ · (p×∇V ), (2.63)

in which we have dropped higher order terms from (2.58) and put π = p. The matrix elements between |S⟩, |X⟩, · · · are

P ≡ ℏ
m0
⟨S|px|X⟩ =

ℏ
m0
⟨S|py|Y ⟩ =

ℏ
m0
⟨S|pz|Z⟩, (2.64)

∆ ≡ − 3iℏ
4m2

0c
2
⟨X|[∇V × p]y|Z⟩ = (cyclic replacement of xyz) (2.65)

and their conjugate elements. Others are zero due to the symmetries around nuclei.

Hence non-zero matrix elements of H ′ are

⟨Sα|H ′|0α′⟩ = Pkzδαα′ , ⟨Sα|H ′| ± α′⟩ = ∓P√
2
(kx ± iky)δαα′ , (2.66)

and their conjugate elements H ′
ji = (H ′

ij)
∗, where α, α′ are spin coordinates. As for HSO,

⟨± ↑ |HSO|± ↑⟩ = −⟨± ↓ |HSO|± ↓⟩ = ±∆/3,

⟨±α|HSO|0α′⟩ = (1− δαα′)
√
2∆/3,

(2.67)

and others are zero. From (2.62), unperturbed Hamiltonian H0 has

⟨Sα|H0|Sα′⟩ = δαα′Ec, ⟨{+, 0,−}α|H0|{+, 0,−}α′⟩ = δαα′Ev. (2.68)

*1 e.g. see Inui, Tanabe, Onodera, “Applied group theory" (Shokabo, 1976) Chapter 11 (in Japanese).
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Fig. 2.12 Band structure for diamond and zinc blende semicon-
ductors calculated from the lowest order k·p perturbation with
adopting only S and P orbitals. Spin-orbit splitting exists though
the heavy hole mass is the same as that of the vacuum electron,
that is, the hole mass is negative in this calculation.

From the above we obtain the secular equation and thus the energy eigen values En(k). H ′ is an 8×8 matrix in the

present basis though if we fix the wavenumber vector to z direction, i.e., k = (0, 0, k), it becomes[
Hd 0
0 Hd

]
,

thus is broken down to 4×4 matrices and

Hd =


Ec 0 kP 0

0 Ev −∆/3
√
2∆/3 0

kP ∗
√
2∆/3 Ev 0

0 0 0 Ev +∆/3

 . (2.69)

From this the secular equation to obtain the eigenvalue λ is obtained as

λ = Ev +
∆

3
,

(λ− Ec)

(
λ− Ev +

2∆

3

)(
λ− Ev −

∆

3

)
− |P |2k2

(
λ− Ev +

∆

3

)
= 0.

In the second equation we approximate that the term of |P |2k2 is small then obtain the energies for the conduction band

Ec(k), and the valence band Evj(k) as

Ec(k) = Ec +
ℏ2k2

2m
+
|P |2k2

3

[
2

Eg
+

1

Eg +∆

]
, (2.70)

Ev1(k) = Ev +
∆

3
+

ℏ2k2

2m0
, (2.71)

Ev2(k) = Ev +
∆

3
+

ℏ2k2

2m0
− 2|P |2k2

3Eg
, (2.72)

Ev3(k) = Ev −
2∆

3
+

ℏ2k2

2m0
− |P |2k2

3(Eg +∆)
. (2.73)

The band structure around k = 0 thus far obtained is displayed in Fig. 2.12. Small mass of the conduction band, two

different masses at the top of the valence band, and lowered energy of spin split-off band due to the spin-orbit coupling

in the valence band, which properties are well known from optical measurements, cyclotron measurements, etc, are

reproduced qualitatively though in particular, the heavier valence band mass is that of the vacuum electron, that is, the
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hole effective mass is predicted to be negative apparently different from the real band structure. This is, of course, due

to the coarse approximation, which is to the first order perturbation based on the degenerate four bands. The accuracy

is enhanced by enhancing the order of perturbation to second, and by taking the surrounding bands into account. At

present front of calculation, due to algorithm developments, and enhancement in computational performance have made

it possible to perform calculations including over 20 bands and results with high accuracy which can be even used at

comparatively high k[4].

Another way to utilize the result of k·p “empirically" is, as is in the pseudo potential method, to represent the results

of second order k·p perturbation with a small number of parameters (e.g. Luttinger parameters) and to determine them

fitting to the experiments. In the case of valence band in diamond and zinc blende semiconductors, the energies can be

expressed as

Ev(k) = Ev +
∆

3
+Ak2 ±

√
B2k4 + C2(k2xk

2
y + k2yk

2
z + k2z + k2x), (2.74)

Evsp(k) = Ev −
2∆

3
+Ak2, (2.75)

and A, B, C are obtained from, e.g. cyclotron resonance.

2.3 Band structure of graphene

One of the ways to form a two dimensional electron system is to utilize two-dimensional crystals (two-dimensional ma-

terials). Graphene is the representative two-dimensional material. Graphene provides a good expample for the application

of tight-binding calculation and we would like to see how the things go in a practical (though simplest) example.

The crystal structure of single-layer graphene is show in Fig. 2.13(a), which is a simple honeycomb structure of carbon

atoms. The diamond drawn in the figure is the unit cell and the primitive lattice vectors and the primitive reciprocal lattice

vectors are written as

a1 =

(√
3a/2
a/2

)
, a2 =

(
0
a

)
, b1 =

(
4π/
√
3a

0

)
, b2 =

(
−2π/

√
3a

2π/a

)
. (2.76)

Henceforce we calculate the electronic states of graphene under simplest approximation. Because the approximation

is rough, quantitative comparison with experiments is difficult. However, the results help understanding properties of

graphene, e.g. the Dirac points appear at the Fermi level in pure graphene. Carbon belongs to group-IV and the outmost

electrons exist in the orbitals 2s, 2px, 2py , 2pz . It is easy to see that these orbitals form sp2-hybrids and the electronic

states separate to σ-electrons (sp2) and π-electrons (pz). σ-electrons form the honeycome through covalent bonding and

the energy bands lie at low energy region. Then the electronic states placed around the Fermi level are π-electrons. Hence

we consider Schrödinger equation on π-electrons on the honeycomb lattice.

We write the equation as
ψ = H ψ, (2.77)

and as Fig. 2.13(a), we separate the lattice sites to A-sites and B-sites on different sub-lattices. We consider a kind of

tight-binding approximation between the two-sites. That is

ψ = ζAψA + ζBψB, (2.78)

ψA =
∑
j∈A

exp(ikrj)ϕ(r − rj), (2.79a)

ψB =
∑
j∈B

exp(ikrj)ϕ(r − rj), (2.79b)
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Fig. 2.13 (a) Two dimensional cryatal structure of graphene. Carbon atoms form a honeycomb lattice. It can be also
viewed as an overlap of two face-centered square lattices placed at A and B positions. (b) Reciprocal lattice of (a).
b1, b2 are the primitive reciprocal lattice vector corresponding to a1, a2. The centtral point of the first Brillouin zone
is Γ-point and as other points with high symmetries, K-point and M-point are indicated in the figure.

where ϕ(r) is atomic wavefunction of π-electrons, rj are the lattice points. Here we write the matrix elements of the

Hamiltonian between the each sub-lattice wavefunctions as

HAA = ⟨ψA|H |ψA⟩, HBB = ⟨ψB|H |ψB⟩, HAB = H∗BA = ⟨ψA|H |ψB⟩. (2.80)

And the number of atoms in the system is 2N , that is

⟨ψA|ψA⟩ = ⟨ψB|ψB⟩ = N. (2.81)

Let ⟨ψA|ψB⟩ be zero. We substitute (2.78) to (2.77). The condition of have non-trivial (ζA, ζB) givies the cecular equation∣∣∣∣HAA −NE HAB

HBA HBB −NE

∣∣∣∣ = 0. (2.82)

Lastly
E = (2N)−1

(
HAA +HBB ±

√
(HAA −HBB)2 + 4|HAB|2

)
≡ hAA ± |hAB|, (2.83)

where we have used HAA = HBB, which comes from the symmetry, and we use lower cases for the quantities per atom

with being devided by (2N)−1.
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Fig. 2.14 Vectors indicating three directional couplings between nearest
neighbor carbon atoms.
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Fig. 2.15 Left: surface plot of eq.(2.87). The figure shows the ap-
pearance of Dirac points, where the vertices of energy corns crash at
the K-point. Upper: Schematical drawing of a Dirac point.

HAB =
∑

l∈A,j∈B

exp [ik(rj − rl)] ⟨ϕ(r − rl)|H |ϕ(r − rj)⟩r. (2.84)

We further approximate that the off-diagonal matrix elements of H just exist between the nearest neighbor sites. For the

calculation we take the atom indicated as A in Fig. 2.13(a) as the center atom. The vectors from A to the nearest neighbor

atoms 1, 2, 3 are di(i = 1, 2, 3) respectively. As is apparent from the figure,

k · d1 =
kxa√
3
, k · d2 =

(
− kx

2
√
3
+
ky
2

)
a, k · d3 =

(
− kx

2
√
3
− ky

2

)
a, (2.85)

where a = |a1| = |a2|. The terms ⟨ϕ(r− rl)|H |ϕ(r− rj)⟩r should be equal due to the symmetry and we write it as ξ.

Consequently the residual resonant integral from the crystal structure is the repetition of the above and

hAB =

 3∑
j=1

exp(ik · dj)

 ξ. (2.86)

Substituting eqs.(2.85), (2.86) into eq.(2.83), we get the following expressio for the energy.

E = hAA ± ξ

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (2.87)

The second term is the perturbation from the nearest neighbor resonant integral, which vanishes at K-point in the recip-

rocal space

(kx, ky) =

(
0,±4π

3a

)
,

(
2π√
3a
,±2π

3a

)
,

(
− 2π√

3a
,±2π

3a

)
. (2.88)

We write ky = 4π/3a and around kx = 0(one of the K-points), eq. (2.87) can be approximated as

E

(
kx,

4π

3a

)
≈ hAA +

√
3ξa

2
|kx|. (2.89)

Namely, at the K-point the upper band has a lower pointed shape. Because the same for the lower band and as a result,

at the K-point, as shown in Fig. 2.15, the band structure called Dirac point, which has no energy gap, no effective mass,

appears.
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Equation (2.87) is for a very simplified model. Just like a cosine band appeared in the tight-binding model in one-

dimension, the model itself does not have realistic meaning. However the model tells that the reason why we have the

Dirac points at K-points is that the exsittence of three equivalent resonant integrals in eq. (2.86). The inference holds for

the band calculation with any level precision since it is based on the symmetry. That meas the K-points in real graphene

are really Dirac points.

Appendix 2A: Band structure calculation based on density function theory

There are many electrons in an actual substance, and the wave function that expresses that state has fermion symmetry

called antisymmetry with respect to the particle exchange operation. This causes an electron correlation effect. In

addition, a Coulomb repulsive force acts between the electrons. In the semi-empirical band calculation, the effect of these

electron-electron interactions is taken into account when the parameters of the one-electron band picture are obtained from

the fit to the experimental values, but in the so-called first principle (ab initio) calculation, direct treatment of the electron-

electron interaction is required. Calculations that incorporate electron-electron interactions require enormous amounts

of calculation for high accuracy, computer resource savings are hence required. The density functional theory (DFT) is

very advantageous in that point, thus used in many ab-intio calculations. Nowadays, calculation packages sometimes

give us answers even without knowledge of calculations inside. Here, hoewever, we will have a brief look at very basics

of ab-initio band calculations[6].

It has become clear that the ab-intio calculations with various approximations reproduce the qualitative features of

the semiconductor band structure, but on the other hand, even the band gap, which is the most basic quantity cannot be

reproduce without taking into account the quantum correlation effect though this is not an easy task. Incorporating the

correlation effect properly is not easy even with DFT, and various theoretical modifications are made that can be said to be

ad hoc, which is far from the “first principle" in some cases. It is necessary to pay attention to what kind of approximation

is used for the calculation and how accurate it is.

2A.1 Kohn-Sham equation

Hohenberg and Kohn showed that the energy of interacting electron gas with electron density distribution ρ(r) in the

external potential v(r) can be expressed with a universal functional of density F{ρ(r)} as

E{ρ(r)} = F{ρ(r)}+
∫
v(r)n(r)dr, (2A.1)

and also showed that E{ρ(r)} takes minimum for the true electron density ρ(r). The proof is for the case of ground state

without degeneracy but the limitation was removed by Levy. Herer we skip the proof.

Let the Hamiltonian without v(r) be

Hf = −
ℏ2

2m

N∑
i=1

∇2
i +

N∑
i>j

V (ri − rj), (2A.2)

and the density functional F{ρ} is generally written as

F{ρ} = ⟨ΨN |Hf |ΨN ⟩. (2A.3)

ΨN is the wavefunction to give ρ(r). To obtain the form of F{ρ}, we write it in the form

F{ρ} = T{ρ}+ U{ρ}+ E(0)
xc {ρ}. (2A.4)
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T{ρ} is the kinetic energy, U{ρ} is the mean field expression of the Coulomb interaction between the electrons as

U{ρ} = e2

8πϵ0

∫
ρ(r)ρ(r′)

|r − r′|
drdr′, (2A.5)

and is called Hartree term. The residucal Eex{ρ}(0) is called exchange-correlation energy.

Even the kinetic energy T{ρ} is difficult to be expressed explicitly with ρ and we make modification as follows. We

consider an imaginary electron system without interaction in an effective potential veff(r).[
− ℏ2

2m
∇2 + veff(r)

]
ψi = ϵiψi(r). (2A.6)

We also assume the electron density of this system coinsides with that of the interacting electron system.

ρ(r) =
∑
i

|ψi(r)|2. (2A.7)

The kinetic energy of the imaginary system is

TS{ρ} = −
ℏ2

2m

N∑
i=1

∫
ψ∗i (r)∇2ψi(r)dr. (2A.8)

We now renormalize Eex to include the difference between TS{ρ} and T{ρ} as

Eex{ρ} = E(0)
ex + T{ρ} − TS{ρ}. (2A.9)

Then the total energy can be written as

E{ρ} = TS{ρ}+ U{ρ}+ Eex{ρ}+
∫
v(r)n(r)dr. (2A.10)

We minimize E{ρ} with the variation of ψi(r)
∗. For that the normalization condition ⟨φi|φi⟩ = 1 leads to the

introduction of Lagrange multipliers −ϵi. Then the minimum condition is written as

δE{ρ}
δψ∗i

=

[
− ℏ2

2m
∇2 + v(r) +

e2

4πϵ0

∫
ρ(r′)

|r − r′|
dr′ + µex(r)− ϵi

]
ψi(r) = 0, (2A.11)

where µex(r), defined as

µex(r) =
δEex{ρ}
δρ(r)

(2A.12)

is the quantity called exchange-correlation potential. The condition can be written in an eingenvalue equation as[
− ℏ2

2m
∇2 + v(r) +

e2

4πϵ0

∫
ρ(r′)

|r − r′|
dr′ + µex(r)

]
ψi(r) = ϵiψi(r). (2A.13)

Eq. (2A.13) is called Kohn-Sham equation.

In summary, the many-body effects are put into Eex{ρ} in the above. The next step is how to calculate this term. In

most frequently used method is local density approximation (LDA),

Eex{ρ} =
∫
ϵex{ρ(r)}ρ(r)dr, (2A.14)

then for ϵex{ρ(r)}, the exchange-correlation energy for uniform electron gas with the density ρ. There are many other

methods for the calculation.
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2.3.1 Effective mass approximation

Let us consider the effect of spatially non-uniform perturbation. For that we add the perturbation potential U(r) to the

Schrödinger equation in crystals to obtain[
−ℏ2∇2

2m
+ V (r) + U(r)

]
ζ(r) = [Ĥ0 + U(r)]ζ(r) = Eζ(r). (2.90)

ζ(r) can be expanded with the Bloch functions ψnk, which are the eigenstates of Ĥ0 as

ζ(r) =
∑
n,k

f(n,k)ψnk(r) =
∑
n,k

f(n,k)unk(r)e
ik·r. (2.91)

With taking the inner product with ψn′k′ after substitution of (2.91) to (2.90),

[E0(n
′,k′)− E]f(n′,k′) +

∑
n,k

⟨n′,k′|U |n,k⟩f(n,k) = 0, (2.92)

where ψnk is written as |n,k⟩. The second term, the transition mediated by U (we write it as Un′k′,nk), represents the

scattering from |n,k⟩ to |n′,k′⟩. U and u∗n′k′unk are Fourier transformed into

U(r) =

∫
dqUqe

−iq·r, un′k′(r)unk(r) =
∑
G

bn′k′nk(G)eiG·r.

The transformation of u∗n′k′unk is a Fourier series on the reciprocal lattice because the term has the lattice periodicity.

The coefficients bn′k′nk are written with the unit cell space Ω0, the unit cell volume v0 as

bn′k′nk(G) =

∫
Ω0

dr

v0
e−iG·ru∗n′k′(r)unk(r).

∴ Un′k′,nk =

∫
dqUq

∑
G

bn′k′nk(G)

∫
drei(k−k

′+q+G)·r.

The last integral can be performed to be (2π)3δ(k − k′ + q +G), and the integration over q gives

Un′k′,nk = (2π)3
∑
G

Uk′−k−G bn′k′nk(G). (2.93)

U(r) is assumed to have much slower spatial variation than the lattice potential. Then as Uq , it is enough to restrict

ourseleved to |q| ≪ π/a, i.e. much smaller values than that of the Brillouin zone edge. The approximation corresponds

to k′ − k ∼ G. We further assume that U does not cause strong scattering that drives the state to the zone edge, then

G takes only 0⃗. Also |U | is smaller than the band gap, then there is no interband scattering via U , i.e. there is no matrix

element for n ̸= n′. Then we can approximate

Un′k′,nk ≈ Uk′−kδn′n. (2.94)

(2.92) is written as
[E0(k

′)− E]f(n,k′) +
∑
k

Uk′−kf(n,k) = 0. (2.95)

E3-1



F( )r

U( )r
z( )r

E

V U( )+ ( )r r
r

Fig. 2.16 A perturbation pontetialU(r)

is superposed on the crystal potential
V (r). The figure illustrates the poten-
tial and the wavefunction ζ(r), the enve-
lope function F (r) for the system with
the crystal potential V (r) the slowly var-
ing perturbation potential U(r).

Nest we consider the expansion in (2.91). In the present approximation, only the region k ∼ 0 is considered for unk,

and u is almost constant for k(≈ un0). Then we take it out from the sum over k.

ζn(r) = un0
∑
k

f(n,k)eik·r = un0Fn(r), (2.96)

where the index n is attached to ζ with ignoring the intermixing of the bands. Here, Fn(r) defined as

Envelope function� �
Fn(r) ≡

∑
k

f(n,k)eik·r (2.97)

� �
is the inverse Fourier transformation of f(n,k), and called envelope function. Fn(r) should be a slowly varing function

over the scale of lattice constant(Fig. 2.16).

For the unperturbed dispersion relation, we apply that of a particle with the effective mass, and for simplicity the

effective mass m∗ is assumed to be isotropic. Then E0(k) = ℏ2k2/2m∗ is substituted to (2.95) to give

ℏ2kk′2

2m∗
f(k) +

∑
k

Uk′−kf(k) = Ef(k′). (2.98)

Here we omit writing n. The above can be inverse-Fourier transfomed with the care that the second term becomes

convolution because it already has the summation over k to give

Effective mass equation� �[
ℏ2∇2

2m∗
+ U(r)

]
F (r) = EF (r). (2.99)� �

The equation takes the form of the Schrödinger equation of the paticle with the mass m∗ and the potential U(r). That is,

for the envelop function, the problem is now a particle with the effective mass in the perturbation potential. This way of

handling the problems on the level of envelope function is called effective mass approximation, and eq.(2.99) is called

effective mass equation. In this sense, the Bloch states can be viewed as plane waves in the effective mass approximation.

The viewpoint is very usuful in designing various quantum systems in solids with semiconductor technologies. We

test the approximation for the shallow impurity states in the next chapter. We also use it in many places in this lecture.

We should be careful, however, that the envelope function is not the wavefunction itself. The difference becomes clear,

particularly when the perturbation potential has a sharp spatial variation.
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Chaper 3 Carrier statistics and impurity doping

In this chapter we consider the energy distribution of carriers in semiconductors. We introduce the concept of carrier

doping with very little amount of impurities, which brings drastic changes in the electric conduction.

3.1 Carrier statistics in intrinsic semiconductors

We call a pure semiconductor without any impurity as an intrinsic semiconductor. Of course this is just an idea,

but e.g. non-doped Si for LSIs’ can be considered as an intrinsic semiconductor. And under some conditions other

semiconductors can also be treated as intrinsic semiconductors.

3.1.1 Density of states

We consider a simple lattice system which has a state per a unit cell with an edge length of a. We take the system size

as L = Na in one dimension. For an n-dimensional system, the volume (2π/L)n contains a single state in k-space(Fig.

3.1(a)). Given the kinetic energy as E(k) = ℏ2k2/2m, the number of states per volume between E and E + dE (Fig.

3.1(b)) devided by dE is

D(E) =
1

Ld

(
L

2π

)d
dVd(k)

dE
=

1

(2π)d
dVd(k)

dk

dk

dE
=

1

(2π)d
m0

ℏ2
dVd(k)

kdk
, (3.1)

where Vd(k) is the volume of d-dimensional sphere with the radius of k. This D(E) is called energy density of state.

Because V1 = 2k，V2 = πk2，V3 = 4πk3/3 (Fig. 3.2),� �
D

(0)
d=1 =

1

πℏ

√
2m0

E
, D

(0)
d=2 =

m0

πℏ2
, D

(0)
d=3 =

√
2m3

0

π2ℏ3
√
E, (3.2)� �

where the factor 2 comes from the freedom of spin.

In the case of electrons in crystals, the above expressions for density of states are applicable with replacing the mass

with the effective mass where non-parabolicity of the band is ignorable, e.g., around tops and bottoms of the bands. When

we cannot apply the parabolic approximation, we need to go back to the definition of the density of states. For a three

kx

kx

kz

kz

ky

ky

E

E+dE

2 /p L

(a) (b)

Fig. 3.1 (a) The red dots represent possible
wavenumber in k-space in 3d empty lattice
approximation for simple cubic. (b) Counts
the number of dots in the spherical shell from
E to E + dE.
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Fig. 3.2 Schematic diagrams of
density of states for 1, 2, 3 di-
mentions in (3.2).

dimensional system it is given from

D(E) =

∫
E(k)=E

dSk

(2π)3
2

∇kE(k)
. (3.3)

The integral is over the equi-energy surface E(k) = E in k-space.

3.1.2 Concept of holes

The total current Jv.b. carried by a full valence band is zero by can-

celing of counter-going electrons (Jv.b. =
∑

v.b.(−e)vk = 0). When a

state with crystal momentum k is empty as seen in the left, the current is

Jv.b.(k) =
∑
v.b.

(−e)vk′ − (−e)vk = evk, (3.4)

as if there is a particel with the charge +e and the velocity vk. Such a

many-body state in valence band is called hole.

We write the wavenumber of hole as kh, then it should be the variation

of the total wavenumber (momentum) due to the creation of the hole.

kh =
∑
v.b.

k′e − ke = −ke. (3.5)

When an electric field E is applied, the valence electrons are accelerated

and move in the k-space. The “hole" follows the movement, that is, the

equation of motion for holes is the same as that for electrons. However,

we define a hole has the charge +e, then the acceleration by the electric

field should be opposite to that for electrons and for consistency the sign

of the effective mass should be opposite.

m∗
dv

dt
= (−e)E → (−m∗)dv

dt
= eE.

The kinetic energy decreases with the creation of a hole and if we take

the origin of energy at the top of valence band, we get(
1

m∗h

)
ij

= −
(

1

m∗e

)
ij

, Eh(kh) = Eh(−ke) = −Ee(ke). (3.6)

Form (3.6), m∗h is positive around the valence band top and the dispersion is obtained with 180◦ rotation of the electron

dispersion. The density of states Dh(E) is the same as De(E). The above definitions make it possible to treat the holes

as positive charge carriers. The hole band drawn in the lower left is used to be consistent with the electron dispersion and

the hole picture. We need to be careful that the frequently-used whilte hole picture (actually in the left) which is really an

electron dispersion and the “white hole" is placed at ke which is kh.
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3.1.3 Carrier distribution in thermal equilibrium

Let us see how electrons and holes distribute in energy space at a finite temperature obeying the Fermi distribution

function. For a while we treat general properties, which hold also for doped semiconductors. The effect of doping can be

included in the position of the Fermi level EF. The numbers of electrons and holes which exist in E ∼ E + dE are

ge(E)dE = De(E)f(E)dE, (3.7a)

gh(E)dE = Dh(E)[1− f(E)]dE ≡ Dh(E)fh(E)dE. (3.7b)

Here we introduced the hole distribution function as (Fig. 3.3(c)),

fh(E) = 1− f(E) =
1

1 + exp(EF − E)/kBT )
. (3.8)

For the density of states, we use those of particles with the effective masses. From (3.2),

De(E) =

√
2m∗3e
π2ℏ3

√
E − Ec (conduction band), (3.9a)

Dh(E) =

√
2m∗3h
π2ℏ3

√
Ev − E (valence band). (3.9b)

Here Ec, Ev are the bottom of conduction band and the top of valence band respectively as in Fig. 3.3(a).

Hence the distributions of electrons and holes at a finite temperature should be as in Fig. 3.3(b), giving the electron

concentration in the conduction band n, the hole concentration p in the valence band as

n =

∫ ∞
Ec

ge(E)dE =

√
2m∗3e
π2ℏ3

∫ ∞
Ec

√
E − EcdE

1 + exp(E − EF)/kBT
, (3.10a)

p =

∫ Ev

−∞
gh(E)dE =

√
2m∗3h
π2ℏ3

∫ Ev

−∞

√
Ev − EdE

1 + exp(EF − E)/kBT
. (3.10b)

In the case of fF(E)≪ 1(E ≥ Ec)，fh(E)≪ 1(E ≤ Ev), the distribution can be approximated by Maxwellian as

fF(E) ∼ exp(EF − E)/kBT, fh(E) ∼ exp(E − EF)/kBT. (3.11)

We apply the identity ∫ ∞
0

√
xe−xdx =

√
π

2

k

Ec

Ev

E k( )
re( )E

f E( )

1

EF

(a) (b) (c)

f Eh( )

E E

hole

electron

Fig. 3.3 (a) Schematic diagram of
energy bands. (b) Density of states
and the distributions of electrons
n(E)(blue-gray)，p(E)(white)．
(c) Electron distribution function
f(E)(red solid line), and hole distri-
bution function fh(E)(blue broken
line).
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with x = (E − EF)/kBT to obtain

n = 2

(
m∗ekBT

2πℏ

)3/2

exp

(
EF − Ec

kBT

)
≡ Nc exp

(
EF − Ec

kBT

)
, (3.12a)

p = 2

(
m∗hkBT

2πℏ

)3/2

exp

(
Ev − EF

kBT

)
≡ Nv exp

(
Ev − EF

kBT

)
. (3.12b)

Nc and Nv are the coefficients which give n, p respectively in the situation the energy states are concentrated at Ec and

Ev . They are called effective density of states. From (3.10a) and (3.10b) we obtain

Law of mass action� �
np = NcNv exp

(
Ev − Ec

kBT

)
= NcNv exp

(
− Eg

kBT

)
= n2i (3.13)� �

Here the width of forbidden band Eg ≡ Ec −Ev is called energy gap, and ni は真性半導体の場合のキャリア濃度であ

る．Equation (3.13) does not depend on the position of EF, which varies, e.g. with doping. In other words, the product

np in the thermal equilibrium is determined only by the temperature and the species of semiconductor.

In intrinsic semicondutors, there is no space charge and the charge neutral condition leads to n = p hence is written as

ni in the above law of mass action. The relation n = p in intrinsic semiconductors leads to

EF =
Ec + Ev

2
+
kBT

2
ln
Nv

Nc
=
Ec + Ev

2
+

3kBT

4
ln
mh

me
, (3.14)

which gives the position of EF. At low temperatures the second term gets small and EF comes close to the middle of the

band gap.

3.2 Impurity doping

In semiconductors, very small amount of impurities give drastic change in the material properties. Such addition of

impurities is called doping *1.

3.2.1 Donors and acceptors

As a typical example, the case of Si is shown schematically in Fig. 3.4. In Si pure crystal, as in (a), a Si atom has

four nearest neighbor atoms, which have 4 covalent electrons. As a result each atom has eight electrons in the outmost

shell, which fill up 3s and 3p orbits forming the closed shell geometry. When the center atom is replaced with an Sb

(group-V) atom, there is an excess electron for the closed shell structure as in (b). On the other hand, the positive charge

in the nucleous excesses the negative one of surrounding electrons by +e, which forms a Coulomb potential around the

Sb atom. The excess electron is excited to the conduction band or loosely trapped in the bound state in the Coulomb

potential. An impurity that emits electrons to the conduction band or the shallow levels is called donor.

When the center atom is replaced with a B atom (group-III), which is just the opposite of Sb, there are not enough

electrons to form a closed shell structure. Therefore, holes are created in the valence band to supplement the electrons,

but as a result, the electron charge becomes extra around the B atom, and a Coulomb potential of only −e is generated.

Impurities that emit holes into the valence band and shallow levels in this way are called acceptors(acceptor).

*1 In so called studies in strongly correlated systems, which began with the studies of high-Tc superconductors, addtion of atoms wtih concentra-
tions even far above 1% is called “doping" as far as the crystal structure is unchanged. Such regions are called “alloying" in the semiconductor
fields. Furthermore, enhancement of carrier concentrations with application of strong electric field is sometimes called “electric field doping",
and the addition of impurities is called “chemical doping." Here, however, I follow tranditional epxression in the field of semiconductors.
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Fig. 3.4 (a) Illustration of electronic structure in the outmost shell in a Si atom in a Si crystal. (b) In the case of
replacement with an Sb atom. There is an excess electron for Sb to form the closed shell structure. The excess electron
should go out from the covalent system. (c) In the case of replacement with a B atom, which opens a “hole" in the
valence band.

The situation is a little more complicated in the case of compound semiconductors than in Group IV elemental semi-

conductors. For example, when a group III-V semiconductor is doped with a group IV element, replacing the group III

site becomes a donor, and replacing the group V site becomes an acceptor. Elements whose donor / acceptor changes

depending on the doping method are called amphoteric.

3.2.2 Effective mass approximation for shallow hydrogen-like levels

Regarding the Coulomb potential formed by donors and acceptors, semiconductors generally have a relatively large

permittivity due to the polarization of valence electrons, and this impurity attraction potential is considerably weaker than

in vacuum. Therefore, the binding energy of the impurity bound state is smaller than that of the hydrogen atom, and in

many cases, it spreads over several unit cells, and the effective mass approximation can be applied.

For the case of isotropic effective mass, taking the origin at the impurity potision we write the effective mass equation

from U(r) = −e2/4πϵ0ϵr as [
−ℏ2∇2

2m∗
− e2

4πϵ0ϵr

]
F (r) = EF (r), (3.15)

which as the same form as that of hydrogen atom other than the effective mass m∗ and the relative permittivity ϵ. Hence

we can readily apply the results for hydrogen atom. Here we write the effective Rydberg constant and the effective
Bohr radius as

Ry∗ =
e2m∗

2(4πϵϵ0)2ℏ2
=
m∗

m

1

ϵ2
Ry, a∗B =

4πϵϵ0ℏ2

m∗e2
=

m

m∗
ϵaB (3.16)

respectively. The eigenenergy is then represented as

En = Ec −
Ry∗

n2
(n = 1, 2, · · · ) (3.17)

and the wavefunction corresponding to 1s state is

ψ1s(r) =

√
1

πa∗3B
exp

(
− r

a∗B

)
. (3.18)

An expample of semiconductor with such an isotropic effective mass is GaAs. At the conduction band minimum

placed at Γ-point, ϵ ≈ 11.5, m∗ ≈ 0.067m. a∗B = 172aB = 91 Åis sufficiently longer than the lattice constant 5.65 Åand

guarantees the legitimacy of the effective mass approximation. From Ry∗ = 5.07 × 10−4Ry = 5.57 × 103 m−1 the

binding energy of 1s state is as small as 6.9 meV.
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Semiconductor
Calculated binding

energy (meV)

Experimental binding

energy (meV)

GaAs 5.72
SiGa(5.84); GeGa(5.88)

SAs(5.87);

InP 7.14 7.14

InSb 0.6 TeSb (0.6)

CdTe 11.6 InCd (14); AlCd (14)

ZnSe 25.7
AlZn (26.3); GaZn (27.9)

FSe (29.3); ClSe (26.9)

Tab. 3.1 Effective mass ap-
proximation for hydrogen-like im-
purities and the measured value of
binding energies.

Tab. 3.1 shows the comparison of the value given by (3.17) and experimentally measured values for isotropic effective

mass condition. The agreement is satisfactory.

Then what if the effective mass is anisotropic and there are six conduction band valleys, as in Si? We consider the

effective mass approximation for the valley along (0,0,1). The equation for the spheroidal surface is

E1(k) =
ℏ2

2

[
k2x + k2y
mt

+
(kz − k0)2

ml

]
. (3.19)

Then the effective mass equation is[
− ℏ2

2mt

(
∂2

∂x2
+

∂2

∂y2

)
− ℏ2

2ml

∂2

∂z2
− e2

4πϵ0ϵr

]
F (r) = EF (r). (3.20)

The eigenfunction can be approximated by the variational method assuming an anisotropic exponential function. As a

trial function we take a and b as the paramters and write down as

F1s(r) =

√
1

πa2b
exp

(
−
√
x2 + y2

a2
+
z2

b2

)
. (3.21)

The stationary condition gives numerical solutions as a = 2.5 nm, b = 1.42 nm, E = 29 meV. However the experiments

give 33 meV for Li (the shallowest case), 45 meV for P manifesting that the approximation is not appropriate. Further

discussion will be given in Appendix 3B.

3.3 Carrier statistics in doped semiconductors

Let us consider the case we dope donors uniformly with the density ND. At absolute zero all the electrons emitted

from the donors are bound to the donors. *2 At finite temperatures some of them are excited to the conduction band and

can carry electric charges. We call them “carriers" or “electrons". Let n be the density of such electrons and nD be the

density of electrons bounded at the donors. From the charge neutrality condition we get n+ nD = ND.

Now we estimate Helmholtz free energy F = U−TS by considering the number of casesW for assigning nD electrons

to ND states. From S = kB lnW ,

F = EDnD − kBT ln

[
2nD

ND!

nD!(ND − nD)!

]
.

ED is the position of the bound state measured from the bottom of the conduction band and 2nD is due to the spin

degeneracy. We assume that the Coulomb repulsion prevents double occupation of a localized state with two electrons.

*2 In so called degenerate semiconductors the following discussion does not hold.
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According to Starling approximation lnN ! ∼ N lnN −N , the chemical potential (Fermi energy) is given as

µ = EF =
∂F

∂nD
= ED − kBT ln

[
2(ND − nD)

nD

]
. (3.22)

And from this

nD = ND

[
1 +

1

2
exp

(
ED − EF

kBT

)]−1
(3.23)

is obtained. The factor 1/2 on the exponential function is due to the spin degeneracy.

Similarly, for uniform doping of acceptors with density NA, the density of electrons bounded to the acceptors nA is

nA = NA

[
1 + 2 exp

(
EA − EF

kBT

)]−1
. (3.24)

Here we have a factor 2 instead of 1/2 but the density of holes bounded to the acceptors is pA = NA−nA and symmetrical

with nD having a factor 1/2.

From (3.22), if we dope only “shallow" donors, for which the effective mass approximation holds, EF comes to ED

at T → 0. ED should be much smaller than Eg. Accordingly from (3.23), the electron concentration n becomes much

higher than that of the intrinsic semiconductor at finite temperatures. This type of semiconductors are called n-type.

Similarly doping of acceptors enhances the hole concentration p. We call them p-type.

When donors and acceptors co-exist, the semiconductor becomes n-type for ND ≫ NA and p-type for ND ≪ NA. In

the former, some of the electrons emitted from donors are captured to acceptors and almost all the acceptors are ionized.

In the latter, the other way around. In both cases we say such semiconductors are compensated.

Remember the semiconductor equation (3.13) then the product np does not depend on the doping. If one of n , p

increases with doping, then the other decreases. In the case of n-type semiconductor under ND ≫ NA, n is much higher

than p by many orders, and we call the electrons majority carriers and the holes minority carriers. The other way

around in the case of p-type semiconductors.

Even in the presence of donors and acceptors eq.(3.12) hold and simultaneous satisfaction of them gives n, p and EF.

To obtain EF with knowledge of n, p approximate expressions

EF ≈ EC + kBT

[
ln

(
n

NC

)
+ 2−3/2

(
n

NC

)]
, (3.25a)

EF ≈ EV − kBT
[
ln

(
p

NV

)
+ 2−3/2

(
p

NV

)]
(3.25b)

are convenient. In the region where (3.23), (3.24) hold the last term can be omitted.

In an n-type semiconductor with compensation, p,nA can be ignored and the electrically neutral condition is

n+N A = ND − nD. (3.26)

Substitution of eq.(3.23) gives
n+NA

ND −NA − n
=

1

2
exp

(
ED − EF

kFT

)
. (3.27)

Equation (2.22) holds for the case of doped semiconductors with shifts of EF, multiplication of each side of the equation

results in
n(n+NA)

ND −NA − n
=

1

2
Nc exp

(
−∆ED

kBT

)
, ∆ED ≡ Ec − ED. (3.28)

The temperature dependence of carrier concentration n described by eq.(3.28) has the following four characteristic

regions:
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1/kBT

lo
g

n III

III
IV

DED/2

DED

Eg/2

impurity I

impurity II

exhaustion

intrinsic Fig. 3.5 Characteristic four temperature re-
gions of an n-type semiconductor with com-
pensation. Schematical temperature depen-
dence of carrier concentration n is plotted ver-
sus 1/T in semi-log scale.

I. Impurity (Freeze-out) region I: At very low temperatures and the case of n≪ NA ≪ ND,

n ≈ NDNc

2NA
exp

(
−∆ED

kBT

)
, (3.29)

where n decreases with lowering the temperature in an Arrhenius type with an activation energy of ∆ED.

II. Impurity (Freeze-out) region II: In middle temperature range, in the case of NA ≪ n≪ ND,

n ≈
(
NcND

2

)1/2

exp

(
−∆ED

2kBT

)
, (3.30)

where the temperature dependence shows again an Arrhenius type but with a different activation energy, which is

a half of that in the impurity region I.

III. Exhaustion (Saturation) region: Temperature is higher than ∆ED (kBT > ∆ED). The exponential function in

eq.(3.28) is now almost a constant (∼ 1) and

n ≈ ND −NA. (3.31)

Electrons once captured in donors are “exhaustively" excited to the conduction band and work as carriers.

IV. Intrinsic region: At higher temperatures where direct thermal excitation for the valence band to conduction band

cannot be ignored in comparison withND, the temperature dependence of the carrier concentration asymptotically

approaches to that in an intrinsic semiconductor described as eq.(3.10b), (3.14).

We show the behavior in Fig. 3.5 schematically. For semiconductor devices, the exhaustion region III is mostly used.

Appendix 2B: Wannier functions and the effective mass approximation

There is a way to derive the effective mass approximation by using expansion with the Wannier function. Thouhg it is

essentially the same as in Sec.2.3.1, Wannier functions have several convenient points and we may use them afterwards.

In that case, I will introduce it again, but let’s take a quick look at what it is as an appendix.
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2B.1 Wannier function

The Wannier function is defined as Fourier transform of Bloch function as follows.

wn(r −Rj) =
1√
N

∑
k

exp(−ik ·Rj)ψnk(r). (2B.1)

The Bloch function is usually given in the coordinate representation but here the spatial coordinate is a parameter and it

is now taken as a function of wavenumber k. The summation over k is inside the Brillouin zone. The Bloch function

is a product of a lattice periodic function and a plane wave and sperad over the space. On the other hand, the Wannier

function has tendency to localized to the lattice point Rj . This is understood by making the lattice-periodic function in

the Bloch function a constant, which makes the Wanner function completely localized on Rj . Equation (2B.1) can be

seen as the expantion of the Wannier function with the Bloch function. Conversely the Bloch function can be expanded

by the Wannier function as

ψnk(r) =
1√
N

∑
k

exp(ik ·Rj)wn(r −Rj). (2B.2)

An advantage in the Wannier function is the orthgonality, that is

⟨w∗n′(r −Rj′)|wn(r −Rj)⟩ = δjj′δnn′ . (2B.3)

We skip the proof but straightforwardly performed with using the summatoins on the lattice and the reciprocal lattice.

The Wannier function is normalized if it is defined as (2B.1) and also forms a complete set.

2B.2 Derivation of effective mass approximation

The problem is the addition of perturbation potential U(r) to the crystal Hamiltonian H0, that is

[H0 + U(r)]ϕ(r) = Eϕ(r). (2B.4)

The derivation goes almost parallely as that with the Bloch funtion. First we expand the wavefunction with the Wannier

functions as
ϕ(r) =

∑
n,j′

Fn(Rj′)wn(r −Rj′). (2B.5)

We assume that H1 does not have the elements for interband transition (the amplitude is too small) and we drop n

henceforth. Tne Wannier function w(r −Rj) is simply written as |j⟩. Equation (2B.5) is substituted into eq. (2B.4) and

with takeing the inner product with ⟨j|, the orthogonality (2B.3) leads to∑
j′

⟨j|H0|j′⟩F (Rj′) +
∑
j′

⟨j|U(r)|j′⟩F (Rj′) = EF (Rj). (2B.6)

As seen above |j⟩ is localized to Rj and because U(r) is slowly varying function in the scale of lattice constant, we

can approximate as ∑
j′

⟨j|U(r)|j′⟩ ≈
∑
j′

U(Rj′)⟨j|j′⟩ = U(Rj). (2B.7)

The term of crystal Hamiltonian can be written with shifting the spatial origin as

⟨j|H0|j′⟩ = ⟨w(r)|H0|w(r − (−Rj′ +Rj))⟩ ≡ h0(Rj −Rj′). (2B.8)

The Bloch funcition ψk(r) is the eigenstate of H0 and the application of the effective mass approximation to the eigenen-

ergy gives

⟨ψk(r)|H0|ψk(r)⟩ = E0(k) =
ℏ2k2

2m∗
. (2B.9)
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ψk(r) can be expanded as (2B.2) and leads to

E0(k) =
1

N

∑
j,j′

exp[−ik · (Rj −Rj′)]⟨j|H0|j′⟩ =
1

N

∑
j,j′

exp[−ik · (Rj −Rj′)]h0(Rj −Rj′)

=
∑
j

exp(−ik ·Rj)h0(Rj). (2B.10)

The inverse transformation gives

h0(Rj) =
1

N

∑
k

E0(k) exp(ik ·Rj). (2B.11)

Though F (Rj) is just defined on the lattice point as in (2B.5), since the spatial variation in U(r) is slow, the differences

between the values of F for the neighboring lattice point are small and smooth interpolation is possible. The operator of

spatial shift by a is exp(−a · ∇)*3, then we can write

F (r −Rj) = exp(−Rj · ∇)F (r)

to obtain ∑
j′

h0(Rj′)F (r −Rj′) =
∑
j′

h0(Rj′) exp(−Rj′ · ∇)F (r). (2B.12)

On the other hand for (2B.10),

E0(k)F (r) =
∑
j′

h0(Rj′) exp(−ik ·Rj′)F (r). (2B.13)

We formally inverse Fourier transform (2B.12) and (2B.13). Then these equations have the common right hand side if

we make replacement of k→ −∇. Therefore we can write∑
j′

h0(Rj′)F (r −Rj′) = E0(−i∇)F (r). (2B.14)

All the above results are restored into (2B.6) and we replace Rj with a continuous variable r. Then we obtain[
− ℏ2

2m∗
∇2 + U(r)

]
F (r) = EF (r). (2B.15)

Here I have introduce the proof in the textbook [1]. It has, though, a small jump in the logic from (2B.13)→(2B.14). Also

the description of Rj → r is rather vague. The derivation in [2] is more strict but it needs the width of paper. For the

transformation Rj → r, clearly written as “to be strict, this should be done in variations."

Appendix 3A: Methods for impurity doping

Various methods have been developed for impurity doping. A part of it is introduced in the following. Impurities to be

doped are called dopants, and base crystal is called host.

3A.1 Mixing of impurities to the raw material

We have introduced the semiconductor crystal growth method, but especially in the method of growing bulk crystals

from a material melt, if impurities are mixed in the raw material in advance, doping may be performed with relatively

good uniformity. In many cases, for example, even in the Czochralski method, a concentration gradient is generated in

the crystal growth direction by segregation. For this reason, various growth measures are taken, such as adding a dopant

*3 This can be confirmed, for example by the Taylor expansion.
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to the melt crucible in order to obtain a uniform doping concentration. In addition, in the case of amphoteric impurities,

there is a possibility that some impurities will be compensated depending on the growth conditions.

In epitaxial thin film growth, by controlling the dopant and irradiating it on the growth surface, it is possible to start

a stepwise distribution and create various concentration distributions with high non-equilibrium while maintaining crys-

tallinity. This bf modulation doping method plays a major role in occupying an extremely important position in the

semiconductor industry for semiconductor thin films.

3A.2 Thermal diffusion method

A method in which the host is kept at a high temperature in a state where the dopant is present in a high concentration

on the surface of the host, and is mixed inside by heat diffusion. Methods for increasing the concentration of the surface

include contacting with the vapor of the dopant and pre-depositing a thin film of the dopant on the host surface. In the

figure below, the dopant and host wafer are simultaneously enclosed in a quartz tube and heated together so that the vapor

of the dopant flows to the surface of the high-temperature wafer. In some cases, the whole is put into the furnace without

creating a flow. In addition, if some of the constituent elements of the host have a high vapor pressure, it is necessary to

suppress the separation from the surface by mixing the vapor of this element.

In the thermal diffusion method, the concentration is high near the surface and low as it goes inside. It is usually used

to form a device near the surface. It is used for integrated circuit formation because the doping region can be patterned

by masking the wafer when the vapor is applied.

Fig. 3A.1 Schematic diagram of thermal diffution doping.

3A.3 Ion implantation

The ion implantation method is used not only for doping but also for cutting and oxidation of the inner layer. As in Fig.

3A.2(a), ions entering from the source are bent by a magnetic field, passed through a diaphragm for mass spectrometry,

then narrowed down by a lens, irradiated on a wafer, and scanned by an XY voltage.

As in the imaginary figure in (b), Since the ions that reach the surface have high kinetic energy, they invade the crystal

in a non-equilibrium manner and stop at a depth corresponding to the average kinetic energy. Since the crystallinity of the

passing region decreases due to the collision of ions and the dopant is not always in the stable position, it is often annealed

after implantation. The distribution of dopants is generally represented by the Gaussian distribution after annealing.

In addition to doping, it was once actively used as one of the Silicon on Insulator (SOI) techniques that form an oxide

film inside by implanting oxygen ions and annealing as described above. At present, the seemingly primitive method of

bonding after surface oxidation is mainly used.
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(a) (b)

Fig. 3A.2 (a) Illustration of ion implantation doping. Ions coming out of the source are subjected to mass spec-
trometry using a magnetic field to sort them, and then the focused beam is scanned onto the wafer. (b) Imaginary
illustration of the host surface during the ion implantation.

3A.4 Irradiation with neutrons

Currently, it is rarely used, but there is an interesting doping method that uses neutrons. For that the following nuclear

reaction is used.
[n + 30Si ] → 31Si → [31P + β ]

With reactor neutrons, extremely uniform doping can be performed without compromising crystallinity. However, due to

problems such as throughput, this method remains at the research level.

Appendix 3B: Shallow donors in Si

For the improvement of the effective mass approximation for the shallow donor levels in Si, we consider the effect

of multiple (6) valleys. Since the impurity potential also has a significant magnitude and steepness near the center, it is

possible that it has matrix elements between the eigenfunctions attached to the degenerate valleys. We consider the donor

wavefunction χ(r) = F (r)ψ(r), where F (r) is the envelope function and ψ(r), for each valley and obtain the donor

function as a linear combination of them as

ϕ(i)(r) =

6∑
j=1

α
(i)
j χj , (3B.1)

where j is the index of valley and i is the index of symmetry reflecting that of surrounding atoms. Here we assume there

is no mixing between the eigenstates with different quantum number in the trap potential.

While the isotropic potential approximation does not hold in the vicinity of impurities, the spatial symmetry of the

crystal field created by the atoms around the impurity ions must be taken into consideration when taking a linear bond.

It is convenient to use point group theory for the discussion, and I will use it here as well. Regarding the point group,

if I have time, I would like to supplement the minimum knowledge in the appendix of lecture notes etc.[?, 3]. In the
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case of Si, the nearest neighbor atoms are at the apexes of a regular tetrahedron containing impurity ions. The point

group corresponding to the symmetry is expressed as the symbol Td. The elements of point group have correspondences

to the representations, which express symmetry operations. The independent elements have one-to-one correspondence

to the reduced representations. The reduced representations in Td group are A1, E and T1, which have single, double,

triple degeneracy respectively and there are six elements. The index i in eq.(3B.1) correspons to these six elements. The

coefficients for these elements are as in the following table.

j

normalization const. 1 2 3 4 5 6 expression

α
(1)
j 1/

√
6 1 1 1 1 1 1 A1

α
(2)
j 1/2 1 1 −1 −1 0 0 E

α
(3)
j 1/2 1 1 0 0 −1 −1 E

α
(4)
j 1/

√
2 1 −1 0 0 0 0 T1

α
(5)
j 1/

√
2 0 0 1 −1 0 0 T1

α
(6)
j 1/

√
2 0 0 0 0 1 −1 T1

Tab. 3.2 Linear combination coeffi-
cients for the donor states in Si.

Then we index the donor states with the quantum number of valley wavefunction chij and the above reduced repre-

sentation. Here the qunantum number (qn) of χj is determined by main qn n, directional qn l, magnetic qn m but with

anisotropy. Hence the indices are like 1s(A1), 1s(E) etc.

From Tab. 3.2, we see that in the elements other than A1, the wavefunctions are superposed in the inverse phase and

the amplitude at the origin is small. In A1, all the wavefunctions are superposed in phase and the amplitude at the origin

is large. Hence the state of 1s(A1) largely deviates from the effective mass approximation and that causes large decrease

in the eigenenergy. The larger the positive charge in the nuclear the larger the binding energy. This eneryg splitting is

called valley-orbit splitting.

Effective mass theory Li P As Sb Bi

32 32.5 45 53.7 43 70.6

Tab. 3.3 Donor binding energy in Si (meV)

As in Tab. 3.3, such tendency really appears in 1s(A1). Pantelides and Sah gave theoretical calculation of the valley-

orbit splitting, which reproduces the experiments well[4]．
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Lecture note on Physics of Semiconductors (4)
25th April (2021) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

3.3.1 Degenerate semiconductors

So far we treat the impurity states in semiconductors as isolated. In such cases, as shown in Fig.3.2, charge carriers

disappear at low temperatures, the conductivity is lost, and the system is insulating. Now we consider doping to higher

impurity densities, where the average distance between the dopants is similar to or less than the spatial size of the

wavefunctions. Then the overlapping of wavefunctions enables tunneling between the impurity sites. Such tunnleings

may form a kind of conducting network in the crystal and with further increasing the impurity concentration finally

spreads the network over the whole crystal, which now has a finite conductance at the lowest temperature, thus is a metal.

This problem – metal-insulator transitions, MIT – has been one of the most important problems in condensed matter

physics, and huge amount of efforts have been devoted for years. The field of MIT extends over various phenomena in

condensed matter physics, far beyond the doped semiconductors. We have not reached the final answer through great

amount of knowledges have been accumulated. There are so many textbooks, very few of which are listed in references

([1]∼[5]).

In the above we have defined the MIT as the spatial size of the wavefunctions at the Fermi level. The phenomenon is

observed in the energy space as follows. With overlapping of neighboring wavefunctions, as we have seen in the tight

binding model (regular, coherent case), the energy levels broadened and a band is formed, which we call an impurity
band. Even under the formation of impurity band, in which the density of states is continuous, the wavefunction at the

Fermi level is not necessarily spread over the entire crystal. It was first pointed out by Anderson that the electrons in a

potential with a certain degree of disorder are spatially localized. This is called Anderson localization. Hence, some

lower part of the impurity band is usually localized and the boundary is called a mobility edge.

It is well known that as shown in Fig. 3.6, in many matrix crystals and species of dopants, an empirical relation,

n1/3c a∗B = 0.26 (3.32)
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Fig. 3.6 Experimental values for the critical con-
centrations of the MIT and the effective Bohr
radiuses for various matrix semiconductors and
dopants (the element symbols put after the colons).
The data are plotted in log scale. The unit for nc is
cm−3. The line indicates the empirical relation in
eq.(3.32). The data are taken from P. Edwards and
M. Sienko, Phys. Rev. B 17, 2575 (1978).
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holds between the critical impurity concentration nc for the MIT and the effective Bohr radius a∗B. This criterion is

natural from the view of impurity band formation and there are many trials to derive it from more rigorous theoretical

background.

The largest difficulty in solving this problem lies in the treatment of disorder, which makes it impossible to utilize the

coherence of the scattering from the crystal lattice. In the band theory, the coherence brings about great simplicity. In the

case of MIT in disordered systems, one should directly treat the disorder itself.

Though the final answer has not been found, or it is not even known whether there is such one or not, many new

physical idea have been developed, which have greatly expanded our knowledges on random systems. The concepts have

been applied various fields such as organic semiconductors. We do not go into this problem further due to the space-time

limitations.

The MIT in ordered systems is also an important and difficult problem, particularly in so called strongly correlated

systems. Here I just list a review paper[6], which was published a quarter century ago. I will not go into this problem in

this lecture.

There are a number of devices which utilize such degenerate semiconductors. A representative is the Esaki diode

(tunnel diode), which first attracted attensions as a device for fast switching and actually was used in counter circuits in

the experiments of high energy physics. Recently, the Esaki diode is also used in the interfacial connection of multiple

junction solar cells. In many of ordinary solar cells, highly-doped degenerate semiconductors are used as the upper

layers of the junctions. The high level doping is also used in the IMPATT diodes for high-frequency use, and p-i-n type

photo-diode, etc.

3.3.2 Excitons

Here we introduce the concept of exciton, which is a bit tail subject as “carrier statistics” but we can view

it as an application of the effective mass approximation. Exciton has long been the central theme of optical

properties[7], but even more extensive research is still underway, such as the BEC of exciton polaritons. In solids,

the bound states formed by Coulomb force between quasiparticles of positive and negative charges are called exciton.

When the quasiparticles are spread over several lattice constants,

the exciton is called “Wanner type.” When the charge polarization

occurs within a molecule or over very few lattice points, it is called

“Frenkel type.” The latter often found in organic semiconductors,

in which the molecules at the lattice points are comparatively well

separated. Here we concentrate ourselves on the Wannier type.

Let us consider an exciton state with an electron excited to the

conduction band, and a hole excited to the valence band. These

spread over several lattice points or more, and effective mass ap-

proximation can be applied. Based on the free state of both electrons

and holes, even if they create a bound state, the degree of freedom

of the movement of the center of mass remains, and the ”wave num-

ber” and kinetic energy due to this remain. This wavenumber should

be derived from the overall wavenumber conservation since the con-

cept of holes is also introduced by considering the conservation of

the total wavenumber. The “mass” of the exciton also would be in-

troduced simply by taking the sum of effective masses of electrons

and holes, as me +mh. I have used the expression “would” because the Coulomb force, which is most natural candidate
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for the force in the equation of motion for electrons and holes, works in the opposite directions, the accelerations for

two kinds of particles with different effectve masses is a bit complicated for the treatment. Anyway we assume that the

effective mass approximation holds. Then the creatio energy of an exciton from the state without the electron and the

hole, hence including the electron-hole pair creation energy, is written as

E(n)
ex (k) = Eg +

ℏ2k2

2(me +mh)
− e4m∗r

2ℏ2
1

n2
, n = 1, 2, · · · , (3.33)

where the third term is the binding energy of the electron and the hole. We assume the system is isotropic and the exciton

is hydrogen-like. mr is the reduced mass defined as

1

m∗r
=

1

m∗e
+

1

m∗h
. (3.34)

The second term in (3.33) is the kinetic energy of the parallel motion. The dispersion described in eq.(3.33) is illustrated

in the figure in the previous page. The existence of such bound states can be confirmed by checking, e.g. the optical

absorption spectra, which we will see in the next chapter.

However, for example in optical absorption experiments, there often appear many absorption peak spectra which cannot

be interpreted simply with eq.(3.33). The candidates for the interpretation of those observations are, the excitons trapped

by impurity potentials (bound excitons), the exciton molecules made of more than two excitons, or such complicated

excited states.

In the above illustration, the cases for the number of charged excitation including zero or single donor is from three to

four (corresponding to hydrogen molecule or its charged state) are listed. Such excited states are called exciton comlexes.

In this chapter, we introduced electrons excited in the conduction band, holes excited in the valence band, and excitons,

which are bound states of these excitations.

All of them are many-body states of electrons, but they can be treated as if “particles” are freely moving in the space of a

crystal, which is different from the vacuum. Such free particle-like pictures, in which many-body effects are renormalized

are called quasi-particle.
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Chapter 4 Optical response of bulk semiconductors

Many of the substances called “semiconductors” have bandgaps around the energy region of electromagnetic wave

called “light”, and have characteristic optical responses. The optical response is one of the most important subject as well

as the carrier transport. In the optical devices such as detectors or emitters, semiconductors are mostly used as active

materials. In this chapter, as the first look, we see basic optical properties of semiconductor bulk materials.

4.1 Optical response of two-level systems

In order to consider the optical response of semiconductor bulk, we should investigate the relationship between light

and the transition between the extended electronic states of the valence band and conduction band that we have seen

so far. But here, we begin with the optical response of a much simpler “two-level system.” The reason why we devote

our pages to such basic matters here is that we want to confirm the zero-point oscillation of the electromagnetic field

and the state of photons in particular. The following two sections are for the lecture to be just self-contained. For more

complete description, see the textbooks listed in [8]. If the reader already has such knowledge, the skip to Sec.4.1.3 is

recommended. In addition, if he/she is already used to the two-level systems, a further skip to Sec.4.2 is also OK.

4.1.1 Quantizationo of electromagnetic field

We have a very short look at the quantization of electromagnetic field to consider the states of photons[8]. As the

basics we start with the one-dimensional harmonic oscillator, which subject appears in the beginning part of elementary

quantum mechanics. The problem is discribed as the Schrödinger equation;[
− ℏ2

2m

d2

dx2
+
mω2

hx
2

2

]
ϕ = Eϕ. (4.1)

The second term in the parenthis in the left hand side represents the potential characteristic for the harmonic oscillator.

We define a dimensionless variable q with

x =

√
ℏ

ωhm
q, (4.2)

and rewrite (4.1) as
ℏωh

2

(
− d2

dq2
+ q2

)
ϕ = Eϕ. (4.3)

We introduce down and up operators

a =
1√
2

(
d

dq
+ q

)
, a† =

1√
2

(
− d

dq
+ q

)
, [a, a†] = 1, (others) = 0, (4.4)

where the commutation relation is readily derived from the definition. Then eq.(4.3) is furthre rewritten as

ℏωh

(
a†a+

1

2

)
ϕ(≡ Ĥϕ) = Eϕ. (4.5)

If we define the number operator as
n̂ ≡ a†a. (4.6)
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Because n̂ and Ĥ commute with each other ([n̂, Ĥ] = [Ĥ, n̂] = 0), they have common eigenfunctions. Here we assume

|w⟩ is a eigen function common for Ĥ and n̂ with eigen[values ϵ, γ respectively. From the commutation relation eq.(4.4),

we see
Ĥ(a†|w⟩) = (γ + ℏωh)(a

†|w⟩), Ĥ(a|w⟩) = (γ − ℏωh)(a|w⟩), (4.7)

that is, a†|w⟩, a|w⟩ are also such simultaneous eigenfunctions with the energy eigenvalues of up and down shifts by ℏωh

respectively. Let |0⟩ be the simultaneous eigenstate with the lowest energy eigenstate ϵ0. Since there is no eigenstate with

energy eigenvalue of ϵ0 − ℏωh, the above equation leads to a|0⟩ = 0. Furthermore, ϵ0 = ℏωh/2 is concluded.

On the other hand, the eigenstates with higher energy eigenvalues than ϵ0 can be obtained by sequential application of

a† to |0⟩. The eigenvalues are

En = ℏωh

(
n+

1

2

)
(n = 0, 1, 2, · · · ). (4.8)

And the commutation relation tells that the operatore an(a†)n works as multiplication of n!. Then the normalized

eigenfunction for the eigenvalue En can be obtained from the normalized |0⟩ is written as

|n⟩ = (a†)n√
n!
|0⟩. (4.9)

Also from a|0⟩ = 0, a solution of |0⟩ = φ0(q) is straightforwardly obtained as

dφ0

dq
+ q2φ0 = 0 ∴ φ0 =

1

π1/4
exp

(
−q

2

2

)
. (4.10)

Based on the above knowledge, we go to the electromagnetic field. Our starting point here is the fact that the electro-

magnetic field is mathematically equivalent to a set of harmonic oscillators *1. We take Coulomb gage (divA = 0⃗), and

expand the vector potential A with the plane waves as follows.

A(r, t) =
∑
k,λ

(Akλe
i(k·r−ωkλt) +A∗kλe

−i(k·r−ωkλt)),

(ωk = c|k|, A∗kλ = A−kλ).

(4.11)

Here λ represents the freedom of polarization. From the selection of Coulomb gauge, the electromagnetic wave should

be transverse and λ represents two-dimensional freedom. From the Maxwell equaiton E = ∂A/∂t, B = rotA, the

energy of electromagnetic field E in volume V is written as

E =

∫
V

[ϵ0E
2(r, t) + µ−10 B2(r, t)]

d3r

2
= 2ϵ0V

∑
k,λ

ωkλ(Akλ ·A∗kλ), (4.12)

because the terms with exp(±2ik · r) vanish with spatial integration.

Then we introduce variables(vectors) Qkλ, Pkλ as

Qkλ =
√
ϵ0V (Akλe

−iωkλt +A∗kλe
iωkλt), Pkλ = dQkλ/dt = iωkλ

√
ϵ0V (−Akλe

−iωkλt +A∗kλe
iωkλt). (4.13)

E is expressed as

E =
1

2

∑
kλ

(P 2
kλ + ω2

kλQ
2
kλ), (4.14)

which tells the electromagnetic field is described as a set of harmonic oscillators in Q space. Then the field can be

quantized with changing P , Q to operators and require the following commutation relations.

[Q̂k′λ′ , P̂kλ] = iℏδkk′δδδ′ , (others) = 0. (4.15)

*1 According to the literature[10], this is called “Jeans theorem.” Actually, in ref.[9], that “theorem” is proven. The discussion then leads to the
Rayleight-Jeans law. However, there is more famous “Jeans theorem”, which is on the distribution of particles with gravitational interactions[9,
10]
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The Hamiltonian is in the same form with (4.3).

Ĥ =
1

2

∑
kλ

(P̂ 2
kλ + ω2

kQ̂
2
kλ). (4.16)

creation/annihilation operators, which corresponds to up/down operators, are

a†kλ =
1√
2ℏωk

(ωkQ̂kλ − iP̂kλ), akλ =
1√
2ℏωk

(ωkQ̂kλ + iP̂kλ). (4.17)

From (4.15), the commutation relations

[akλ, a
†
k′λ′ ] = δkk′δλλ′ , (others) = 0 (4.18)

are derived. Finally (4.16) can be quantized in the Hamiltonian form as

Ĥ =
∑
kλ

ℏωk

(
a†kλakλ +

1

2

)
. (4.19)

The vector potential, for example, can also be written in the form of operator as

Â(r, t) =
∑
kλ

√
ℏ

2ϵ0ωkV
ekλ

[
akλe

i(k·r−ωkt) + a†kλe
−i(k·r−ωkt)

]
. (4.20)

4.1.2 States of photons

Corresponding to eq.(4.6), the operator
n̂kλ ≡ a†kλakλ (4.21)

represents the revel of excitation in the mode (k, λ) from the ground state |0⟩kλ. Single step of the excitation corresponds

to the energy of ℏωk, which is also the energy of single photon in the Einstein relation of photon quantum. Hence n̂kλ in

(4.21) can be interpreted as photon number operatorin mode (k, λ). As in (4.9), there are eigenfunctions of (4.19) in

which the number of photons in mode (k, λ) is nkλ. We use the expression that the symbol {· · ·α} represents the set of

elements with α as the index. Then the state is represented as |{nkλ}⟩.
From (4.9), we call the state described in the form
Number state� �

|{nkλ}⟩ =

[∏
kλ

(a†kλ)
nkλ

√
nkλ!

]
|0⟩ (4.22)

� �
as number state .

The expectation value of the energy of the number state is

⟨{nkλ}|Ĥ|{nkλ}⟩ =
∑
kλ

ℏωk

(
nkλ +

1

2

)
. (4.23)

A state with multiple mode is a superpositon of eigenstates with different eigenvalues and is not an eigenstate of the total

Hamiltonian. On the other hand, the expectation value of the electric field is from (4.20),

⟨{nkλ}|Ê|{nkλ}⟩ = −⟨{nkλ}|(∂Â/∂t)|{nkλ}⟩ = 0. (4.24)

That is the expectation value of the electric field is zero. This does not mean the time-average makes it zero. Even for the

measurements in very short time, the average over many measurements is zero. Just the same for the magnetic field. On

the other hand the quantum fluctuation in the electric field is

⟨{nkλ}|Ê2|{nkλ}⟩ =
∑
kλ

ℏωk

ϵ0V

(
nkλ +

1

2

)
=

1

ϵ0V
⟨{nkλ}|H|{nkλ}⟩, (4.25)
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which is non-zero. Furthermore, even for the photon number zero state, each mode has the fluctuation of ℏωk/(2ϵ0V ),

which is called zero-point motionof electromagnetic field. The zero-point fluctuation corresponds to 1/2 in the energy

expression of (4.23). This is very important property for the spontaneous emission of photon. The reason of using space

for free electromagnetic field is to describe this clearly.

The properties of number state described above indicate that it is difficult to coherently superimpose the oscillating

electromagnetic field of multiple photons to obtain the oscillating electromagnetic field as in the classical picture in the

energy eigenstate where the number of photons is fixed. On the other hand, by superimposing several states, it is possible

to create a state with a finite expected value of the electromagnetic field. For example, the number states for a single

mode (hence for a while we omit writing the mode index as |n⟩) can be summed up with Gaussian weight to get

Coherent state� �
|α⟩ = exp

(
−|α|

2

2

)
exp(αa†)|0⟩ = exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|n⟩, (4.26)

� �
where α is a complex parameter. The state expressed as (4.26) is called coherent state. When the annihilation operator

is applied, from a|n⟩ =
√
n|n− 1⟩,

a|α⟩ = α|α⟩, (4.27)

that is the coherent state is the eigenstate of the annihilation operator with the eigenvalue of α. This means that the

coherent state is a superposition of an infinite number of states, and even if quantum mechanical ”measurement” is

performed on the single photon in it, the whole state remains unchanged. If we measure the photon number in this state,

the probability of detecting n-photons is

P (n) = ⟨n|α⟩ = e−|α|
2 |α|2n

n!
, (4.28)

which is a Poissonian distribution. We write the complex parameter α in the amplitude and the phase as α = |α|eiϕ.

Then the expectation values of the electric field and the magnetic field are

⟨α|Ê(r, t)|α⟩ = −
√

2ℏωk

ϵ0V
|α|ekλ sin(k · r − ωkt+ ϕ), (4.29a)

⟨α|B̂(r, t)|α⟩ = −
√

2ℏ
ϵ0ωkV

|α|k × ekλ sin(k · r − ωkt+ ϕ). (4.29b)

This means classical electromagnetic wave is reproduced in the coherent state.

4.1.3 Basic optical processes in two-level systems

The two-level system composed of two qunatum states is also called qubit in the field of quantum information and is

the most basic quantum system. As in Fig. 4.1, we consider a two-level electronics system of (|a⟩, |b⟩) with the energy

eigenvalues (Ea, Eb). We take these
H0|a⟩ = Ea|a⟩, H0|b⟩ = Eb|b⟩ (4.30)

as the basis and the general state can be written as

ψ(t) = ca(t)e
−Eat/ℏ|a⟩+ cb(t)e

−Ebt/ℏ|b⟩. (4.31)

In Fig. 4.1, three basic optical processes in the two-level system are illustrated. (a) is the optical absorption, in which

the electron absorbs the photon energy and makes transition of |a⟩ → |b⟩. (b) is the spontaneous emission of photon

associated with the transition |b⟩ → |a⟩ of the electron initially excited to |b⟩. (c) is the slimulated emission, in which

the first photon comes to the excited state |b⟩ to sitimulate the emission of the second photon coherent to the first one.
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Fig. 4.1 Three basic optical processes in two-level systems (a) optical absorption, (b) spontaneous emission of a
photon, (c) stimulated emission of a photon

We write the Hamiltonian of the system with electromagnetic field in non-relativistic approximation as

Hop =
(p+ eA)2

2m
+ V (r), (4.32)

where A is the vector potential and we treat it as perturbation. We then drop the term of A2 and the perturbation

Hamiltonian H ′ can be defined as
Hop ≈H0 +

e

m
A · p ≡H0 + H ′. (4.33)

For simplicity, we assume H ′ does not have the diagnal terms.

⟨a|H ′|a⟩ = ⟨b|H ′|b⟩ = 0. (4.34)

We consider the case that a plane electromagnetic wave is applied to the two-level system, which wave is described in

Coulomb gauge (divA = 0) as
A = A0ep cos(kp · r − ωt). (4.35)

As we saw in the previous section, this means a coherent state comes to the two-level system. The perturbation Hamilto-

nian is
H ′ =

eA0

m
ep · p̂ cos(kp · r − ωt). (4.36)

This approximation is called dipole approximation from the following reason. The matrix element of H ′ for |a⟩ → |b⟩
is with writing A0 cos(kp · r − ωt) as A,

eA

m
ep · ⟨b|p̂|a⟩ =

eA

m
⟨b|ep ·

m

iℏ
[r̂,H0]|a⟩ =

iA

ℏ
(Eb − Ea)ep · ⟨b|(−e)r̂|a⟩. (4.37)

The last term is the transition element of the electric dipole momen operator and the transition by the Hamiltonian (4.36)

is called dipole transition.

Substituting (4.30) to the Schrödinger equation iℏ∂ψ/∂t = (H0 + H ′)ψ, we obtain

iℏ
[
dca
dt
|a⟩e−iEat/ℏ +

dcb
dt
|b⟩e−iEbt/ℏ

]
= caH

′|a⟩e−iEat/ℏ + cbH
′|b⟩e−iEbt/ℏ. (4.38)

Taking inner products with ⟨a| and ⟨b| leads to the following simultaneous differential equations for (ca, cb).
dca
dt

= − i
ℏ
cb⟨a|H ′|b⟩e−iω0t,

dcb
dt

= − i
ℏ
ca⟨b|H ′|a⟩eiω0t,

ω0 ≡
Eb − Ea

ℏ
. (4.39)
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4.1.4 Optical absorption, emission

Frist we consider the optical absorption in (a). We take ca(0) = 1, cb(0) = 0 as the initial condition and c(1)a (t) = 1 as

the starting point of the sequential substitution method to get the approximate solution.

c(1)a (t) = 1,

c
(1)
b (t) = − i

ℏ

∫ t

0

⟨b|H ′|a⟩(t′)eiω0t
′
dt′, (4.40a)

c(2)a (t) = 1− 1

ℏ2

∫ t

0

dt′⟨a|H ′|b⟩(t′)e−iω0t
′

[∫ t′

0

dt′′⟨b|H ′|a⟩(t′′)eiω0t
′′

]
. (4.40b)

The expression ⟨b|H ′|a⟩(t) is to clarify that ⟨b|H ′|a⟩ is a function of t.

p 2p0-p-2p

w-w0

si
n

[(
)

/2
]/

(
)

(a
rb

.)
2

2
w

-
w

w
-

w
0

0
t

t =2

t =1.5

t =1

t =0.5

To consider ⟨b|H ′|a⟩(t), we drop the term of photon wavenum-

ber kp from (4.36) because of the following reason. We consider

the process in which the electron wavenumber varies as 0 → ke to

enhance the kinetic energy by ℏ2k2e/2m0. If we consider a pho-

ton with the energy that matches to this energy enhancement, the

photon wavenumber kp is obtained from ke =
√

2keckp. Here

kec = m0c/ℏ is the product of electron rest mass m0 and the speed

of light c, corresponding to a very large momentum. Then ke ≫ kp

and we can ignore the contribution of photon momentum.

Now we write
Vba ≡ ⟨b|

eA0

m
ep · p̂|a⟩ (4.41)

and from (4.40a),

cb(t) ≃ −
i

ℏ
Vba

∫ t

0

dt′ cosωt′eiω0t
′
= −Vba

2ℏ

[
ei(ω0+ω)t − 1

ω0 + ω
+
ei(ω0−ω)t − 1

ω0 − ω

]
≃ −iVba

ℏ
sin[(ω0 − ω)t/2]

ω0 − ω
ei(ω0−ω)t/2. (4.42)

Then if we apply the oscillating electromagnetic field from t = 0, the probability amplitude of |b⟩ at time t is

Pb(t) = |cb(t)|2 ≃
|Vba|2

ℏ2
t

2

sin2[(ω0 − ω)t/2]
(ω0 − ω)2(t/2)

(4.43)

As is well known the last factor goes to a delta function in the limit of t → ∞ (limt→∞ sin2[(ω0 − ω)t/2]/(ω0 −
ω)2(t/2) = πδ(ω − ω0)). Actually in the plot of sin2[(ω0 − ω)t/2]/(ω0 − ω)2, the peak at ω − ω0 = 0 grows high and

sharp with the increase of t. Hence the factor represents the energy conservation.

When we take the initial condition as cb(0) = 1, ca(0) = 0, that is, the excited state |b⟩ with photon field of ω, the

transition |b⟩ → |a⟩, which is the reversed process of the optical absorption, occurs with the emission of a photon of ω0.

This emitted photon is coherent to the existing coherent photon state[11]. This is the stimulated emission in (c).

Then how we treat spontaneous emission in (b) without photon field outside? As we saw in Sec. 4.1.1, even in the

vacuum with zero number of photons, the zero-point quantum fluctuation of electromagnetic field exists for each mode.

In the spontaneous emission process, the photon emission is “stimulated” by these zero-point fluctuations. Most of the

light emission from semiconductor devices (other than lasers) is by this spontaneous emission. In that sense, we are

looking at zero-point quantum fluctuation when we are facing electric displays.
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4.1.5 Rabi oscillation

In the perturbation term Vba cos(ωt), the cosine part can be expressed as (eiωt + e−iωt)/2, which means the decom-

position into two terms rotation on the complex plane with the angular frequency of ±ω. Among them, the component

important for the transition is with ω ∼ ω0 and the term of rotation with −ω has the frequency very far from ω0 and can

be ignored as

⟨a|H ′|b⟩ = Vab
2
eiωt. (4.44)

This kind of approximation is called rotation wave approximation, in which the simultaneous differential equations are
dca
dt

= − i

2ℏ
cbVabe

−i(ω0−ω)t,

dcb
dt

= − i

2ℏ
caVbae

i(ω0−ω)t.

(4.45)

This can be written into a differential equation for a single variable as

d2cb
dt2

+ i(ω − ω0)
dca
dt

+
|Vab|2

(2ℏ)2
= 0. (4.46)

The solution is obtained straightforwardly as

cb(t) = c+e
iλ+t + c−e

λ−t, λ± ≡
1

2
(δ ±

√
δ2 + |Vab|2/ℏ2), δ ≡ ω0 − ω. (4.47)

Under the initial condition |ca(0)| = 1, cb(0) = 0,
cb(t) =

i|Vab|
ωRℏ

eiδt/2 sin(ωRt/2),

ca(t) = eiδt/2
[
cos

(
ωRt

2

)
− i δ

ωR
sin

(
ωRt

2

)] (4.48a)

(4.48b)

are obtained where
ωR ≡

√
δ2 + |Vab|2/ℏ2 (4.49)

is called Rabi frequency.

The oscillation between the two-levels caused by the electromagnetic wave (photon) with energy close to the energy

difference between the two levels is called Rabi oscillation. When the photon energy is tuned to the energy difference

(δ = 0), the Rabi frequency is proportional to the magnitude of the electromagnetic irradiation. The Rabi oscillation

is widely used in various resonance phenomena utilized to get information inside materials, or quantum information

processing, etc.

4.1.6 Oscillator strength, selection rule

For the one-dimensional harmonic oscillator, which we consider in the beginning of this chapter, from (4.2)，(4.4), we

can write

x̂ =

√
ℏ

2mωh
(a+ a†), (4.50)

which leads to the dipole transition elements of (4.37), corresponding to |0⟩ → |1⟩ is

⟨1|(−e)x̂|0⟩ = −e
√

ℏ
2mωh

≡ µ10. (4.51)
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The probability of the dipole transition |a⟩ → |b⟩ is indicated by the transition dipole moment;

µba ≡ ⟨b|(−e)r̂|a⟩. (4.52)

Then for the “unit” of the strength, we take the transition dipole moment µ10 for the one-dimensional harmonic oscillator

with the characteristic frequency ωh = (Eb−Ea)/ℏ. For the probability we need to take the square of the absolute value,

we define oscillator strength as

fba =
|µba|2

|µ10|2
=

2mωba

e2ℏ
|µba|2. (4.53)

The character f is commonly used and we also call it as “f -value.”

When there are multiple possible final states |b⟩, we use b as the index of all such states. Then the f -values sutisfy the

following sum rule. ∑
b

fba = 1. (4.54)

For the system with N -electrons, the right hand side is N .

When the system has multiple directional oscillators with random directions, the effective transition dipole mement

⟨µeff⟩ is given by taking the avarage as µba/3. Then the oscillator strength is expressed as

f ′ba =
2mωba

3e2ℏ
|µba|2. (4.55)

When the system has spatial inversion symmetry, the eigenstates of the Hamiltonian should have the parity for the

spatial inversion operation. That is, for an eigenstate ϕn(r), the following should hold.

ϕn(−r) = ±ϕn(r). (4.56)

+, − correspond to even and odd parity respectively. In the expression (4.52), r has the odd parity then if |a⟩, |b⟩ have

the same parity, the integration gives zero for µba and the dipole transition is forbidden. As above, the rule that dominates

the possibility of a transition along with symmetry, quantum number etc. is called selection rule.

4.2 Interband transition and optical response

So far we have seen very basic knowledges on the optical response of two-level systems. We now expand the concepts

and the discussions to the electronic states in solids, in which both ground states and excited states are extended over the

crystals.

4.2.1 Absorption of light with interband transition

Materials absorb electromagnetic wave in various ways. Free carrier absorption, impurity absorption, absorption by

lattice vibration, etc. though the main absorption used in the optical devices is the absorption due to the interband

transition of electrons. Thus in this sub-section, we will see the very basics of the interband transition absorption.

For simplicity, we write a plane electromagnetic wave with a linear polarization propagating along z axis with vector

potential A as
A = A0e exp[i(kp · r − ωt)]. (4.57)

The wavenumber kp is (0, 0, kp)，e is the polarizaiton vector and we put ex = (1, 0, 0). The electric field E = −∂A/∂t,
the magnetic field H = µ−1rotA (µ is the permeability of the medium), then the energy flow density (Poynting vector)

is

I = ⟨E ×H⟩ = ϵ0cn̄ω
2A2

0

2
ez. (4.58)
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n̄ is the refractive index (light speed in the medium is c′ = 1/
√
ϵ1ϵ0µ1µ0 (ϵ1, µ1 are the ratio of dielectric constant and

that of magnetic permeability to those of vacuum) n̄ = c/c′ =
√
ϵ1µ1), ez = (0, 0, 1).

The absorption of light causes the exponential damping of the intensity |I| as I(z) = I0 exp(−αz). The damping

constant α is the absorption coefficient. From this definition α = −dI/Idz = −dI/Ic′dt. Thus if we assign the

averaged number of photons absorbed in the unit time and the unit volume as W , then the decreasing rate of I is written

as ℏωW giving

α =
ℏωW
I

=
2ℏωW

ϵ0cn̄ω2A2
0

. (4.59)

Among the various absorption mechanisms, that caused by a valence electron absorbing a photon and being excited to

the conduction band, is called fundamental absorption. The fundamental absorption begins just above the band gap.

The absorption just at the band gap is called “band edge absorption”.

We write the Hamiltonian of the system as H = (p+ eA)2/2m0+V (r) and treat A as a perturbation. With ignoring

A2, H = H0 + (e/m0)A · p. Bloch functions in conduction band and valence band are written as |ck⟩ = ucke
ikr ,

|vk⟩ = uvke
ikr respectively and the perturbation term causes the transition from the valence band to the conduction

band with the probability Wvc per unit volume in the Fermi’s golden rule approximation as

Wvc =
2πe

ℏm0
|⟨ck|A · p|vk′⟩|2δ(Ec(k)− Ev(k

′)− ℏω) =
πe2

2ℏm2
0

A2
0|M |2δ(Ec(k)− Ev(k

′)− ℏω), (4.60)

M =

∫
V

d3r

V
ei(kp+k′−k)·ru∗ck(r)e · (p+ ℏk′)uvk′(r) =

∑
l e

i(kp+k′−k)·Rl

V

∫
Ω

d3ru∗ck(r)e · (p+ ℏk′)uvk′(r)

=
N

V
δkp+k′−k,K

∫
Ω

d3ru∗ck(r)e · (p+ ℏk′)uvk′(r). (4.61)

Here, l is the label of lattice points, V , Ω are the volumes of the system and the unit cell respectively. K is a reciprocal

lattice vector, kp a photon wavenumber, N the total number of the lattice points, NΩ = V .

In eq.(4.61) we implicitly consider a direct excitation of an electron by the electromagnetic field of a photon. Such

a transition is called a direct transition. The necessary condition for the momentum conservation in a fundamental

absorption is kp + k′ − k = K, though practically from common values of band gaps, effective masses and lattice

constants, it turns to be K = 0. Also within the dipole transition approximation, kp can be ignored and we can put

q

hn hnhng

hnghng

hndirect

k k k

E k( )

(a) (b) (c)

Fig. 4.2 Illustrations of optical response due to the interband transition of an electron. (a) Optical absorption with
direct interband transition. (b) Optical absorption with indirect interband transition. (c) Photoluminescence, in which
optically excited electron-hole pair recombine for the light emission.
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k = k′. uck(r), uvk(r) belong to different eigenvalues hence the term of ℏk′ in (4.61) vanishes giving

M =

∫
Ω

d3r

Ω
u∗ck(r)e · puvk(r). (4.62)

From (4.59) and (4.62), we assume k-dependence of M is weak and obtain the expression for the absorption coefficient

for direct transition as

αda =
πe2

n̄ϵ0ωcm2
0

|M |2
∑
k

δ(Ec(k)− Ev(k)− ℏω). (4.63)

The summation part on k is called joint density of states. Let us write it as Jcv(ℏω) and Ec(k)−Ev(k) as Ecv(k), and

turn the summation on k in an integral form to get

Jcv(ℏω) =
∑
k

δ(Ecv(k)− ℏω) = 2

∫
d3k

(2π)3
δ(Ecv(k)− ℏω). (4.64)

We transform the integral in k-space into that on the infinitesimal area dS on an equi-energy surface and on the energy

Ecv . By writing the k-component perpendicular to the equi-energy surface as k⊥, the integration can be transformed into

d3k = dSdk⊥ = dS
dk⊥
dEcv

dEcv = dS|∇kEcv|−1dEcv,

∴ Jcv(ℏω) =
2

(2π)3

∫
dS

|∇kEcv(k)|Ecv=ℏω
. (4.65)

From the above we see that we have absorption anomalies around the points where the integrand of (4.65) vanishes.

Let us consider the case of a direct gap semiconductor as illustrated in Fig. ??(a), and assume Ecv = Eg, ∇kEcv = 0 at

k = k0. In the expansion of Ecv around k0, the first order term is zero and taking the second order term we get

Ecv(k) = Eg +
∑
i

ℏ2

2ξi
(ki − ki0)2. (4.66)

For simplicity let ξi > 0(i = 1, 2, 3). With variable translation (ℏ/(2ξi)1/2)(ki − ki0) = si,

Ecv = Eg +
∑
i

s2i ≡ Eg + s2, d3k =

√
8ξ1ξ2ξ3
ℏ3

ds1ds2ds3,

We also consider the integration in s-space with that on equi-energy surfaces and on the energy. Because |∇sEcv| = 2s,

Jcv =
2

(2π)3

√
8ξ1ξ2ξ3
ℏ3

∫
dS

2s
=

1

2π2

√
8ξ1ξ2ξ3
ℏ3

√
ℏω − Eg =

√
2

π2

m
3/2
r

ℏ3
√

ℏω − Eg. (4.67)

The calculation in the last line is for a direct gap semiconductor as illustrated in Fig. ??(a), based on the assumption of

isotropic effective mass at the band edge, i.e., ∀i ξi = mr. From m−1r = m∗−1e +m∗−1h this is the reduced mass for an

electron-hole pair. After all, (4.67) is the density of states in a three dimensional k space, that is just a re-calculation of

the density of states in a three dimensional system (2.14). In this case, from the expression of the absorption coefficient

in a direct transition (4.63),

α(ℏω) =
e2(2mr)

3/2|M |2

2πϵ0m2
0n̄ωcℏ3

√
ℏω − Eg, (4.68)

is obtained. The factor in the left hand side other than the joint density of states

fvc =
2|M |2

m0ℏω
, (4.69)

in which |M |2/ω is representing the strength of the transition. The dimensionless quantity fvc is called oscillator
strength.
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Appendix 4A: Rate of stimulated emission, spontaneous emission

Here we consider many identical two-level systems with states (|a⟩, |b⟩). They are placed in the electromagnetic field

with the energy density spectrum U(ω), where ω is the angular frequency. There is no direction interaction between

the two-level systems while they are in equilibrium with the electromagnetic field, which is in thermal equilibrium, i.e.

has the energy distribution of Planck law of radiation, and the momentum distributes isotopically. The rate of optical

absorption (frequency per unit time) for ω ∼ ω0 is obtained from (4.37) as

|⟨b|H ′|a⟩| = |E0ep · ⟨b|(−e)r̂|a⟩| = |E0ep · µba|, (4A.1)

whereE0 = ωA0 is the amplitude of the oscillation in electric field. From(4.43), the absorption probability is proportional

to the square of the above, hence to E2
0 ∝ U . In the form of equation the absorption rate Wba is written as

Wba = BbaU(ω), (4A.2)

with Bba a coefficiant. We write the emission rate as the sum of the rate for spontaneous emission, which is independent

of U and the rate for the stimulated emission, which is proportional to U .

Wab = A+BabU((ω). (4A.3)

As seen in Sec.4.1.4, the optical absorption and the stimulated emission are in the relation of reversed process,

Bba = Bab ≡ B. (4A.4)

We write Eb − Ea = ℏω, and let the numbers of the two-level systems in the states a, b as Na, Nb respectively. Then

Nb = Na exp

(
− ℏω
kBT

)
. (4A.5)

Because the system is in equilibrium, the event frequencies of emissions and absorption should be the same, i.e.

BUNa = (A+BU)Nb. (4A.6)

These leads to the following expression for U(ω).

U(ω) =
A

B

1

exp(ℏω/kBT )− 1
. (4A.7)

We request this to be equivalent to the Planck law of radiation

U(ω) =
ℏω3

π2c3
1

exp(ℏω/kBT )− 1
, (4A.8)

and obtain
A

B
=

ℏω3

π2c3
. (4A.9)

These coefficient A, B are called Einstein A coefficient, B coefficient respectively.

In the discussion of transition probability (4.43), we have considered photons with single energy ℏω. Now we consider

a finite width δω of the energy distribution around ω0 with the photon density (4A.8). We write the electric field amplitude

for ω0 as E0, then the energy density is ϵ0E2
0/2 *2 .

ϵ0
E2

0

2
=

∫ ω0+δω/2

ω0−δω/2

U(ω)dω. (4A.10)

*2 From (??), the energy of oscillating electromagnetic field is ⟨(ϵ0E2 +B2/µ0)/2⟩ = ϵ0⟨(E2)⟩, and then the time average gives ϵ0E2
0/2.
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And taking the directional average, we obtain

⟨
|µab · ep|2

⟩
=
⟨
µ2
12 cos

2 θ
⟩
=
µ2
12

3
. (4A.11)

The the transition probability (4.43) can be approximated as

|cb(t)|2 ≃
|µab|2

3ℏ2
1

ϵ0

∫ ω0+δω/2

ω0−δω/2

U(ω)
sin2[(ω − ω0)t/2]

(ω − ω0)2
dω ≈ πµ2

ab

3ϵ0ℏ2
U(ω0)t. (4A.12)

We replace the integral over the period δω with the infinite integration. And we applied the identity limλ→∞ sin2 λx/λx2 =

πδ(x). The transition probability is obtained as |cb(t)|2/t. Then the discussion leads to the expression of B coefficient as

B =
πµ2

ab

3ϵ0ℏ2
=

πe2

6ϵ0mℏω0
fba. (4A.13)

If we use the frequency spectrum ρ(ν) (2πν = ω) instead of the angular frequency spectrum U(ω), the expression needs

correction of 2π, of course.
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4.2.2 Luminescence with interband transition

There are numerous types of semiconductor light emission. A typical example is light emission due to the recombi-

nation(pair annihilation) of electron-hole pairs. Minority carriers excited by various methods, including the above light

absorption, emit their energy as photons by radiative recombination with the majority carriers. When the electron-

hole pair does not emit a photon and the energy is dissipated to other freedoms, the process is called non-radiative
recombination. Such emission of photons by radiative recombination is called luminescence. Amon them the ones

with comparatively short lifetime are called fluorescence while those with very long lifetime is called phosphorescence.

Luminescence is also classified with the origin of the electron-hole pair creation. The photon-absorption originated emis-

sion is called photoluminescence, the electrically stimulated emission (electric field activation of recombination center,

injection of minority carriers, etc.) is called electroluminescence. By some reason minority carriers are trapped in

impurities and some heat pulses cause release of them and lead to luminescence, which phenomenon is called thermolu-
minescence*1.

As we saw in the previous section, there are two kinds of photon-emission, stimulated emission and spontaneous
emission. In the former the emission probability is proportional to the photon density in the surrounding space while in

the latter the probability is independent of that. If we include the zero-point fluctuation into the photon density, there is no

difference in these two. In practice, however because the former is significant under limited conditions, causing peculiar

phenomena like laser light emission etc., we usually discuss these separately. As this indicates, the density of photons is

a very important factor in the treatment of light emission.

EcEv

EFcEFv

E

E

f E( )

f Ev( ) f Ec( )

D ( )E

hole

electron

c.b.
v.b.

Fig. 4.3 Illustration of the concept of pseudo-Fermi levels.

The Planck’s law of radiation gives the density of photons

with energyE in a material with reflactive index n̄ (we assume

a real number ignoring the absorption) as

P (E) =
8πn̄3E3

h3c3
1

exp(E/kBT )− 1
. (4.70)

When minority carriers are generated by photoexcitation

under light irradiation, the carrier distribution deviates from

the thermal equilibrium, which is described by single chem-

ical potential and temperature. Even in such a case, if the

system is steady in balance, we consider the energy distri-

bution function fc of electrons in the conduction band, that

of electrons in the valence band fv . Because in most cases,

relaxation of distribution by carrier-to-carrier interaction and

relaxation by intra-band carrier-lattice interaction are much

faster processes than the inter-band carrier recombination, we adopt the approximation described in the following. In

a semiconductor under steady light irradiation, the electrons in the conduction band and those in the valence band are

in quasi-thermal equilibrium state described by the Fermi distribution functions with the same temperature but with the

*1 There are many other excitation factors around us, such as electron beams, sound, friction, and chemical reactions, etc.
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different chemical potentials called quasi-Fermi levels. The difference is caused by the exciation by the light and the

slow inter-band transition. Then we write

fc(E) =

[
exp

(
E − EFc

kBT

)
+ 1

]−1
, fv(E) =

[
exp

(
E − EFv

kBT

)
+ 1

]−1
. (4.71)

Let us consider the process of the photon absorption (energy ℏω) and the excitation of an electron from the valence

band (energy E1) to the conduction band (energy E2). The frequency of such transition is written as

R(1→ 2) = B12fv(1− fc)P (ℏω), (4.72)

where B12 is the transition probability of 1 → 2. Conversely, the frequency of spontaneous emission with the electron

relaxation from E2 to E1 is
R(sp, 2→ 1) = A21fc(E2)(1− fv(E1)), (4.73)

independently of the photon density. The frequency of the stimulated emission is proportional to the photon density as

R(st, 2→ 1) = B21fc(E2)(1− fv(E1))P (ℏω). (4.74)

They should fulfill the balance equation

R(1→ 2) = R(sp, 2→ 1) +R(st, 2→ 1). (4.75)

Substituting equations (4.70)−(4.74) to the above and the comparison of LHS and RHS gives the following Einstein
relations.  A21 =

8πn̄3E3
21

h3c3
B21,

B12 = B21.

(4.76a)

(4.76b)

These are identical with eq.(4A.9). Equation (4A.9) is for the angular frequency spectrum and there is the difference in

the conversion factor ℏ.

4.3 Phenomenological treatment of electromagnetic field in materials

In the above we have considered the optical response caused by the photon absorption by interband transition of

electrons based on the knowledge of two-level systems. This is very important of course, but there are many other optical

processes in real crystals. It is also important to look at the optical phenomena from macroscopic perspectives. For

example, the reflactive index can be viewed as a parameter that modifies the speed of light. We have a brief look at such

a classical macroscopic approachs.

Let us begin with the Maxwell equations:

divD = ρ, divB = 0,

rotE =
∂B

∂t
, rotH = j +

∂D

∂t
,

D = ϵ0E + P , B = µ0H +M .

(4.77a)

(4.77b)

(4.77c)

Here we assume a non-magnetic insulating material and drop the magnetization M = 0⃗, and the current |j| ≪
|∂D/∂t|*2. These simplifications leads to the following wave equation.

∆E − ϵ0µ0
∂2E

∂t2
= µ0

∂2P

∂t2
, (4.78)

*2 When these are finite, various interesting phenomena are expected even in this macroscopic level. On the microscopic level, we can find numerous
subjects. These are called magneto-optical effects. They are the targets of researches as well as the sources of many usuful experimental
techniques. [2, 3] are recommended for advanced study.
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which is the same as that for the vacuum when P = 0⃗. This means that the polarization P represents the effect of dielec-

tric material in this macroscopic model. In the linear response approximation, P is written with the electric susceptibility

tensor χ as
P = ϵ0χE. (4.79)

Equation (4.77c) leads to D = ϵ0(1 + χr)E and relative dielectric functionor relative permittivity is defined as fol-

lows*3.
D = ϵ0ϵrE, ϵr = 1 + χ. (4.80)

Below for simplicity, we consider isotropic materials and the tensor ϵr can be treated as a scalar ϵr. From eq.(4.79) and

(4.80), eq.(4.78) becomes

∆E − ϵ0µ0
∂2E

∂t2
= ϵ0µ0(ϵr − 1)

∂2E

∂t2
.

Then we obtain

∆E − ϵr
c2
∂2E

∂t2
= 0. (4.81)

In the above simplest approximation, the effect of polarization in the material can be taken into account with changing

the light speed c with c′ = c/
√
ϵr. Hence the dispersion relation in the vacuum ω = ck is modified as� �

c2k2 = ω2ϵr(ω,k). (4.82)� �
Here ϵr depends on ωr, k, reflecting the properties of materials.

As above, the association of the polarization with the electromagnetic wave inside materials can be taken into account

phenomenologically by considering the relative dielectric function ϵr(ω,k) or the refractive index ñ =
√
ϵr . Above that,

the absorption we saw in Sec.4.2.1 can be phenomenologically taken into account with adding the imaginary part to the

refractive index.Then the complex refractive index is defined as

ñ(ω,k) = n(ω,k) + iκ(ω,k). (4.83)

Then from eq.(4.59), or from the definition I(z) = I0 exp(−αz), the absorption coefficient α is expressed as

α =
2ω

c
κ(ω,k). (4.84)

Let us go into a bit “model” of materials. In the Lorentz model, the electromagnetic field in the materials is a set

of harmonic oscillators. In the model the mass, the charge, and the spring constant is common as (m, e, ξ) and the

electromagnetic wave interacts with the oscillators through the Coulomb interaction with the charges. The frequency

of the electromagnetic wave is ω and the wavelength is much longer than the distance between the oscillators and the

electromagnetic wave can be approximated by uniform time-dependent electric field, which is written as eE0e
−iωt. The

equation of motion for each oscillator is written as

m
d2x

dt2
+ Γm

dx

dt
+ ξx = eE0 exp(−iωt), (4.85)

where Γm is the coefficient representing the energy dissipation (friction in a classical model).

The eigenfrequency of each oscillator is ωh =
√
ξ/m. In order to find the long-term stable solution of (4.85), we

substitute x(t) = xp exp(−iωt). Then

xp(ω) =
eE0

m

1

ω2
h − ω2 − iωΓ

(4.86)

*3 Various expressions are use for the dielectric funtion. Here we put the expression “relative” to clarify the unit is taken as the vacuum dielectric
constant ϵ0. The units in electromagnetism often cause confusions. Textbooks [5, 6, 7] are recommended for those who are intrested in the
problem.
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is obtained. Let N be the spatial density of the oscillators and we get

P = N(exp(ω)) =
Ne2

m

1

ω2
h − ω2 − iωΓ

E0. (4.87)

The coefficient of E0 in r.h.s. corresponds to χ in (4.79). Then the definition in (4.80) leads to the relative dielectric

function

ϵr(ω) = 1 +
Ne2

ϵ0m

1

ω2
h − ω2 − iωΓ

. (4.88)

In the above we consider the case of single mode oscillator. If the oscillator has multiple mode and we write fj as the

portion of the mode indicated by index j, (4.88)は

ϵr(ω) = 1 +
Ne2

ϵ0m

∑
j

fj
ω2
h − ω2 − iωΓj

. (4.89)

This fj is the oscillator strength we’ve already seen, but with this treatment we understand the wording of “oscillator

strength.”

4.4 Optical response of excitons

The excitons introduced at the end of the last chapter have discrete energy levels below the band gap. In many cases they

appear as prominent peak structures in the absorption/emission spectrum. In bulk semiconductors, they appear mostly at

low temperatures but the situation changes in quantum structures discussed later in this lecture. We do not have time to

go into but the Frenkel-type excitons are now the main origin of the electroluminescence in organic semiconductors. Let

us begin with the excitons in bulk semiconductors.

4.4.1 Absorption/emission by excitons

As we saw in Sec.3.3.2, the kinetic freedoms in excitions can be specified by the electon-hole relative spatial coordinate

r and coordinate of the parallel motion R. Then the wavefunction can be written in the effectve mass approximation as

ΦnK(r,R) =
1√
V

exp(iK ·R)ϕn(r). (4.90)

The Fourier transform of the above is

FnK(ke,kh) =
1

V

∫
d3red

3rhe
−ike·ree−ikh·rhΦnK(r,R)

=
1√
V

∫
d3rd3Re−iR·(ke+kh−K)ϕn(r)e

−ik∗·r

=
1√
V

∫
d3re−ik

∗·rϕn(r)δK,ke+kh
, k∗ ≡ mhke −mekh

me +mh
. (4.91)

The total wavenumber of the excition K is thus turned out to be

K = ke + kh. (4.92)

For the treatment of optical absorption, we take the initial state before the electron-hole excitation as the ground state

Φ0 = ϕckeϕvke and calculate the transition probability wif to the state represented as eq.(4.90) with taking kp = 0⃗，

ke = −kh and along with the line shown for the case of two-level systems.

wif =
2π

ℏ
e2

m2
|A0|2

1

V

∑
λ

|⟨ΦλK | exp(ikp · r)e · p|Φ0⟩|2δ(Eg + Eλ − ℏω)

=
2π

ℏ
e2

m2
|A0|2

1

V

∑
keλ

|FλK(ke,−ke)⟨ϕcke
|e · p|ϕvke

⟩|2δ(Eg + Eλ − ℏω). (4.93)
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(a) (b)

Fig. 4.4 (a) Optical absorption peaks by excitons at lower side in the energy than the fundamental absorption edge
in GaAs[9]. (b) Absorption anomaly by excitons around the fundamental edge in GaAs[10].

From ke = −kh,

FnK(ke,−kh) =
1

V

∫
d3red

3rh exp[−ike · (re − rh)]ΦλK(re, rh). (4.94)

In (4.93), the summation over ke results in re = rh. FnK takes large values only in a narrow region of ke around ke ≈ 0⃗.

In that region, ⟨ϕcke |e · p|ϕvke⟩ is almost constant and is M in (4.62). We then obtain

wif =
2π

ℏ
e2

m2
|A0|2

∑
λ

|M |2|ϕλ(0)|2δ(Eg + Eλ − ℏω). (4.95)

Again for simplicity we consider an isotropic system. Because ϕλ(0) is not zero only for s-state,

|ϕn(0)|2 =
1

πa3exn
3
, En = −Eex

n2
. (4.96)

The imaginary part of the relative dielectric function ϵr2(ω) = 2in(ω)κ(ω) is

ϵr2(ω) =
πe2

ϵ0m2ω2
|M |2 1

πa3ex

∑
n

1

n3
δ

(
Eg −

Eex

n2
− ℏω

)
. (4.97)

In the above the spin degree of freedom 2 is not considered and the result should be multiplied by two.

Fig. 4.5 Emission spectra of bound excitons in Cu2O[11].

We do not go into calculation details (see e.g.

[8]), but the twice of (4.97) agrees with (4.68) at

the boundary ℏω = Eg between discrete states

and continuum. Hence we can confirm how good

is the approximation by the comparison of the

spectra in experiments.

In eq.(4.97), the part other than δ-functions is

common and we write it as the constant C.

ϵr2 = Cδ

(
Eg −

Eex

n2
− ℏω

)
. (4.98)

Mathematical identity

lim
Γ→+0

1

x0 − x− iΓ
= P 1

x0 − x
+ iπδ(x0 − x)

(4.99)
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tells

ϵr2 = Im

 C/π

Eg −
Eex

n2
− (ℏω + iδ)

 . (4.100)

Here we write Γ → +0 as δ. And the Kramers-Kronig relation (4B.2) leads to

ϵr =
C/π

Eg −
Eex

n2
− (ℏω + iΓ )

, (4.101)

with which we can try fitting the data in, e.g. Fig. 4.4(b).

The emission is the reversal process of the absorption and just as the absorption, discrete emission peaks appear at lower

energies than the funcamental emission edge. Figure 4.5 shows an example of photoluminescence spectra of Cu2O.

4.4.2 Exciton-polariton

Well known as “polaritons” are the quasiparticle created by the combination of optical phonons and photons. Here we

consider, however the combination of photons and excitons. The concept of exciton-polariton is illustrated in Fig. 4.6.

As mentioned in the previous section, an absorption and an emission of photon with an exciton are reversal process to

each other. In an exciton-polariton these processes form a continuous chain. The cycle period of the processes is as short

as a few fs and both the exciton and the photon keep their quantum coherence and the resultant quasiparticle propagates

inside the crystal as a coherent state.

e

h

hn hn
e

h

hn
e

h

hn

Fig. 4.6 Illustration of the concept of exciton-polariton. A photon creates an exciton and the recombination of the
electron-hole pair recreates a photon. These processes occur in series.

0

1

2

1 2

k c n1 0/w s

w
w/

0

Fig. 4.7 Schematic drawing of the dispersion
relation of exciton-polariton.

We consider the ground state of n = 1 in eq.(4.101), define ω0 as

Eg−Eex ≡ ℏω0, and the contribution to the dielectrin function other

than the excitons as ϵs. Then with γ = Γ/ℏ, the relative dielectric

function is written as

ϵr(ω) = ϵs

(
1 +

∆ex

ω0 − ω − iγ

)
. (4.102)

For the transverse wave with k ·E = 0, the angular frequency ωt =

ω0, the polariton equation (4.82) holds. On the other hand, for the

longitudinal wave ϵr(ω) = 0, the angular frequency ωl is given as

ωl = ω0 +∆ex = ωt +∆ex. (4.103)

∆ex is called longitudinal-transverse splitting.

Now we consider the wavenumber k = k1+ik2, then from (4.82),

(4.102) we get 
ω2ϵs
c2

(
1 +

∆ex

ω0 − ω

)
= k21 − k22, ,

πδ(ω − ω0)
ω2
0ϵs
c2

= 2k1k2.

(4.104a)

(4.104b)
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Equation (4.104b) represents the resonance at ω = ω0, then we ignore k2 in (4.104a) to get

ω

√
ω − ω−∆ex

ω − ω0
=
ek1√
ϵs
, (4.105)

which gives the dispersion relation of exciton-polariton.

Appendix 4B: Kramers-Kronig relation

Here we just show well-known Kramers-Kronig relation. Let us consider a complex function with a complex argument

ω as
χ(ω) = χ1(ω) + iχ2(ω), χ1, χ2 ∈ R. (4B.1)

χ(ω) is analytic in the upper half of ω-plane and diminish faster than 1/|ω| for large |ω|. Then there hold relations

between χ1 and χ2 as

χ1(ω) =
1

π
P
∫ ∞
−∞

χ2(ω
′)

ω′ − ω
dω′, χ2(ω) = −

1

π
P
∫ ∞
−∞

χ1(ω
′)

ω′ − ω
dω′. (4B.2)

Here P represents the Cauthey’s principal value. The above are the Kramers-Kronig relation.

Appendix 4C: Lattice vibration in semiconductors

Lattice vibration is a phenomenon in which an atom vibrates around it with kinetic energy while being localized at

an equilibrium position as a time average position. This is an important subject in semiconductor physics, should be

discussed using at least one whole chapter, but that is impossible due to the lecture time. Here we take a minimum look

at very basics.

4C.1 Lattice vibration in one-dimensional system

Just as in the electron system, we introduce basic concepts in one-dimensional systems.

M1 M2

a

u1,i
u2,iu2,i-1

u1, +1i

Fig. 4C.1 Schematic diagram of one-dimensional lattice
vibration.

We consider a one-dimensional latteic with the unit

cell of length a, which has two atoms with masses M1

and M2. The shifts of the atoms from the equilib-

rium positions are written as u1j , u2j (j: integer). The

force working on the atoms is assumed to be harmonic

oscillator-like, that is, the force proportional to the shift

of the distance between neighboring atoms from the

equilibrium value a/2. Let α be the coefficient for the

force then we get the equation of motion as

M1
d2u1,j
dt2

= −α(u1,j − u2,j−1) + α(u2,j + u2,j−1) = α[−2u1,j + (u2,j − u2,j−1)], (4C.1a)

M2
d2u2,j
dt2

= α[−2u2,j + (u1,j − u1,j−1)]. (4C.1b)
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Fig. 4C.2 Dispersion relation of one dimensional lattice vi-
bration ω(q) obtained from eq.(4C.5) is plotted for the case
M1 = 2M2.

The equation (4C.1) remains unchanged with the parallel shift operation j → j + n (n is an integer) and the solution

can be written in the form of Bloch function. Let us take x coordinate along the lattice direction and the equations for the

wavenumber q are {
u1,j(xj) = eiqxju1,q,

u2,j(xj + a/2) = eiq(xj+a/2)u2,q.
(4C.2)

Substituting the above into (4C.1) we obtain
M1

d2u1,q
dt2

= 2α(−u1,q + cos
ja

2
u2,q),

M2
d2u2,q
dt2

= 2α(−u2,q + cos
ja

2
u1,q).

(4C.3)

In order to find the solution we assume u(1,2),q ∝ exp(iωt) to write down2α−M1ω
2 −2α cos

qa

2
−2α cos

qa

2
2α−M2ω

2

u1,j
u2,q

 ≡ A

u1,q
u2,q

 = 0⃗. (4C.4)

For the equations to have non-trivial solution {ui,q} other than 0⃗, |A| = 0 leads to

ω2
±
α

=

(
1

M1
+

1

M2

)
±

√(
1

M1
+

1

M2

)2

− 4
sin2(qa/2)

M1M2
. (4C.5)

We consider non-negative ω, and eq.(4C.5) has two modes, the dispersion relations of which are shown in Fig. 4C.2.

The following description of wording does not depend on the dimension.

The modes with linear dispersion around q ≈ 0 are called acoustic modes, those with finite ω and dω/dq = 0 for

q = 0 are called optical modes. The naming acoustic mode comes from the property that the group velocity does not

depend on the frequency just like sound in the air or electromagnetic wave in the vacuum. The naming optical mode

comes from the interaction with photons as the small wavenumber and the large energy. The quantized particles of them

are called acoustic phonon and optical phonon respectively.

4C.2 Lattice vibration in zinc-blende crystals

We consider zinc-blende (ZB) crystals as an example of three-dimensional crystal which has two species of atoms in

the unit cell. The Bravais lattice is fcc but the ZB crystalline structure can be considered as an overlapp of two “fcc

crystals”, in which one atom is placed at the lattice point of fcc lattice.
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(to be continued in the next lecture note.)
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Lecture note on Physics of Semiconductors (6)
19th May (2021) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Chapter 5 Semi-classical treatment of electrical transport

The electric tranport is a response to external perturbations as important as the optical response. Treatment of non-

equilibrity to some extent is inevitable for the discusstion of transport. A big difference between the electric transport and

the optical response is, however, in the former the characteristic energy scale is much smaller than that in the latter (∼ Eg).

In this chapter, we have a brief look at very basic part of the transport in the linear response regime, in semi-classical

treatment. We will go into the quantum transport in the later chapters.

5.1 Classical transport phenomena

Among transport phenomena interests of physicist mainly lies in quantum transport such as the quantum Hall effect.

In earth-flooding semiconductor devices, however, dominant is the classical transport *1 .

The reason that the classical theories are applicable to transport in semiconductors at room temperatures mainly lies in

the low density of carriers. In bulk transport, for example, the Fermi level EF lies in band-gap, that is, there is no density

of states around EF. When we are looking at the energy distribution of electrons, what we actually see is the tail of the

Fermi distribution function, which can be approximated with Maxwellian.

Heavy doping changes semiconductors into disordered metals, or spatial modulation of materials which shift the posi-

tions of Fermi levels above the conduction band edges provide low-dimensional metallic systems. Even in many of such

systems, classical approximations hold around room temperatures. The Fermi degeneration temperature for a system

with density n and particle mass m is

TF =
ℏ2

2mkB
(3π2n)2/3 :3D,

ℏ2

16πmkB
n : 2D. (5.1)

Substitution of typical values for semiconductors give, e.g. for a two-dimensional electron system, which has compara-

tively large Fermi energy, about 70K for TF. That is, the distribution of kinetic energy is still described by a Maxwellian.

Furthermore, the width of distribution is as large as the Fermi energy making the quantum mechanical interference effect

obscure. In this chapter we thus concentrate on the phenomena, which can be described within classical theories for

electron kinematics in solids.

5.1.1 Transport phenomena and transport coefficient

“Transport” here means transportation of some physical quantity in real space. In the treatment of such a problem,

we often map the problem onto a set of particles and the transport is transfer of the particles in the model. For example,

consider a stretched string and some local shift from the stretched line. The shift is transmitted on the string as a wave but

we can also treat the shift as a particle, which brings some potential energy. We may consider, then, the transport of the

*1 In many devices quantum confinement is working and low-dimensional systems are realized though the transport can be understood within
classical theories.
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shift. In solids, we actually have various elementary excitations such as phonons, spin-waves (magnons), etc. In electric

conduction, which is a representative transport in semiconductors, the physical quantity is charge and a particle bringing

it is called a “carrier”. Examples are, of course, electrons and holes, many-body states of band electrons actually.

Needless to say, we first need to exclude trivial motion of the center of mass due to arbitrary selection of inertial system.

We thus assume that the center of mass for the system under consideration sits still in equilibrium without perturbation.

Transport is a response flow of some physical quantity to an external perturbation. *2. In the case of linear response, like

electric current for voltage in Ohm law, the coefficient is called transport coefficient.
We often have strongly non-linear response in electric transport in semiconductors though we begin with linear re-

sponse. As a typical example, in the electric current response to the field, thre linear response between the current density

j and the field E is written as
j = σE, E = ρj = σ−1j, (5.2)

where σ is the conductivity tensor，ρ is the resistivity tensor. These two are inverse tensor to each other.

5.1.2 Boltzmann equation

r

p

dr

dp

f t( , , )d dr p r p

( d d )v Ft, t
Fig. 5.1 Illustration of time evolution for particles in an in-
finitesimal volume drdp in an infinitesimal time dt with a scat-
tering.

Let us consider a distribution function f(r,p, t) in a six-dimensional space of spatial coordinate r and momentum p,

i.e., a phase space. The meaning of f is that the ratio of particles in the volume drdp around the point (r,p) in the whole

system is f(r,p, t)drdp.

In the absence of scattering, the classical equation of motion is described as

dr/dt = v = p/m∗, dp/dt = F , (5.3)

with F as the force working on the particle. Kinematic states of particles in drdp are the same in the first order and so

are the time evolution during dt, giving

f(r + vdt,p+ F dt, t+ dt) = f(r,p, t).

Some scatterings bring shifts in f as illustrated in Fig. 5.1. We write the coefficient in the shifts as (∂f/∂t)c, that is,

f(r + (p/m∗)dt,p+ F dt, t+ dt) + (∂f/∂t)cdt = f(r,p, t).

Expanding f in the left hand side to the first order, we get

Boltzmann equation� �
∂f

∂t
+

p

m∗
· ∂f
∂r

+ F · ∂f
∂p

= −
(
∂f

∂t

)
c

(5.4)� �
Equation (5.4) is called Boltzmann equation, and the right hand side is called the collision term.

*2 This definition cannot include supercurrent or diamagnetic current at edge states of quantum Hall effect. But we usually include them into
transport phenomena taking the reference of coordinate to crystal lattices.

E6-2



The collision term depends on the scattering mechanism and the nature of scattering centers and is generally difficult

for us to calculate. The simplest approximation of this term is the constant relaxation time approximation, in which we

consider a relaxation time τ independent of energy and put

Constant relaxation time approximation� �
−
(
∂f

∂t

)
c

= −f − f0
τ

, (5.5)� �
where f0 is the equilibrium distribution function for F = 0, τ , the relaxation time, is the time for recovery from non-

equilibrium states. In spatially uniform systems, ∂f/∂r = 0, and the approximation (5.5) can be generalized to the one

with energy or momentum dependence in τ .

Below, to avoid trivial failure in pure classical pictures, we use some quantum mechanical relation like p = ℏk or

quantum statistics.

5.1.3 Drift current, diffusion current

As currents we here consider electric currents. Net particle flow appears when the distribution function f gets some

anisotropy in p space. Hence we need to consider perturbations in (5.4) other than anisotropy or non-uniformity in p.

The candidates are then F (= −eE), and ∂/∂r. The former perturbation, e.g. acceleration by external electric field,

brings about non-uniformity of distribution function f(r, ℏk, t) in k-space resulting in the flow of carriers in the real

space. That kind of flow is called drift current. The latter is non-uniformity of the distribution in the real space and also

causes carrier transport, which is called diffusion current.
First let us consider a steady uniform electron system under uniform electric field E. From this assumption, ∂f/∂t = 0

(steady) and ∂f/∂r = 0 (uniform). We further assume τ only depends on p. Then eq.(5.4) becomes

−eE · ∂f
∂p

= −f − f0
τ(p)

∴ f(p) = f0(p) + eτ(p)E · ∂f
∂p

.

In the next step of approximation, we take E as a small perturbation. Hence, the 1st order expansion is obtained with

replacing f in the right hand side with f0 as

f(p) ≃ f0(p) + eτ(p)E · (∂f0/∂p). (5.6)

Higher order terms can be obtained by successive replacements. Now eq.(5.6) can be viewed as the first order expansion

of f(p) ≃ f0(p+ eτ(p)E with E, which means this f(p) is the one shifted by −eτ(p)E in p space form f0(p). If τ is

constant for p, the shift is uniform as illustrated in Fig. 5.2.

kkkFkF-kF-kF 00

f( )k

kx

ky

kF
-kF

0

Fig. 5.2 Schematic view for constant shift of Fermi sphere of
electrons under acceleration by external electric field in the space
of wavenumber. The distribution f(k) shifts from the equilib-
rium position (indicated by broken line) by a wavevector indi-
cated by small arrows. The upper shows the shift in the dis-
tribution and the lower shows the shift of Fermi sphere in two-
dimensional systems. In realistic systems, the shifts are much
smaller than that illustrated here.
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We need to integrate v(k)f(k) in k space to obtain the current. Without loosing generality we take E = (Ex, 0, 0) and

erasing integrals of odd functions we obtain∫
d3k

(2π)3
v(k)

(
f0 + eτE · ∂f0

ℏ∂k

)
=

∫
d3k

(2π)3
ℏkx
m

eτEx
∂f0
ℏ∂kx

=
eEx
m

∫
D(E)τ(E)

ℏ2k2x
m

∂f0
∂E

dE, (5.7)

where we assume τ depends only on energy. ℏ2k2x/2m, the kinetic energy along x-direction isE/3 from the equipartition

condition．

For a metallic Fermi-degenerated system, ∂f0/∂E can be approximated as −δ(E − EF) in (5.7). For a three-

dimensional system the density of states is D(E) = A
√
E with a coefficient A, then (5.7) is

⟨vx⟩ = −A
eEx
m

2τ(EF)

3
E

3/2
F ,

while the particle density is calculated as

n =

∫ EF

0

D(E)dE = A
2

3
E

3/2
F .

Putting together the above expressions we obtain the expression for σ = j/E = −e⟨vx⟩/Ex as

Drude conductivity� �
σ =

e2nτ(EF)

m
(5.8)� �

which is well known Drude conductivity．
When the temperature is high, or the particle density is low and the Maxwellian approximation holds, from f0 ≈

A exp(−E/kBT ),

−∂f0
∂E

= − A

kBT
exp

[
− E

kBT

]
= − f0

kBT
= − f0

(2⟨E⟩/3n)

is obtained, in the last equation of which we have used averaged kinetic energy kBT/2 for single kinetic degree of

freedom. The electric conductivity is again given in the Drude form as

σ = e2
∫
τ(E)D(E)

2E

3m

3nf0
2⟨E⟩

dE =
ne2⟨τ⟩E

m
. (5.9)

Here, ⟨E⟩E represents the average with weight E3/2:

⟨τ⟩E =
⟨τE⟩
⟨E⟩

=

∫ ∞
0

τ(E)E3/2f0dE

/∫ ∞
0

E3/2f0dE. (5.10)

We then proceed to the diffusion current caused by non-uniformity of f in real space. In Boltzmann equation (5.4), F

is set to zero and constant relaxation time approximation (5.5) is applied to the space distribution of f = f0 + f1 as

v ·∇f = −f1/τ, take to the first oder of f1 f1 = −τv ·∇f0. (5.11)

When a constant diffusion current J is flowing through a spatial volume V , it is written as

J = (−e)
∫
V

τv(v ·∇f0)dr.

The direction of ∇f0 is assumed to be constant and along x-axis then the components in v other than vx vanish with

integration since they are odd functions. ⟨v2x⟩ = ⟨v2⟩/3 and we further assume that the temperature is uniform and

constant, no spatial variation in ⟨v2⟩, then the current density is

jx (current density) = −e
∫

unit volume
τv2x

∂f0
∂x

dr = −e
⟨
τv2

3

⟩
∂n

∂x
.
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That is,
j = (−e)D∇n, D = ⟨τv2/3⟩. (5.12)

Here D is diffusion constantand within constant relaxation time approximation,

Einstein relation� �
D =

τ

3
⟨v2⟩ = τkBT

m∗
=
µ

e
kBT (5.13)� �

Equation (5.13) is called Einstein relation. µ in the right end is the mobility, defined in (5.19), which appears later.

5.1.4 Hall effect

The drift current under magnetic field (flux density B) can be calculated with substituting Lorentz force into F in

(5.4). The straightforward but a bit long calculation is summarized in Appendix A. Here we consider the situation shown

in Fig. 5.3, that is, the sample has a finite length along y-axis and infinitely elongated along x-axis and the electric field

E = (Ex, 0, 0) is applied. jy brings the carriers and accumulates them to the edges. The charges at the edges form electric

field Eint = (0, Ey, 0) and in the ultimate steady state jy = 0.

This phenomenon, which generates an electric field vertical both to the current and the magnetic field is the Hall effect.
The linear response coefficient

RH =
Ey
JxBz

(5.14)

is called Hall coefficient. Hall field Ey is obtained as follows. From jy = 0,

Ey = −(At/Al)Ex. (5.15)

Substituting the above and (5A.11b) into (5.14), we obtain the conductivity tensor defined in j = σ̂E as

σxx =
ne2

m∗
Al =

ne2

m∗

⟨
τ

1 + (ωcτ)2

⟩
E

, σxy =
ne2

m∗

⟨
ωcτ

2

1 + (ωcτ)2

⟩
E

, (5.16)

RH = − 1

ne

At

ωc(A2
l +A2

t )
. (5.17)

In weak fields, from ωcτ ≪ 1,

RH = − 1

ne

⟨τ2⟩E
⟨τ⟩2E

=
1

n(−e)
Γ(2s+ 5/2)Γ(5/2)

(Γ(s+ 5/2))2
=

rH
n(−e)

(
=

1

n(−e)

)
. (5.18)

Knowing s, we obtain the carrier concentration as well as the sign of charge from the Hall measurement (for holes −e
is replaced with e). rH, which is called Hall factor, takes in many cases values around 1 depending on the scattering

mechanism at high temperatures (see Tab. 5.1). Within constant relaxation time approximation (s = 0) or when the

system is Fermi-degenerated, rH = 1. When s = 0, as eq.(5A.9) tells, eq.(5.18) holds giving the expression shown in the

last parentheses.

+ + + + + + + +z

x

y

B

Jx

Jy

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ey

Fig. 5.3 Magnetic field is applied along z-axis. Cur-
rent along x-axis generates y-component Jy through the
Lorentz force. The y-component in current results in
charge accumulation at the sample edges, which creates
Hall electric field along y-axis. In steady state, Jy is can-
celed by the Hall field and the total current is along x-axis.
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Let v be the average velocity gained by the electrons from the electric field E , the mobilityis defined as v/|E|, and in

the relaxation time approximation, written as

µ =
v

|E|
=

nev

ne|E|
=

j

ne|E|
=

σ

ne
= σ|RH| =

eτ

m∗
. (5.19)

Scattering mechanism E exponent T exponent Hall factor

Acoustic phonon −1/2 −3/2 1.18

Ionized impurity (weak screening) +3/2 +3/2 1.93

Ionized impurity (strong screening) +1/2 +1/2 1.18

Neutral impurity 0 1.00

Piezoelectric phonon +1/2 1.10

Tab. 5.1 Hall factors for various scattering mechanism. E，T -exponents are for scattering time. See e.g. [1].

5.1.5 Various scatterings

We have considered the Boltzmann equation by relaxation time approximation, but various mechanisms such as scat-

tering with phonons and other degrees of freedom in solids contribute to relaxation. We consider relaxation time for each

relaxation mechanism, and index each relaxation time τα with index α. Then the frequencies of the relaxations (∝ τ−1α )

is summed up to give the total relaxation. This gives the Matthiessen’s rule

τ−1 =
∑
α

τ−1α . (5.20)

In the relaxation time approximation of classical transport, the carrier scatterings are taken into account through the

averaged scattering time and the Matthiessen’s rule(5.20) into the total relaxation time. Therefore we can infer the

scattering mechanism dominating the present transport by tuning, for example, a parameter which gives different effects

on different scattering times. Scattering of band electrons (holes) have many origins as shown in Fig. 5.4. In this section,

representative scatterings and their characteristics are listed.

Phonon scattering: Quantization of lattice vibration gives phonons. The phonons are classified into acoustic phonons,

which have the dispersion E(kp) → 0 for wavenumber kp → 0, and optical phonons, which have finite E(kp → 0). In

a plain expression, the difference comes from whether the oscillations of neighboring atoms are in phase or out of phase.

For the band electrons the lattice vibration is distortion in the lattice potential and causes scattering. The scattering of

electrons causes rebounding of nuclei resulting in the phonon scattering. Such phonon scattering is, from the electron

side, inelastic associated with the energy gain/loss.

Fig. 5.4 Classification of scatterings mostly by the origins.
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The relaxation time due to the acoustic phonon has energy dependence as τ(E) = aphE
−1/2. The averaged scattering

time with energy-weight ⟨τph⟩E is

⟨τph⟩E = aph(kBT )
−1/2 Γ(2)

Γ(5/2)
=

8
√
πaph

3
√
kBT

. (5.21)

In high temperature approximation, the energy distribution of phonons gives aph ∝ (kBT )
−1, then the mobility limited

by the acoustic phonons µph has the temperature dependence as

µph ∝ ⟨τ⟩E ∝ (kBT )
−3/2. (5.22)

On the other hand, optical phonons have large energies around k ≈ 0 and do not affect the transport for weak electric

field. In hot electron transport, in which the electrons are very far from equilibrium by the effect of strong electric field,

the optical phonon scatterings are very important.

Fig. 5.5 Hall mobility in GaAs(experiments, points) and
fitting by putting various scattering mechanisms with
temperature dependence into (5.20). Red broken lines
indicate temperature dependences of various scattering
mechanisms[2].

Ionized impurity scattering：Impurity atoms in solids

often emit electrons to become positive or trapped neg-

ative ions, forming a Coulomb potential for band elec-

trons and causing scattering. In most cases, such po-

tentials are screened by surrounding charge carriers and

have the Yukawa-type (e−r/LD/r) distance (r) depen-

dence rather than the Coulomb-type 1/r. When the ion-

ized impurities have magnetic moments due to the elec-

tron spins, they also cause magnetic impurity scattering

the the internal freedom causes peculiar effects like the

Kondo effect. If there is no internal freedom the scatter-

ing is simple potential scattering and elastic.

Scattering by Yukawa potential of carriers with

Maxwell distribution, contributes to the scattering time

as

τion ∝ T 3/2, µion ∝
T 3/2

ln(1 + x)− x
1+x

, x ≡ 24m∗λkBT

ℏ2
(5.23)

for weak screening, i.e. a long LD. For strong screening

with a very short LD, the scattering is δ-function like and the contribution is

τion ∝ T 1/2, µion ∝ T 1/2. (5.24)

The mobility in GaAs obtained from Hall and conductivity measurements, and the result of fitting by considering

various types of scatterings included in eq.(5.20) are shown in Fig. 5.5. The broken lines show temperature dependences

of the scatterings. We see all of these limit the mobility.

5.2 Thermal transport and electric transport

In the Boltzmann equation (5.4), the second and the third term in left hand side representing non-uniformity in the

phase space, correspond to drift current and diffusion current respectively. In this subsection we treat the thermoelectric

effect, in which coexistence of the both types of currents should be considered. A temperature gradient in solids causes a

heat current (or thermal flux). Here we consider heat transport by charge carriers, i.e. electrons and holes though lattice

vibrations (phonons) also carry heat in solids. Below, we do not consider Joule heating for a while.
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5.2.1 Thermal conductivity

Thermal flux density along x-direction with carrier concentration n is defined as

jqx = ⟨nvx(E − µ)⟩ =
∫ ∞
0

vx(E − µ)f(E)D(E)dE. (5.25)

Then thermal conductivity κn under temperature gradient ∇T is defined as

κn = − jqx
∂T/∂x

. (5.26)

In vector format jq = −κ̂∇T．

5.2.2 Thermoelectric effects

B

B

B

B B

A A

V

T x1 1,

T x2 2,

J

(a) (b)

The heat flux in (5.26) should also lead to some

electric effect. Such complex effects of tempera-

ture gradient and electric response are called ther-
moelectric effects.

Let the temperatures at edges of a conductor A

T1 and T2 respectively. Two conductors of an-

other material B with the same lengths are con-

nected to the edges. Other ends of conductors

(material B) are connected to a voltmeter with in-

finite input impedance ((a) in the left figure). In the steady state, there is no net current and the electric current driven by

heat flow should be compensated by the voltage VAB measured at the voltmeter. This is called Seebeck effect, and the

ratio of the voltage to the temperature difference (∆T = T1 − T2)

SAB =
VAB

∆T
(5.27)

is called Seebeck coefficient. On the other hand as in (b), when there is a junction of A and B set at a uniform temperature,

a current J causes heat fluxes QA and QB. In a steady state there is no charge accumulation and J is uniform, that means

QA and QB are different reflecting difference in the thermal transport coefficients. The difference results in heating at

the interface. This is called Peltier effect and the ratio of the heating speed to J ,

ΠAB =
QAB

J
(5.28)

is called Peltier coefficient. If we apply a current J to a BAB type junction as in (a), the same current flows with inverted

directions through the two interfaces. Hence if a heating occurs at one interface, a cooling of the same amount of heat

occurs at the other end.

In a uniform conductor with a current J and a temperature gradient (assume along x-direction) ∂T/∂x, cooling or

heating occurs. Heat creation per unit length ∂Q/∂x is proportional to the product of J and ∂T/∂x. This is Thomson
effect and the coefficient

τ =
∂Q/∂x

J(∂T/∂x)
(5.29)

is called Thomson coefficient.
Among the above three kinds of coefficient, Kelvin (Thomson) relations

ΠAB = SABT, τA − τB = T
dSAB

dT
(5.30)
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hold (Appendix B). From the relations we can define material specific (combination free) Seebeck coefficient as

SA(T ) ≡
∫ T

0

τA(T
′)

T ′
dT ′. (5.31)

The relation with the coefficient in (5.27) is
SAB = SA − SB. (5.32)

In the measurement of Seebeck effect, we need to connect the sample and the voltmeter with leads, which also have

Seebeck coefficient. Hence the measured voltage is the difference between the Seebeck effects of the sample and the leads.

Equation (5.32) indicates the fact. Thermocouple works as a sensor for temperature difference ∆T with knowledge of

Seebeck coefficients for the two components.

5.2.3 Boltzmann equation and thermoelectric coefficients

Let us look for the relation between the thermoelectric coefficients and the distribution function with Boltzmann equa-

tion under relaxation time approximation (5.4), (5.5). In a steady state ∂f/∂t = 0 we rewrite the equation as

v · ∇f +
F

m
∇vf = −f − f0

τ(E)
. (5.33)

We take the approximation that the shifts from equilibrium are small and replace f in the left hand side with f0.

∇f0 due to temperature gradient ∇T is written as

∇f0 = ∇T ∂f0
∂T

.

In f0, E and T always appear in the expression −(E − EF)/kBT , which we write a here for short description. Then

∂f0
∂T

=
∂f0
∂E

∂E

∂a

∂a

∂T
=
∂f0
∂E

(−kBT )
E − EF

kBT 2
=
∂f0
∂E

EF − E
T

,

therefore ∇f0 = ∇T EF − E
T

∂f0
∂E

. (5.34a)

And ∇vf0 = ∇vE
∂f0
∂E

= mv
∂f0
∂E

. (5.34b)

When the electric field E and the temperature gradient∇T coexist, (5.33) can be written with (5.34) as

f = f0 − τ(E)v ·
[
−eE+

EF − E
T

∇T
]
∂f0
∂E

. (5.35)

We take E = (Ex, 0, 0) and the current along x-direction is

jx = −e⟨nvx⟩ = −e
∫ ∞
0

vxf(E)D(E)dE = e

∫ ∞
0

v2xτ

[
−eEx +

EF − E
T

∂T

∂x

]
∂f0
∂E

D(E)dE.

The Seebeck coefficient is obtained with putting jx = 0 as

S =
Ex

∂T/∂x
=

∫ ∞
0

v2xτ
EF − E
eT

∂f0
∂E

D(E)dE

/∫ ∞
0

v2xτ
∂f0
∂E

D(E)dE

=
1

eT

[
EF −

∫ ∞
0

τE2 ∂f0
∂E

D(E)dE

/∫ ∞
0

τE
∂f0
∂E

D(E)dE

]
. (5.36)

Here v2x is replaced with 2E/3m.
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Fig. 5.6 Left panel: Schematic
of Peltier device. p-type semicon-
ductors and n-type semiconductors
are placed staggered (in the figure
just a single pair) along the current
path. While electric current me-
anders heat flows one way. Right
panel: Photo of a Peltier device.
From Akizuki-denshi web site.

In eq.(5.35) inside the parentheses at right hand side, the first term represents the drift current while the second the

diffusion current caused by the temperature distribution. The canceling of these term results in the Seebeck effect,

therefore the Seebeck effect is the result of diffusion current which causes charge non-uniformity inside the sample. The

non-uniformity creates electric field, of which the drift current cancels the diffusion current.

In Maxwellian approximation, ∂f0/∂E = −f0/kBT , and we further assume the energy dependence of the relaxation

time as τ ∝ Es, then

S = − 1

eT

[
⟨τE⟩E
⟨τ⟩E

− EF

]
= − 1

eT

[(
5

2
+ s

)
kBT − EF

]
. (5.37)

This equation tells that if we can measure the temperature dependence of S, we obtain EF and s. The above calculation

is for electrons and for holes −e is replaced with +e, hence measurement of S also gives the sign of carriers. This result

for Maxwellian approximation does not depend on the carrier concentration, which can be understood as follows. The

Einstein relation (5.13) connects the diffusion constant and the mobility, which are material constants for diffusion and

drift currents respectively. Hence these constants disappear from the balancing equation leaving the temperature. The

carrier concentration also included as the first order in both currents and dropped. In the case of Hall coefficient, the drift

current by external field comes into one side and the carrier concentration remains in the expression.

5.2.4 Peltier device

Peltier and Thomson coefficients can also be obtained from the Kelvin relations. Peltier coefficient also changes its sign

with that of carriers. In a material with junctions to n and p-type semiconductors, a current flow through this structure

thus causes heating at one junction and cooling at the other resulting in a heat flow. Such a device is called Peltier device.

Peltier devices once were frequently used in combination with cooling fans for cooling CPUs in PCs. They have long

been used where we need cooling without noises such as refrigerators in bedrooms.

Appendex 4C: Lattice vibration in semiconductors (continued)

Continuing from the last time, let us briefly look at the lattice vibration of sphalerite-type crystals as an example of

three-dimensional crystal lattice vibration.

4C.2 Lattice vibration in zinc-blende crystals

We consider zinc-blende (ZB) crystals as an example of three-dimensional crystal which has two species of atoms in

the unit cell. The Bravais lattice is fcc but the ZB crystalline structure can be considered as an overlapp of two “fcc

crystals”, in which one atom is placed at the lattice point of fcc lattice. We consider two such fcc-crystals with different

atoms with common lattice constant a. We obtain a ZB crystal by placing these two with the shift of a(1/4, 1/4, 1/4).
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Fig. 4C.3 Schematic diagram of lattice vibration modes (dis-
persion relation) in a zinc-blende crystal.

Let uα,R be the atomic shift vectors. Here α is the index of the two sublattice, R is the lattice point. The lattice kinetic

energy can be written as

EK =
∑
α,R

1

2
Mαu̇

2
α,R. (4C.6)

On the other hand, with expanding the ptential V (r) to the second order, the potential energy is written as

EP =
∑

αα′,RR′,jj′

ujα,Ru
j′

α′,R′
∂2V

∂ujα,R∂u
j′

α′,R′

, j = x, y, z. (4C.7)

The equation of motion can be obtained by defining the Lagrangian L ≡ EK − EP, and general coordinate qk ≡ ujα,R

from the Lagrange equation;
d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= 0.

In the present case from (4C.6), (4C.7) we get

Mαü
j
α,R = −

∑
α′,R′,j′

∂2V

∂ujα,R∂u
j′

α′,R′

uj
′

α′,R′ ≡ −
∑
α′,R′

Cαα′,RR′uα′,R′ . (4C.8)

Tensor C corresponds to “force constant” and just depends on the combination αα′, and on the relative position of unit

cell R′′ = R′ −R. Then with Cαα′,RR = Cαα′(R′′) we can write

Mαü
j
α,R = −

∑
α,R′′

Cαα′(R′′)uα′,R+R′′ . (4C.9)

This equation is invariant againg the shifts among the lattice points R→ R′. Then we can write the solution in the form

of Bloch function
uα,R(t) = uα(q, t) exp(iq ·Rα). (4C.10)

As the time dependence, we consider the oscillation with angular frequency of ω, and assume

uα,r(t) =
1√
Mα

uα(q, ω) exp[i(q ·Rα − ωt)]. (4C.11)

Substituting this to (4C.9) results in

ω2uα(q, ω) =
∑
α′

[
1√

MαMα′

∑
R

Cjj′

αα′(R) exp(iq ·R)

]
uα′(q, ω) ≡

∑
α′

Dαα′(q)uα′(q, ω). (4C.12)
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For (4C.12) to have solutions other than the trivial 0⃗,

|Djj′

αα′(q)− ω2δαα′δjj′ | = 0. (4C.13)

The dispersion relations can be obtained by solving this numerically. The 6th order equation gives 6 modes, in which 3

acoustic modes and 3 optical modes exist. The each 3 are separated into 2 transverse modes and 1 longitudinal mode.

The namings are, then, TA, LA, TO, LO.

Appendix 5A: Galvanomagnetic effect

We consider the response of drift current to magnetic flux B. In the Boltzmann equation (5.4), F is taken as F =

−e(E+ v ×B) and the relaxation approximation (5.5) is applied. With f1 ≡ f − f0,

− e

ℏ
(E+ v ×B) · ∂f

∂k
= −f1

τ
(p = ℏk). (5A.1)

In the first term of the left hand side, f in ∂f/∂k is replaced with f0. Form dE = v · dp, the second term is ∂f0/∂k =

ℏ(∂f0/∂E)v and the term of f0 is orthogonal with v×B and vanishes (magnetic field driven force is orthogonal with v

and does not give work). In the second term we take terms to f1 and obtain

− ev ·E∂f0
∂E
− e

ℏ
(v ×B) · ∂f1

∂k
= −f1

τ
. (5A.2)

Here we introduce a vector Ea with the physical dimension of electric field satisfying

f1 = eτ(v ·Ea)
∂f0
∂E

. (5A.3)

This is from the concept that the Lorentz force shifts the Fermi sphere as in Fig. 5.2 and the origin of the shift is

represented as an electric field. Then the equation is

− v ·E = −v ·Ea +
eτ

m
(v ×B) ·Ea, ∴ E = Ea −

eτ

m∗
B×Ea. (5A.4)

The solution to eq.(5A.4) is given as follows.

Ea =
1

1 + ω2
cτ

2

[
E+

eτ

m∗
B×E+

( eτ
m∗

)2
(B ·E)B

]
, (5A.5)

ωc =
e|B|
m∗

. (5A.6)

ωc is the cyclotron frequency. Then f1 is given as follows.

f1 =
eτE

1 + ω2
cτ

2
·
[
v +

eτ

m∗
v ×B+

( eτ
m∗

)2
(B · v)B

]
∂f0
∂E

. (5A.7)

We take the case B = (0, 0,Bz), E = (Ex, Ey, 0). From vz = 0 and eq.(5A.7), f1 is calculated as

f1 = e
∂f0
∂E

[
vx

(
τ

1 + (ωcτ)2
Ex −

ωcτ
2

1 + (ωcτ)2
Ey
)

+ vy

(
ωcτ

2

1 + (ωcτ)2
Ex +

τ

1 + (ωcτ)2
Ey
)]

. (5A.8)

For example, to obtain jx = −en⟨vx⟩ from this equation take the expectation value of vx with f = f0 + f1. The

expectation value for f0 is zero and odd components in v is dropped from the integration over k. Then

jx = 2

∫
(−e)vxf(k)

dk

(2π)3
= − e2

4π3

∫
τv2x

1 + (ωcτ)2
(Ex − (ωcτ)Ey)

∂f0
∂E

dk. (5A.9)
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The integrand in (5A.9) is the same as that in equilibrium other than v2x and is a function of kinetic energy E. For a

general function ξ(E), the principle of energy equipartition gives∫
v2xξ(E)dk =

2

3m∗

∫
Eξ(E)dk. (5A.10)

With the Maxwellian approximation f0 = A exp(−E/kBT ), and density of states D(E) = ADE
1/2, eq.(5A.10) leads

to
∂f0
∂E

=
f0
−kBT

, n = AD

∫ ∞
0

f0E
1/2dE =

2AD

3kBT

∫ ∞
0

E3/2f0dE.

These being substituted into (5A.9) and we obtain

jx =
ne2

m∗

[⟨
τ

1 + (ωcτ)2

⟩
E

Ex −
⟨

ωcτ
2

1 + (ωcτ)2

⟩
E

Ey
]
, (5A.11a)

≡ (ne2/m∗)(AlEx −AtEy) (definitions of Al and At). (5A.11b)

⟨· · · ⟩E is defined in eq.(5.10). jy is obtained in the same way and the conductivity tensor in xy-plane is expressed as

j =
ne2

m∗

(
Al −At

At Al

)
E. (5A.12)

Appendix 5B: Kelvin relations

B A B

Tm TmT T T+D

We consider two species of metals A, B and a junction

BAB as shown in the right figure. The temperature at the

two edges is kept to Tm and a unit charge moves from

one edge to the other quasi-statically. As indicated in

the figure, temperatures at the two junctions are T and

T +∆T . The voltage between the two edges is VAB.

From the requirement of quasi-static assumption, we apply the first and the second laws of thermodynamics to obtain

the conditions,
VBA +ΠBA(T )−ΠBA(T +∆T ) + (τB − τA)∆T = 0

ΠBA(T )

T
− ΠBA(T +∆T )

T +∆T
+
τB − τA

T
∆T = 0.

In the differential formula with ∆T → 0,

dVBA

dT
− dΠBA

dT
+ τB − τA = 0,

d

dT

(
ΠBA

T

)
=
τB − τA

T
.

From the second equation

τB − τA = T
d

dT

(
ΠBA

T

)
=
dΠBA

dT
− ΠBA

T
,

and we reach
∴ SAB =

ΠAB

T
,

dSAB

dT
=
τA − τB

T
(5B.1)

with exchange of A and B.
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Lecture note on Physics of Semiconductors (7)
26th May (2021) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Chapter 6 Homo·hetero junctions

So far we have seen the bulk properties of uniform semiconductors. Henceforth we go into the rich physical phe-

nomenon in spatially structures semiconductors, the actions as defices.

6.1 Electrical and optical characteristics of homo pn junctions

The pn junction is one of the first semiconductor devices for electric circuits. For the detailed history of the device, see

e.g. [1] (though in Japanese, out-of-print).

6.1.1 Thermal equilibrium

E

p NA

x

n ND
-wp

wn

+
+

+
+

+ +

+

+

+

+
++

+

+

--- -

-- -

-- -
--
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DA

ee

np
wNwN +

-
Ec

Ev
EF

eVbi

Fig. 6.1 (a) Schematic of an abrupt pn-
junction. (b) Electric field E(x) in depletion
layer. x-direction is taken as positive for the
field. (c) Band diagram.

A pn junction, as it expresses, is a junction of a p-type semi-

conductor and an n-type semiconductor. Here we consider homo-

junctions, in which the same species of semiconductor is used for

p- and n-layers. In such a junction, the electron density is high in

the n-layer and the hole density in the p-layer. Hence there should

be diffusion pressures which drive electrons to the p-layer and holes

to the n-layer for increase of entropy S. On the other hand, such

diffusions charge up the p-layer to negative and the n-layer to pos-

itive creating charge double layer at the junction (charge depletion
layer). This electro-magnetically enhances the internal energy U .

In thermal equilibrium, the double layer width is determined from

the condition for free energy (U − TS) minimum.

We take a simple model of an abrupt junction (Fig. 6.1), and

p ∼ n ∼ ni in the depletion layer. We write the built-in volt-
age due to the pn structure at the interface across the depletion layer

Vbi. In the process that an electron moves from the n-layer to the

p-layer, the energy increases by eVbi. In the n-layer the electron

density nn ∼ ND, and in the p-layer the semiconductor equation

tells np ∼ n2i /NA. We consider a general case that N1 and N2

electrons are respectively distributed in two boxes with site number

N . The number of cases is W = NCN1NCN2
. Here only particle

exchanges are considered hence dN1 = −dN2. Under assumption N ≫ N1,2, d(lnW ) ≈ ln(N2/N1)dN1 (mixing en-
tropy of gases). Applying this to the pn-junction with dN1 = −1, N1 = nn, N2 = np, condition d(U − TS)/dnn = 0

E7-1



0 10 20

100

102

104

106

108

e V k T| |/ B

|
/

|
J

J
0

Shockley theory

Forward bias

Reverse bias

x

EFn

EFp

0

p n

eV

log ,p

logn

pp

np

nn

pn

(a) (b)

Fig. 6.2 (a) Upper panel: quasi-Fermi levels in a pn-junction under external forward voltage V . Lower panel:
Spatial variation of carrier densities. (b) Broken line: I-V characteristics of Shockley theory (eq.(6.11)). Normalized
with J0, which is the coefficient in eq.(6.11). Solid line: Realistic I-V characteristics, in which series resistance,
recombination inside the depletion layer, tunneling through localized states are taken into account. The inset is a
linear plot of (6.11).

gives

eVbi = kBT ln
nn
np
∼ kBT ln

NDNA

n2i
= Eg − kBT ln

NcNv

NDNA
. (6.1)

(nn ∼ ND, pp ∼ NA).

In equilibrium it is also required that the chemical potential (Fermi energy) is constant through the junction, inde-

pendent of the spatial coordinate. Far inside p, n-layers apart from the junction, the band structure should recover the

bulk states. Hence the band diagram in Fig. 6.1(c) is drawn. Let the depletion layer widths in p and n-layers wp, wn

respectively, then E(x) is given as

− ϵϵ0E(x) = NA(2x+ wp) +NDwn (x < 0), NAwp +ND(wn − 2x) (x ≥ 0), (6.2)

where ϵ is the dielectric constant. Then Vbi is calculated as

Vbi =

∫ wn

−wp

(−E(x))dx =
e

ϵϵ0
(ND +NA)wnwp =

e

ϵϵ0
(ND +NA)

ND

NA
w2

n ∵ wnND = wpNA. (6.3)

From eqs.(6.1) and (6.3), we obtain the relation between the doping concentrations and the depletion layer width.

6.1.2 Current-Voltage characteristics

In equilibrium of a pn-junction, the net current is zero as a result of balance between the entropy and the internal

energy. An externally applied voltage pushes off the balance and a current flows as a result. When the energy cost is

lowered by the voltage, the diffusion current causes injection of minority carriers. Minority carrier injection is an action

that increases density of minority carrier dynamically. The minority carrier injection breaks the semiconductor equation

np = n2i locally. Even in such circumstances, by introducing quasi-Fermi level, we can treat electrons and holes as in

quasi-equilibriums and apply the Boltzmann equation to obtain carrier fluxes. The semiconductor equation (law of mass
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action) can also be recovered in a bit modified manner. The goal here is to give the net current as a function of external

voltage.

We model the effect of external voltage V as follows. All the voltage drops outside the depletion layer are ignored and

V is applied inside it. Far from the junction, the current is carried by majority carriers, which have high concentration

and the gradient in the chemical potential in such regions is ignorable. Around the depletion layer, imbalance between the

internal energy cost and the increase of entropy causes a flow of carriers. V is applied against Vbi lowering the barrier for

diffusion currents, then the majority carriers flows into the counter layers increasing the minority carrier densities at the

depletion layer edges. The injected minority carriers diffuse into the bulk, recombine with majority carriers and disappear.

The diffusion-annihilation process forms a exponential decay in the steady minority carrier density distribution.

In the above model, we assume that local thermal equilibrium is attained in each thin layer parallel to yz plane through

the carrier-carrier interaction and the particles can be exchanged between neighboring layers. Quasi-Fermi levels, which

depends on x-coordinate, for electrons (µe(x)) and holes (µh(x)) are introduced as follows,

n(x) = Nc exp[−(Ec(x)− µe(x))/kBT ], p(x) = Nv exp[−(µh(x)− Ev(x))/kBT ], (6.4a)

i.e., µe(x) = Ec(x) + kBT ln
n(x)

Nc
, µh(x) = Ev(x)− kBT ln

p(x)

Nv
. (6.4b)

The diffusion of minority carriers (densities np, pn) is described by the following diffusion equations.

De
d2np
dx2

=
np − np0

τe
−G(x), Dh

d2pn
dx2

=
pn − pn0

τh
−G(x), (6.5)

where G(x) represents minority carrier creation e.g. by light illumination and in the dark G(x) = 0. np0, pn0 are

minority carrier concentrations in the bulk regions, De,h, τe,h are the diffusion constant and the lifetime respectively (e

for electrons, h for holes). Then minority carrier diffusion lengths for electrons and holes are

Le =
√
Deτe, Lh =

√
Dhτh. (6.6)

The solution for (6.5) (pn for x > wn, np for x < −wp) which satisfies the boundary condition np → np0 (x→ −∞)

and pn → pn0 (x→∞), is obtained as

np(x) = δn0 exp

(
x+ wp

Le

)
+ np0, pn(x) = δp0 exp

(
−x− wn

Lh

)
+ pn0, (6.7)

where δn0, δp0 are concentrations of injected minority carriers at the edges of the depletion layer. From the definition

(6.4b), in the region of diffusion and with ignoring np0, pn0 in (6.7), the quasi-Fermi levels linearly depend on the

distances as

µe(x) = Ec + kBT

[
x+ wp

Le
+ ln

δn0

Nc

]
, µh(x) = Ev − kBT

[
x− wn

Lh
+ ln

δp0
Nv

]
. (6.8)

These should join the bulk values E(p),(n)
F at x → ±∞ respectively and E(p),(n)

F differ by eV , i.e., E(p)
F − E(n)

F = eV .

Therefore they are schematically drawn as in Fig. 6.2(a).

We ignore electron-hale recombination inside the depletion layer and assume the currents are limited by the diffusion

of minority carriers. Then the net current density is the sum of minority carrier diffusion currents at the two edges of the

depletion layer. From eq.(6.7) and eq.Fig. 6.2(a),

δn0 + np0 = n(−wp) = np0 exp
eV

kBT
, δp0 + pn0 = p(wn) = pn0 exp

eV

kBT
. (6.9)

The electron diffusion current density at x = −wp in the process (6.5) is thus

je = eDe
dnp

dx

∣∣∣∣
−wp

=
eDeδn0

Le
=
eDe

Le
np0

[
exp

eV

kBT
− 1

]
. (6.10)
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Fig. 6.3 (a) Carrier density distribution around a pn-junction under photo-generation of minority carriers G. De-
pletion layer edges are indicated by perpendicular broken lines. Bias is taken as shortage V = 0. (b) Schematic I-V
characteristics in the dark and under illumination.

The hole current can be calculated in the same way and the net current is given as

j = e

[
De

Le
np0 +

Dh

Lh
pn0

] [
exp

eV

kBT
− 1

]
≈ en2

i

[
De

LeNA
+

Dh

LhND

] [
exp

eV

kBT
− 1

]
. (6.11)

Equation (6.11) is the very basics of the Schottky theory of pn-junction. Though the model grabs the essence, real pn

junctions are much more complicated. Important modifications are series resistance, recombination in depletion layer and

tunneling conductance through localized level inside energy gap (parallel Ohmic resistance). With these modifications, a

realistic characteristics shown in Fig. 6.2(b) differs considerably from the Shockley theory.

6.1.3 Photo-response of pn-junctions

Let us take the simplest model for a pn-junction under illumination assuming majority carrier generation G(x) does

not depend on x (a constant G) in the diffusion equation (6.5). Just as before, the solution for np(x) and pn(x) which

satisfies the boundary condition np → nn0 +Gτe for x→ −∞, and pn → pn0 +Gτh for x→∞ is

np(x) = np0 +Gτe +

[
np0

(
exp

(
eV

kBT

)
− 1

)
−Gτe

]
exp

(
x+ wp

Le

)
, (6.12a)

pn(x) = pn0 +Gτh +

[
pn0

(
exp

(
eV

kBT

)
− 1

)
−Gτh

]
exp

(
−x− wn

Lh

)
. (6.12b)

The solution for V = 0 is schematically drawn in Fig. 6.3(a).

From the solution, the net current density is given as

j = j0

[
exp

eV

kBT
− 1

]
− eG(Le + Lh), (6.13)

where j0 is the coefficient in front of the parentheses in (6.11). Equation (6.13) is a simple negative shift of (6.11) by

jsc ≡ G(τe + τh). Figure 6.3(b) shows the characteristics. Real solar cells are more complicated but the common is

the negative shift of the current characteristics with illumination. The parameters which characterize each device are the

negative shift at short-circuit condition |JSC| (short circuit current) and the voltage at open-circuit condition VOC (open
circuit voltage). These depend, of course, on the strength and the spectrum of illumination.

In the characteristics shown in Fig. 6.3(b), the cell pumps out an electric energy under the bias condition in the fourth

quadrant. Current J and voltage V give power W = |JV |. In the forth quadrant |J | ≤ |JSC|, |V | ≤ |VOC| then

W ≤ |JSCVOC|. Then Jmax, Vmax which give the maximum power is determined and

FF ≡ JmaxVmax

JSCVOC
≤ 1 (6.14)
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is called filling factor (FF). The better the squareness of the I-V characteristics, the higher the FF. JSC, VOC, and FF are

useful parameters for discussing phenomenology of solar cells, modeling equivalent circuits. In the ideal characteristics

(6.13),

|JSC| = eG(Le + Lh), VOC =
kBT

e
ln

[
eG(τe + τh)

j0
+ 1

]
. (6.15)

The above is the basics of photoelectric conversion and applied to e.g. solar cells. For the solar cells see the article by

the present author [2] (in Japanese).

6.2 pn-junction transistors

From left, John Bardeen, William Shockley, Walter
Brattain. At AT&T Bell Laboratories, in 1948.

Today, we see two kinds of semiconductor devices invented by a

genius named William Shockley. The style of research and develop-

ment which he began, as well as his devices, has been changing the

human life. The above expression is not exaggeration, I believe. I

have read a short commentary, which tells “the researchers in Bell

Labs. were doing basic research on the surface states of Ge with

putting tips on the surfaces and accidentally found the transistor ac-

tion”. But this is far from real situation. Walter Brattain and John

Bardeen, who were the direct finders, were doing research aiming at

construction of “solid state amplifier” under the team leader Shock-

ley. They did not expect such an easy finding probably but they

realized the amplification certainly because they were doing such

objective research.

The experiment was done a little before the Christmas of 1947

(said to be 12/16. The application for patent was 12/23) Shockley

was out of the labs for a journey. He was thus not so glad hearing

the success. Also the transistor (the term is a combination of transfer

and resistor) which Brattain and Bardeen accidentally found was called “point contact type”, unstable, had low repro-

ducibility. It should have serious obstacles for commercial viability. Their finding might have stimulated Shockley’s fight

as an inventor, he was absorbed in thought as a theorist aiming at realization of “reproducible device for amplification”

and finally got the brilliant inspiration of junction transistor, on the new year’s eve allegedly. The theory for the junction

transistor established 1/23 in the next year. The experimental realization was a year later. The event was the glorious dawn

of the semiconductor physics, in which artificial structures in solids utilize the structural sensitivity of semiconductors

and create new functions, new stages of physics[3]．

6.2.1 Junction transistor: structure

Figure 6.4 shows basic structure of junction transistor (Bipolar Junction Transistor, BJT, at times just “bipolar tran-

sistor”), in which two pn-junctions are placed close to each other. npn and pnp are possible types of junctions. An ohmic

contact to the central layer is required for the device to have three terminals. The terminals at the two ends are called

Collector (C), Emitter (E) respectively and the central one is called Base (B). In the very beginning, the structure was

fabricated with alloying metals which work as dopants to both sides of the base material. The naming “Base” came from

the fact though lithography and thermal diffusion, ion implantation and epitaxy soon became the dominant methods. As

we will see for the transistor action, the base should be very thin. Thinner than the minority carrier diffusion length.
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Fig. 6.4 (a) Schematic structure of pnp transistor. Circuit symbol and the names of terminals. (b) Schematic
structure of npn transistor and the circuit symbol.

Circuit symbols of transistors are shown in Fig. 6.4, which represent connections of two electrodes to the base graphi-

cally. Circles are often omitted. pnp and npn are distinguished with the direction of arrow, which indicates direction of

electric current when minority carriers are injected into the base electrode. Below we consider npn-type and define the

directions of the current as in the figure.

6.2.2 Current-amplification of junction transistors

In the first experiment a constant voltage source is connected to B-C and collector current JC is measured. Inside the

structure B-C is nothing but a pn diode and the result is a well known rectification characteristics (JE = 0 in Fig. 6.5(a)).

Now we connect a constant current source between E and B, and apply finite currents through E. Because B-E is also a

pn junction, the forward bias is positive for B. As shown in Fig. 6.5(a) VBC − JC curve shifts parallely to negative. The

amount of shift is almost JE.

It should be noted that the characteristics is close to that of a solar cell shown in Fig.2.3(b). The similarity is not a

coincidence, rather, the physical situation is almost the same. While In a solar cell, the minority carriers are directly

created by photon irradiation, in a transistor, the minority carriers are injected through the pn junction between E and B

to the other junction between B and C.

The phenomenon occurring in the junctions are summarised as follows. Here we only describe the phenomenon in

conduction band while that in valence band can be discussed in parallel. In an npn junction, a reverse bias voltage to

B(p)-C(n) suppresses the diffusion current from the n-layer to the p-layer. The (reverse) diffusion of electrons from the

p-layer to the n-layer is not enhanced by the reverse bias because all the electrons reach from the p-layer to the junction

are swung to the n-layer and it is already saturated at zero-bias. Under the reverse (or zero) bias condition of VBC, let

the other pn-junction (E-B) be under a forward bias condition. This is possible because an Ohmic contact is attached

to the base electrode, hence VEB and VBC can be controlled independently. The forward bias lowers the barrier by the

built-in potential in E-B junction and the electrons (majority in the n-layer) diffuse into the base layer and the minority

carrier concentration increases in B. This is the phenomenon called minority carrier injection, which decays over the

minority carrier diffusion length through the recombination with majority carriers (holes). Note that the continuity in

current is hold. The flow by injected electrons is not driven by the electric field but by the density gradient. So the flux

is perpendicular to the junction plane almost ignoring the base Ohmic electrode (the recombination current goes to the

electrode). When the B-layer is much thinner than the minority carrier diffusion length, most of the injected carriers reach

the other junction enhancing the reverse current. In Fig. 6.6(a), this appears as the enhancement of the reverse current,

the amount of which is determined that of injected minority carriers. Hence the current does not depend on VBC as long
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Fig. 6.5 (a) JC (upside down for convenience) as a function of VBC with JE as a parameter in the circuit shown in
the lower panel. With increasing JE i.e., injecting electrons from E to B, the characteristics resembles to that of an
illuminated solar cell. (b) Application of collector-emitter voltage VCE with floating B, almost no current flows due
to the reverse bias in C-B. The biasing B with some currents JC appears according to JB showing saturation for VCE.

as there is no forward current.

Now an amplification circuit can be composed as follows. Let the electrodes C-E be voltage biased as in Fig. 6.6(c).

The amount of minority carrier injection into B-layer is determined by VBE. Hence in this circuit JC strongly depends on

VBE as shown in Fig. 6.6(a). However, the relation is too non-linear for the use of the device in a voltage-input circuit.

Some of the injected minority carriers recombine with majority carriers and some portion flows out to B-electrode. The

base current JB depends on VBE in the same functional form only but the coefficient as JC because the pn-junction is the

same. JC is thus proportional JB, that is,
JC = hFEJB. (6.16)

The good linearity is confirmed in the measurement as shown in Fig. 6.6(b). hFE is called current amplification
factor. And it is often said that “a bipolar transistor works as a current amplification device” from this face. This is in

practice, true as long as we use it as a black box device in electric circuits. However in physical mechanism, as discussed

above, there is no such causality that a small current drives a larger current. The following expression may be closer to

reality: a small current here is just a monitor for voltage to control a large current.

In the usage of a BJT in a circuit, care should be taken that (because it is a “current amplification device”) the input

voltage bias should be set to a low differential resistance region. Particularly in high frequency circuits, the impedance

matching should be taken to the characteristic impedance of the transmission line. One simple “rule” for transistor circuits

is that when a transistor is working as an amplifier, the base-emitter bias voltage should be around the quasi-threshold

voltage (though as we saw there is no threshold voltage in pn-junctions, in ordinary circuit scale, the I-V curve seems as

if it has).
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and (because outputs of the same diode is observed) very
good linearity is obtained. The inset shows a log-log plot
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6.3 Field effect transistors I

Field Effect Transistors (FETs) are now used much more widely in circuits than BJTs. And the idea of FET was born

even long before that of BJT *1, but for the realization of FET requires technologies even higher than those for BJT and

the realization was later than that for BJT. In these 20 years, Metal-Oxide-Semiconductor (MOS) type FETs are mainly

used but the first FET was realized for Junction FET (JFET), which utilize pn junctions.

6.3.1 pn-junction and depletion layer

For understanding the device action of JFET, the relation between the reverse bias voltage and the depletion layer is

important. We consider a pn-junction shown in Fig. 6.7, with x-dependent potential ϕ(x). The Poisson equation is given

as
d2ϕ

dx2
= −aq(x) (a ≡ (ϵϵ0)

−1). (6.17)

In the space-charge region (depletion layer) we assume abrupt concentration distribution of dopants and sharp cutting of

the end of depletion layer. Then {
q = −eNA (−wp ≤ x ≤ 0),

q = eND (0 ≤ x ≤ wn).
(6.18)

*1 Shockley wrote a patent on FET before BJT though many similar ideas had existed before that. We cannot say the patent is as unique as that of
BJT.
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Fig. 6.7 Simple model of a pn junction

Let’s take the asymptotic condition as ϕ(−∞) = 0. When there is external reverse bias voltage V , the boundary condition

at the edges of depletion layer is

ϕ(−wp) = 0,
dϕ

dx

∣∣∣∣
−wp

= 0,

ϕ(wn) = V + Vbi,
dϕ

dx

∣∣∣∣
wn

= 0.

(6.19)

Integration of the above gives

ϕ(x) =

{
(aeNA/2)(x+ wp)

2 (−wp ≤ x ≤ 0),

V + Vbi − (aeND/2)(x− wn)
2 (0 ≤ x ≤ wn).

(6.20)

From the condition for the connection at x = 0

lim
x→+0

ϕ = lim
x→−0

ϕ, lim
x→+0

(dϕ/dx) = lim
x→−0

(dϕ/dx), (6.21)

the widths of depletion layer wp, wn are given as follows.

wp =

[
2ϵ0ϵ(V + Vbi)

eNA
· ND

ND +NA

]1/2
, wn =

[
2ϵ0ϵ(V + Vbi)

eND
· NA

ND +NA

]1/2
(6.22)

wd = wp + wn =

[
2ϵ0ϵ(V + Vbi)

e
· NA +ND

NAND

]1/2
. (6.23)

-V

1/C
2

Vbi

The charge accumulated in the depletion layer on n-side is Q = eNDwd per

unit area giving the effective capacitance (differential capacitance) as

dQ

dV
= eND

√
2ϵϵ0
eND

1

2
√
V + Vbi

=

√
ϵϵ0eND

2
(V + Vbi)

−1/2. (6.24)

In a p+n-structure, that is, NA ≫ ND,

wd ≈
[
2ϵϵ0(V + Vbi)

eND

]1/2
≈ wn. (6.25)

This means the depletion layer expands in proportional to the square root of the

reverse bias voltage plus the built-in potential.

This relationship is frequently used for characterization of pn-junctions. For

example, differential capacitance C(V ) can be measured with applying high frequency voltage source with a small

amplitude and through the phase shift. We plot the data as shown in the left figure (for the convenience, the horizontal

axis is taken to −V ), 1/C2 versus −V . If ND is spatially uniform, the data points should be aligned on a line. (6.24) is
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valid only for V > 0 and C → ∞ cannot be realized. But with extrapolation from V > 0 the point 1/C2 = 0 can be

specified and we obtain Vbi from this.

When ND is not uniform spatially or some deep level traps exist, we obtain information of the spatial distribution from

differentiating the plot. Application of pulses in V and analysis of transient response under light illumination or related

techniques can bring much of the information inside the semiconductor[4]．

6.3.2 Junction Field Effect Transistors

Figure 6.8 shows a schematic drawing of the JFET structure in a cross sectional view. It is for an n-channel, which has

two electrodes on the both edges. They are called Source (S) and Drain (D) respectively. The channel is sandwiched by

p+ layers called Gates (G).

The principle of device action is very simple as can be seen in Fig. 6.8. Applying reverse bias to the gates causes

expansion of white-colored depletion layer according to eq.(6.23). This makes the conduction channel narrower and

enhances the channel resistance up to infinity for pinch-off. Thus the current through the device is controlled by the gate

voltage. This is apparently a voltage-controlled device and the input impedance is typically resistance of pn-junction in

reverse bias condition. So it is classified into high input impedance device.

A characteristic feature here is that a large source-drain current causes a significant voltage drop across the device,

resulting in gradient of effective reverse bias voltage for the channel-controlling depletion layer. Let us see a simple

model. As before in the model for pn-junctions, we assume the boundaries between depletion layers and conduction

channel are abrupt. Let the gate length L, the thickness of JFET 2wt. We take the channel direction along y-axis. The

depletion layer with wd is

wd(y) =

√
2ϵϵ0V (y)

eND
, (6.26)

where V (y) is local voltage at position y between the channel and the gate. V (y) can be obtained by subtracting voltage

along the channel Vch due to the source-drain current from the sum of the built-in potential Vbi and the reverse bias gate

voltage Vg.
V (y) = Vg + Vbi − Vch(y).

We have no injection of minority carrier and only consider the drift current of majority carriers. The electric field along

y-direction is dV/dy. Let the channel depth W and the drift current through the channel is

Jch = eNDµn
dV

dy
· 2(wt − wd)W. (6.27)

n n

p p

p p

D D

S S

G G

-3V

-3V

G (gate)

G (gate)

S
(source)

D
(drain)

n-channel p-channel

y 2wt

wd( )y

L

0

Fig. 6.8 Schematic structure of JFET (n-channel) (upper left panel). A
cross-sectional view. The easiest way to form the p+-layer is alloying the
metal, which can work as acceptor inside the semiconductor. The picture
in the center shows the way the depletion layer expand (white region) with
application of reverse bias to the gates. The upper left shows circuit sym-
bols. The (lower) left shows the dimensions of the model adopted in the
text.
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In steady state there is no charging up and Jch is uniform through the channel thus integration over the channel should

be JchL.

JchL =

∫ L

0

Jchdy = 2eNDµnW

∫ L

0

(wt − wd)
dV

dy
dy = 2wteNDµnW

∫ VL

V0

(
1− wd

wt

)
dV. (6.28)

Let the critical voltage Vc at which the channel is pinched (wd = wt) and Jch = 0 then Vc = eNDw
2
t /2ϵϵ0. Hence from

wd/wt =
√
V/Vc, Jch in this model is obtained as

Jch =
2NDeµnWwt

L

[
VL − V0 +

2

3
√
Vc

(V (V0)
3/2 − V (VL)

3/2)

]
. (6.29)

In eq.(6.29), at small voltages, the first linear term in VL is dominant and Jch increases linearly. With increasing the

voltage, the last V 3/2
L term grows and at last the current begins decreasing, which means negative differential resistance.

In actual device, this does not occur and Jch simply saturates with increasing V . The model contains various shortages,

e.g., the equipotential lines are straight and along x-axis. Improved models can reproduce the saturation but they are

inevitably complicated. There are also empirical analytical formulas well fit to the experiments but they have no physical

reasoning.

Appendix 6A: Analysis of pn junction transistor

Let us have a brief look at the simplest analysis of charrier statistics in bipolar transistors.

6A.1 Current-voltage characteristics

Figure 6A.1 illustrates the bias conditions and the carrier concentrations in an npn-type transistor. We take the x-axis

along the device current direction, and the depletion layer edge at the emitter side of the base is set to x = 0. The electron

(minority carrier) concentration at x = 0 is

np(0) = np0 exp
eVBE

kBT
. (6A.1)

They diffuse the base region and reach the depletion edge at the other side x = WB. From there the electrons are

immediately swept out to the collector by the electric field in the depletion layer. Hence the electron concentration in the

vicinity of WB should be very small.

np(WB) = np0 exp
−eVBC

kBT
≈ 0. (6A.2)

Providing thatWB is much shorter than the minority carrier diffusion length, we can ignore the carrier recombination and

the diffusion current in the base is constant. Equation (5.12) tells the current is proportional to dnp/dx. Hence np varies

n0E n0C

p0E p0C

p xp( )

n xp( )

xdepletion 0
depletion

emitter

emitter

base

base

collector

collector

pn n

VBE VBC
(a) (b) WB

linear ,n plog ,n p log ,n p

Fig. 6A.1 (a) Biasing condition of the npn transistor under consideration. (b) Schematic diagram of carrier concen-
trations in a npn type transistor. In the base the ordinate is in linear scale while logarithmic in other regions.
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Fig. 6A.2 Characteristics of transistor 2SC1815 for small signal amplification (from the datasheet). Left panel:
Collector-emitter voltage VCE dependence of collector current JC for various base current JB.

linearly against x as illustrated in the figure (the concentration is in the linear scale only in the base region). Hence from

(6A.2) the diffusion current density in the base is

jDe = −De
dnp

dx
≈ eDe

np(0)

WB
. (6A.3)

This is the major part of the collector current and the collector current is with A as the cross setion of the device,

JC = eADe
np(0)

WB
. (6A.4)

From the semiconductor equation np0 ≈ n2i /NA,

JC ≈
eADenp0
WB

exp
eVBE

kBT
≈ eADen

2
i

WBNA
exp

eVBE

kBT
≡ JS exp

eVBE

kBT
. (6A.5)

JS = eADen
2
i /WBNA is the coefficient which is inversely proportional to WBNA.

On the other hand, the base → emitter is in forward biasing condiction while base → collector is reverse biased.

Hence most of the base current flows to the emitter, which is determined by the hole diffution current in the emitter. The

calcution is along the same line as the above collector current and the diffusion part of the base current is

JBh =
eADh

Lh
pnE(0) =

eADh

Lh
pnE0 exp

eVBE

kBT
=
eADh

Lh

n2i
ND

exp
eVBE

kBT
. (6A.6)

In the base, minority carrier concentration is enhanced and the recombination current may give some contribution. The

total charge of the minority carriers is Qe = −enp(0)WBA/2. Let τb be the minority carrier life time and the recombi-

nation current is

JBr =
Qe

τb
=
enp(0)AWB

2τb
exp

eVBE

kBT
. (6A.7)

Therefore the base current is written as the sum of the above as

JB = eA

(
Dh

Lh

n2i
ND

+
np0WB

2τb

)
exp

eVBE

kBT
. (6A.8)

Then from (6A.5) and (6A.8), the current gain is obtained as

hFE =

(
Dh

De

WB

Lh

NA

ND
+

W 2
B

2τbDe

)−1
. (6A.9)
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6A.2 Effect of depletion layer width

Figure 6A.2 shows the characteristics of a transistor numbered 2SC1815 (Toshiba, Co. Ltd.). The right panel shows

hFE as a function of JC. hFE is almost constant in the low JC region indicating good linearity. On the other hand, the left

panel shows JC as a functionof VCE with JB as a parameter. In this panel, in the region VCE ≈ 0, the base-collector is

forward biased and not in the region of current amplification. Even in the current amplificatio region, JC increases with

VCE. This is called the Early effect caused by the widening of the depletion layer thus by the thinning of the base width

WB.

Let ∆W be the variation in the width of base width and the collector current is given as

JC = eADe
np(0)

WB −∆W
≈ eADe

np(0)

WB

(
1 +

∆W

W

)
≡ JC0

(
1 +

∆W

W

)
. (6A.10)

∆W grows rapidly with VCE as in (6.23) when VCE is small while the rate lowers with VCE. In Fig. 6A.2, such tendency

is apparent. In Fig. 6.5(b), the Early effect is small and the increase in JC can be approximated to be linear in VCE.

付録 6B：Deep level transient spectroscopy (DLTS)

Here I would like to give qualitative explanation on the basic principles of Deep Level Transient Spectroscopy (DLTS).

For details, see e.g. ref. [4]. We consider modification to effective capacitance (6.24), which depends on the reverse bias

voltage V . Let ND be the shallow donor concentration, NP the one for a deep donor. In the region where this deep donor

responds to change in the bias voltage, the voltage-differential capacitance is expressed as a function of reverse voltage

V as

wd(V ) ≈
[
2ϵϵ0(V + Vbi)

e(ND +NP)

]1/2
≈ wn, (6B.1)

C(V ) =

√
ϵϵ0e(ND +NP)

2
(V + Vbi)

−1/2. (6B.2)

For simplicity, we consider the situation that the reverse bias Vp is applied and kept for sufficiently long time for electrons

to escape from the depletion layer including the deep levels *2. Now V is abruptly lowered to V0 < Vp and the carriers are

captured by the donor levels within w(V0) < x ≤ w(Vp). Shallow donors have high capture rate and can respond within

ms without delay, deep levels, on the other hand, the capture rate strongly depends on temperature and with decreasing

temperature, the average time for capture often elongates from ms to s, min, hour and sometimes day. Then if we open up

a fixed time window and observe the time evolution of C, the time dependence is observed in the time window at some

temperature range and in low or high temperature regions the effect of deep levels does not observed.

Such a process is illustrated in Fig. 6B.1(a). We take t = 0 at the time the reverse bias is changed:Vp → V0 and

measure the difference in the differential capacitances at t1 and t2: ∆C = |C(t1)− C(t2)| as a function of temperature

T .

We now assume existence of two species of deep donors, which have temperature dependent capture cross sections

shown in the upper panel of Fig. 6B.1(b). ∆C should show two peaks in the temperature dependence. Analysis of the

data gives the concentration and capture cross section of each deep level, and combination with photo-response, in some

*2 At low temperatures the capture/emission rates of deep levels become very small and it is not rare that we need days for the emission. So this
condition is, in general, hard to be fulfilled. But the consideration of this does not give significant change and thus we adopt the assumption.
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Fig. 6B.1 (a) Upper panel: Illustration that the change in the reverse bias Vp → V0 makes shallow levels and a part
of deep levels ready for catching carriers. Lower panel: With progress in capture of carriers, differential capacitance
C(V ) shows transient response. (b) Upper panel: two deep levels exist and assumed temperature dependences of
the capture cross section σ are illustrated. Lower panel: shows how the DLTS signal appears from the temperature
dependence σ(T ).

cases identification of deep levels or at least energy positions can be measured[4]. With variation of V0 and Vp, depth

profile of deep levels can be obtained also.
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Next we see FETs without pn-junction. For transistor action, they utilize phenomena on the surfaces or interfaces. In

homo-type pn-junctions the uniformity of space is broken by impurity doping. They do not use interfaces or surfaces.

This was important for Shockley and co-workers to realize “stable and reproducible” devices because for the semicon-

ductor technologies in those days control of surfaces or interfaces was too difficult for commercial production. Even

the high quality crystalline growth and the accurate doping technique, which are indispensable for the realization of pn-

junctions, were surprisingly high technique. However the great strides in semiconductor technologies caught the control

techniques of surfaces and interfaces in incredibly short time. Naturally there were movement to utilize them for device

actions and they overwhelmed bulk shortly. We have a look for these representative modern devices here. But the limit

of miniaturization inevitably requires three dimensionality nowadays and we do not know what happens next.

6.3.3 Schottky barrier (junction)

Here we consider junctions between semiconductors and metals. Simple guiding principles are

1. Rigid band approximation,

2. Recovery of bulk states away from the junction,

3. In equilibrium EF (µ) is constant over the space.

On semiconductor surfaces, there usually are surface states with high density of states. Metal-semiconductor junctions

are strongly affected by those states. Here, however, we first look what Anderson’s rule tells about the interface[?]. The

baseline of rigid bands can be taken to an edge of “band”, in which electrons can freely travel between the metal and the

semiconductor. It is usually impossible to find such an energy band inside insulators and semiconductors, which have very

different energy bands. Then such a “band” can be found as the vacuum levels. Then the excitation energy required is so

called work function. Let the work functions in the semiconductor and the metal eϕS and eϕM respectively. Generally

eϕM ̸= eϕS. On the other hand, from the guiding principle 2., the bulk EF’s in the metal and in the semiconductor away

from the junction should be the same. And EF should be constant throughout the system.

The following procedure, of course, is not real physical process but just a virtual process inside human brain, for

construction of consistent band alignment. The final result, however, may be realized in the model of junctions though

there still remain many idealizations and reality should be much more complex.

We assume eϕM is larger than eϕS, the semiconductor is doped to n-type and the donor concentration is ND. We

make the vacuum levels in the both sides fit to each other and extrapolate the bulk band structures to the interface to

obtain the band alignment shown in Fig. 6.9(a). Here the Fermi level in the semiconductor places higher than that in the

metal causing flow of carriers from the semiconductor to the metal. The carrier flow generates charge accumulation at

the interface creating an electric field perpendicular to the junction plane. The metallic side is also charged up but it has

much higher charge concentration, which screens the electric field within the screening length less than a lattice constant

making the band bending negligible in this side. Let the accumulated charge in the metal side per unit area −Q, in the

semiconductor side (x > 0, interface at x = 0), the electric field at x is (eNDx − Q)/ϵϵ0 and the potential difference

between 0 and xd is

ϕ(xd) =

∫ xd

0

(eNDx−Q)/ϵϵ0dx =
1

ϵϵ0

(
eND

2
x2d −Qxd

)
. (6.30)
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Fig. 6.9 (a) Virtual band alignment, in which a metal and a semiconductor are connected as the vacuum levels for
them agree. (b) Band bending effect to make EF constant throughout the junction is superposed to the alignment in
(a). The situation corresponds to an ideal interface without surface states at the semiconductor side. (c) Illustration
of Fermi level pinning by surface states. The surface potential ϕsurf is determined by the position of the dominant
surface states from the band edge Ec. This usually has nothing to do with the difference between the work function.

Let the space charge (depletion) layer width be wd. The condition that electric field outside the depletion layer should be

zero, gives wd = Q/eND. On the other hand, the condition eϕ(wd) = ϕM − ϕS also gives Q as

Q =
√

2ϵϵ0NDe(ϕM − ϕS), ∴ wd =

√
2ϵϵ0(ϕM − ϕS)

eND
≡
√

2ϵϵ0Vs
eND

. (6.31)

Here we write eVs ≡ ϕM − ϕS . Now we can illustrate the band structure for electrons (holes for p-type) around the

metal-semiconductor interface as in Fig. 6.9(b), showing a potential barrier, which is called Schottky barrier.

An external voltage V is mostly bared in the semiconductor side, and the height of the barrier changes to e(Vs − V )

while the height from the metal side remains as eVs. To be more accurate, we need to consider the kinetic energy

distribution in the semiconductor and count the number of electrons which go over the barrier. But here for simplicity

we assume the kinetic energy of electrons in the semiconductor is a constant. Then the equation for thermal electron

emission from metallic surface can be applied to obtain

J = AT 2

[
exp

(
e(V − Vs)
kBT

)
− exp

(
−eVs
kBT

)]
= eAT 2 exp

(
−eVs
kBT

)[
exp

(
eV

kBT

)
− 1

]
. (6.32)

Here A is the Richardson coefficient. The first term is current from the semiconductor side, the second is that from

the metal side. The current-voltage characteristics is similar to that of a pn-junction with the Schttkey barrier height

corresponding to the built-in potential.

In the above the surface of semiconductor is too much idealized for it to have no surface states. However in real

metal-semiconductor junctions, current-voltage characteristics are similar to eq.(6.32). One big difference is in eq.(6.32),

the barrier height should change with changing the metal species but in reality, the barrier height is almost constant for

semiconductor species and independent of metals. This is due to the surface states on the semiconductors. The surface

states have narrow energy widths, very high density of states pinning the Fermi level to the center of them. Hence the

band bending exists even before the connection to metals and the alignment is accomplished between the metal EF and

the surface states. This is called pinning of Fermi level by the surface states.

Once the Fermi level is pinned by the surface states, the band bending is determined by semiconductor species. Hence

when n-type Schottky barrier can be formed for a semiconductor for example, p-type is not available for the same

semiconductor. The other way around. Actually, for GaAs, p-type Schottky barrier is not available while for InP, n-type

Schottky barrier is difficult. This makes it difficult to obtain complementary devices which utilize Schottky barriers.

In the case of metal-oxide-semiconductor (MOS) devices, an inversion layer formed by e.g., pushing down a band of

a p-type semiconductor and turning it to an n-type channel, can be used for complementary device. This is, however,

impossible for Schottky devices.
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6.3.4 MES-FET

Among III-V semiconductors, GaAs is frequently used for electric devices as well as for optical devices. But it is

difficult to form good quality oxide layers on the surfaces, hence no MOS type device for GaAs is available. Instead,

MEtal-Semiconductor FET (MES-FET) structure has been frequently adopted. GaAs has light electron mass, high mo-

bilities. And the effective capacitance of Schottky diode can be small. Hence GaAs MESFETs are often used for

high-frequency application.

conduction channel

depletion layer

source drain
gate

As shown in the left figure, the structure of MES-FET is

simple. The conduction channel thickness is controlled with

the reverse bias voltage (gate voltage) through that of deple-

tion layer. The device action, characteristics are similar to

those for JFET. Schottky junctions have larger leak current

in gate characteristics, only single carrier type is available

and complementary circuits cannot be composed with them.

These properties are great obstacles for large scale integration.

MES-FETs are still widely used as high frequency devices for e.g., microwave.

6.3.5 MOS structure

As named, a thin oxide film for insulation is inserted between a metal and a semiconductor in a Metal-Oxide-

Semiconductor (MOS) structure. Needless to say, most frequently used Si has SiO2 as the oxide layer, which is very

stable and has good insulation characteristics. An SiO2 film can be easily formed with thermal oxidation onto a Si. Both

p-type and n-type channels can be controlled and Complementary MOS (CMOS) circuits are easily realized. Also with

low gate leakage current, high on-conductance, off-resistance, the power consumption in logic circuits jumped down

with the CMOS circuits hence increased degree of integration. Now CMOS is doubtlessly the king of semiconductor

circuits. A few decades ago high speed logic circuits were mainly composed with Emitter Coulpled Logic (ECL) of BJT

but the requirement of large scale integration and the increase of cut-off frequency in CMOS circuit have made drastic

change and now, even so called supercomputers are using CMOS circuit in CPU.

MOSFET structure also resembles to JFET and the essential difference to MESFET is the existence of thin oxide

layer between the semiconductor and the gate metal. In a depletion type device, the conduction channel is pinched by

depletion layer while in a enhancement type device, the band is pushed down with gate electric field to form conduction

channel. An oxide layer bears much higher voltage than a Schottky barrier, hence with a strong bending, e.g., formation

of an n-type two-dimensional conduction channel below a p-type semiconductor surface (inversion layer).

Si-MOS structures are now used not only in integrated circuits but also for power devices. Recently however, SiC is

collecting wider interest for power devices because of the lower ON-resistances. And for high-frequency power devices,

Gate

VG

VD

Oxide film Oxide film

Oxidep-Si

n
+source N

+
drain

Conduction channel

Metal electrode
Metal electrode

Fig. 6.10 Schematic view of a MOSFET device. In
fabrication holes are opened on thermally oxidized films
with lithography. The dopants are diffused through the
holes. The structure like this often appears due to the
process.
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the weight of developement is shifting to GaN-related materials.

6.3.6 FinFET

In the beginning of 21st century, in semiconductor in-

tegrated circuits, fierce competition for improving the

degree of integration continued, centered on CMOS.

Compared to other logic circuit schemes, CMOS is

overwhelmingly advantageous in terms of power con-

sumption. Even for such CMOS scheme, what limits

the degree of integration is in-chip heating due to power

consumption. In order to solve this, device driving at low voltage has come to be required. A way is to replace SiO2

with some other insulating thin film that has higher dielectric constant. With this, ON/OFF action of the channels would

be available. The letter κ is often used as the symbol of the dielectric constant and such dielectrics are called “high-κ”

or simply “high-k” materials. From various restrictions, now hafnium silicate, hafnium oxide, zirconia are used for such

high-κ materials.

Furthermore, the FinFET, in which the channel shape is changed from the planer type to the fish-fin shaped, has been

now widely used. As illustrated in the figure, in a FinFET, a thin channel is covered with the gate and the depletion layer/

the inversion layer grow over the channel from both sides of the “fin”, resulting in faster switching rate (less than 1 ps)

and higher ON-conductance than those of planer structure. Also the device density can be higher. Now they are the main

structure for the logic LSIs.

6.4 Heterojunction

The two materials on the sides of a junction have similar properties, lattice structures, etc. to each other in semicon-

ductor heterojunction in comparison with Schottky junctions or with MOS structures. As a result, in semiconductor

heterojunctions, sharp changes in the effective potential can be realized, the quantum coherence of electrons is kept over

the junctions. Therefore they can be used for the building block of the devices which utilize quantum effects such as

electron tunneling. And with heterojunctions, one even can create new periodic structures in solids and modify the band

structure. This is called band engineering.

Because this lecture is for the physics in semiconductors, we begin with how to treat such hetero-interface physically.

6.4.1 Effective mass approximation at hetero-interfaces

As in the textbook[1] written by myself or that by Bastard[2], let us consider hte application of effective mass approx-

imation for a hetero-interface under simplest case.

6.4.1.1 Hetero-interface

We consider the situation in which semiconductors A and B (A：z < 0，B：z > 0) are connected at z = 0 (xy-plane).

In each region, the Bloch theorem is appled to write

ψ(A)(r) =
∑
l

f
(A)
l (r)u

(A)
lk (r), ψ(B)(r) =

∑
l

f
(B)
l (r)u

(B)
lk (r), (6.33)
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where l is the band index, u(A,B)
lk are functions with the lattice periodicity. For simplicity, the lattice periodic part of the

Bloch functions and the band dispersions are the same other than the positions of band bottoms and tops.

u
(A)
lk (r) = u

(B)
lk (r), ∂ϵ

(A)
l /∂k = ∂ϵ

(B)
l /∂k.

With this simplification, the continuity condition of wavefunction at z = 0 gives

f
(A)
l (rxy, 0) = f

(B)
l (rxy, 0),

where rxy is a vector in the xy-plane. For the freedom of rxy , the Bloch theorem tells

f
(A,B)
l =

1√
S
exp(ikxy · x)χ(A,B)

l (z),

where 1/
√
S is the partial normalization factor of plane wave in xy-plane, χl(z) is the envelopefunction along z-direction.

For the freedom along z-direction, we consier the k ·p perturbation. That is, first we obtain the lattice periodic function

and the discrete levels for k = 0 and the wavefunctions for k ̸= 0 are obtained by the hybridization of these wavefunctions

caused by the perturbation Hamiltonian, which is proportional to k · p. We write down the equation for χ = {χj} as

D (0)

(
z,−iℏ ∂

∂z

)
χ = ϵχ, (6.34)

where the N ×N matrix of operators D (0) is

D
(0)
lm

(
z,

∂

∂z

)
=

[
ϵl(z) +

ℏ2k2xy
2m0

− ℏ2

2m0

∂2

∂z2

]
δlm +

ℏkxy

m0
· ⟨l|pxy|m⟩ −

iℏ
m0
⟨l|pz|m⟩

∂

∂z
(6.35)

with
ϵl(z) = ϵ

(A)
l (z < 0), ϵ

(B)
l (z ≥ 0). (6.36)

Here we write |um0⟩ as |m⟩, etc.

Emphasizing “band-discontinuity potential,” we write

Vl(z) ≡

{
0 z < 0 (z ∈ A)

ϵ
(B)
l − ϵ(A)

l z ≥ 0 (z ∈ B).
(6.37)

Then we reach the simultaneous equation of {χl} as *1

N∑
m=1

{[
ϵ
(A)
m0 + Vm(z) +

ℏ2k2xy
2m0

− ℏ2

2m0

∂2

∂z2

]
δlm −

iℏ
m0
⟨l|p̂z|m⟩

∂

∂z
+

ℏkxy

m0
· ⟨l|p̂xy|m⟩

}
χm = ϵχl. (6.38)

Let us consider the continuity condition of the envelope function χl of band l. Because we have assumed that ul is

common for A and B, χl should be continuous at the interface. On the other hand, the integration of (6.38) over the

interface and the continuity of χl leads to the condition

A (A)χ(A)(z0 = 0) = A (B)χ(B)(0), (6.39)

where

Alm = − ℏ2

2m0

[
δlm

∂

∂z
+

2i

ℏ
⟨l|pz|m⟩

]
. (6.40)

It is now clear that the band-hybridizing term ⟨l|pz|m⟩ from the k·p perturbation breaks the simple continuity of derivative

of the envelope function.

*1 If we go up to the second order in k, we have many other terms, which makes the equation very complicated. We thus have omitted them.
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6.4.1.2 Joint of envelope function

Next we do not equate u nor the band dispertion (effective mass) but only the single band is considered. The effective

mass equation is a second-order differential equation, and the general boundary connection conditions are as follows.(
χ(A)(0)
∇Aχ

(A)(0)

)
=

(
t11 t12
t21 t22

)(
χ(B)(0)
∇Bχ

(B)(0)

)
, (6.41)

where, taking a as the common lattice constant,

∇A,B =
m0

mA,B

∂

a∂z
. (6.42)

TBA = {tij} is called interface matrix.

The particle current density along z is determined by the envelope function as

j(z) =
ℏ

2im∗

[
χ∗(z)

∂χ

∂z
− ∂χ

∂z
χ(z)

]
. (6.43)

From the particle-number conservation, j(z) in A and B regions should be the same. The condition is equivalent to

detTBA = 1. (6.44)

Because this condition is fulfilled when TBA is the unit matrix I , the simplest envelope function approximation is to

put TBA = I . In this case, the envelope function can be treated just the same as the real wavefunction. In the case of

GaAs-(Al,Ga)As interface, the interface matrix obtained for a one-dimensional tight-binding model indicates the envelope

function approximation works well.

In such a case, we can consider the step function potential at the boundary with the height of band discontinuity
which is determined by the combination of the materials. And the envelope function can be viewed as ordinary quantum

wavefunction. On the above basis, we now can use methods to design quantum systems such as one-dimensional potential

by thin film growth technique.

(a) (b)

Fig. 6.11 (a) Diagram displaying symbols for the band alignment parameters at a junction of crystals A and B. (b)
Anderson model, in which the relative positions of bands are determined by the affinities from the vacuum level.
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6.4.2 Anderson’s model

Figure 6.11 illustrates a long-used Anderson model *2 for heterojunctions[3]．In the model, as shown in Fig. 6.11(a),

the bands in the bulk continue to the interface. The effect of charge transfer is taken into account as built-in potential just

like the treatment of pn homo-junctions.

An important point in this model is the relative band position at the heterojunctions. In the Anderson model, as shown

in Fig. 6.11(b), this is determined from the quantity called “affinity”, which is the lowering in the energy of electrons

with condensation into the crystal state. Then in this model, the connection of the bands is determined by the species of

the crystals In the figure, the affinities of A and B are χA and χB respectively.

The model, in itself, has many problems, many of which are on the “affinity.” Can the affinities be well-defined? Can we

calculate them? Are they measurable? We do not have time to go into the problems and furthermore, the experiments have

shown that such simple modeling does not work at the level of device designing, in which we need detailed information

of band-discontinuity.

We will have a brief look at the junction types and summarize theoretical approachs to the band-discontinuities in

Appendix 6C.

6.4.3 Classification of heterojunctions

Semiconductor heterojunctions are classified phenomenologically by the alignment of bands at the interface. Fig-

ure 6.12 shows three types of band alignment. (a) is most frequently found and called type-I. On the larger gap side,

the conduction bottom is higher and the valence top is lower. In type-II, as shown in (b), the conduction bottom and the

valence top shift to the same direction when an electron passes the interface. There is a common energy gap region for

A and B in the case of Fig. 6.12 (b). When the missalignment is larger and the energy gap at the interface is closed as in

(c), in Japan they call the alignment type-III and in other countries staggered type=II. For example, in ref. [4], the authors

call (c) as type-II.

A A AB B B

DEc

DEc DEc

DEv DEv
DEv

Eg
A Eg

A
Eg

A

Eg
B

Eg
B

Eg
B

(a) (b) (c)

Fig. 6.12 (a) Type-I: To the wider gap semiconductors, the conduction bottom goes up, the valence top goes down.
(b) Type-II: The conduction bottom and the valence top moves to the same direction when going through the junction.
Also called broken-up or misaligned．(c) Type-III: (Special classification in Japan) Same as type-II but there is no
overlapping in the energy gap. Instead there is an overlapp between the valence band on one side and the conduction
band on the other side. Also called staggered.

*2 This “Anderson” is a different person from novel laureate Philip W. Anderson in Bell lab. P. W. Anderson is famous for his “Anderson model”
of impurities and R. L. Anderson was in IBM Watson. Bit confusing.
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6.5 Formation of heterojunctions

We have already had a look on the epitaxial growth technique. Here I just mention about the lattice matching and

energy variation.

6.5.1 Epitaxial growth

Most popular method to form heterojunctions of semiconductors is epitaxial growth already presented in the lecture by

Prof. Akiyama. Epitaxial growth methods can be classified into liquid-phase epitaxy, vapour-phase epitaxy, and vacuum

deposition. In liquid-phase epitaxy, precipitation onto crystal substrates from melts of ingredients is used. The growths

occur in states close to equilibrium and high quality crystals can be obtained while it is hard to obtain sharp interfaces.

When one needs sharp interfaces and precise control of layer thicknesses, usually the latter two methods of epitaxy are

adopted.

An important point in the formation of heterojunction is the lattice matching in lattice constants and crystal systems.

In Fig. 6.13, we plot representative compound semiconductors and elemental semiconductors on the plane of lattice

constant and energy gap. Most of the plotted semiconductors have a common crystal system, FCC bravais lattice. Vertical

gray bands indicate possible groups of lattice matched heterostructure growth though these combinations are not always

available in practical growths. Besides these semiconductors, heterojunctions of GaN family are important for industrial

demands. They usually have Wurtzite structure (hexagonal close-packed, HCP) and need high temperature treatments,

the heterostructures thus are mostly composed within nitride families.

Even with considerable lattice mismatch, a misfit-dislocation free growth to a certain film thickness is possible. An

estimation of the thickness given as a balance point of the strain energy concentrated on dislocations and that within whole

grown film, is called Matthews’ critical thickness[5]. Because actual crystal growths are carried out under some non-

equilibrium condition, the total free energy not necessarily takes the minimum, the process is generally non-adiabatic.

Hence the Matthews’ thickness is just a rough estimation. In many cases we need to keep substrate temperatures high
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Fig. 6.13 Plots of the lattice constants
and the energy gaps of II-VI, III-V com-
pound semiconductors and IV elemental
semiconductors. The lines connecting
the points indicate possible mixed crys-
tals. Vertical gray bands indicate possible
groups of lattice matched heterostructure
growth.
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Fig. 6.14 Conceptual illustration of van der
Waals heterostructure, which is produced by
stacking various two-dimensional materials.

enough during growths and the difference in coefficients of thermal expansion in the two materials sometimes causes

dislocations or strains. Many points should be taken into account in actual growths[6].

6.5.2 van der Waals heterostructure

Recently van der Waals heterostructure, which is formed in completely different way, is collecting attentions[7]. That

is a mechanical stacking of two-dimensional materials like graphene as shown in Fig. 6.14 (graphene will be introduced

later as a two-dimensional electron system without heterointerface). Sometimes epitaxial growth like CVD is adopted but

in many cases mechanical stacking of exfoliated two dimensional materials creates high-quality heterostructure, which

implies possible completely new formation method of heterostructure.
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Chapter 7 Quantum structures (quantum wells, wires, dots)

So far, we have looked at low-dimensional systems such as graphene, which is a two-dimensional substance. These

were, so to speak, natural low-dimensional systems. By using heterojunction, metal joining, and microfabrication tech-

nology, human hands have come to enter the design of material systems to a certain extent. In this chapter, we look at

three typical quantum structures, two-dimensional, one-dimensional, and zero-dimensional systems.

7.1 Quantum well

A region with lower potential sandwiched with two heterojunctions to higher potential materials is quantum well.
The readers should be familiar with it since introduction of elementary quantum mechanics. In other words, however,

the semiconductor heterojunction technology has made the quantum well as a real substance from just an exercise for

students.

7.1.1 Discrete quantum levels in a quantum well

Let the well width be L, the barrier height V0. In x ≤ −L/2, L/2 ≤ x (outside the well) Schrödinger equation is[
− ℏ2d2

2mdx2
+ V0

]
ψ = Eψ. (7.1)

Let us put κ ≡
√
2m|E − V0|/ℏ and let C1,2, D1,2 be constants specific to the regions, the solution outside the well can

be written as

ψ(x) =

{
C1 exp(iκx) + C2 exp(−iκx) E ≥ V0,
D1 exp(κx) +D2 exp(−κx) E < V0.

(7.2)

In the case of E < V0, the wavefunction should be localized around the well and zero for x→ ±∞, then

L/2 < xで D+
1 = 0, x < −L/2で D−2 = 0.

Superscript ± distinguish the regions positive/negative of x. Inside the well, letting C1, C2 be constants, we write the

wavefunction with plane waves as

ψ = C1 exp(ikx) + C2 exp(−ikx), k ≡
√
2mE

ℏ
, (7.3)

where for simplicity, we assume the effective mass m is common for inside and outside the well. The boundary condition

at x = ±L/2 where the potential is discontinuous is now applied. Continuity and differentiability at the potential

boundary x = 0 require

Continuity

{
C1 exp(ikL/2) + C2 exp(−ikL/2) = D+

2 exp(−κL/2),
C1 exp(−ikL/2) + C2 exp(ikL/2) = D−1 exp(−κL/2),

Differentiability

{
ikC1 exp(ikL/2)− ikC2 exp(−ikL/2) = −κD+

2 exp(−κL/2),
ikC1 exp(−ikL/2)− ikC2 exp(ikL/2) = κD−1 exp(−κL/2),
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Fig. 7.1 (a) A plot for graphical solutions of k which satisfy eq.(7.4). The crossing points of the functions
−2 arctan(k/κ) + nπ and kL give the solutions of (7.4). (b) Bound eigenstates for n = 1, 2, 3 under the con-
dition l = 8. The baselines for the wavefunctions are the eigenenergies E1,2,3 measured with V0 (for l = 8 there are
only three bound state solutions, which is different from the situation in the left figure).

respectively. Erasing the constants the following condition is obtained.

exp(2ikL) =

(
κ− ik
κ+ ik

)2

= exp

(
−4i arctan k

κ

)
,

∴ kL = −2 arctan k√
κ20 − k2

+ nπ, κ20 ≡
2mV0
ℏ2

, n = 1, 2, · · · . (7.4)

Let us take kL as a positive value without loosing generality because the solutions contain −k equivalently, and we

restrict the value of arctan(x) between 0 and π/2. As shown in Fig. 7.1(a), the crossing points of the curves and the line,

−2 arctan(k/
√
κ20 − k2)+nπ and kL give the values of k, which satisfy (7.4). As easily guessed from the analogy with

the case of infinite barriers, even numbers of n correspond to odd parity wavefunctions, while odd numbers correspond

to even parities.

In Fig. 7.1(b), we show the form of wavefunctions for the bound states in the case of l = 8.

7.1.2 Optical absorption in quantum wells

We would like to have a short look at optical absorption in quantum wells. As usual we take z-axis vertical to the well

plane. We write the envelope functions for electrons and holes as ϕe(z) and ϕh(z) respectively and then approximate the

total wavefunction as
ψe(r) = ϕe(z) exp(ikxy · rxy)uc(r),
ψh(r) = ϕh(z) exp(ikxy · rxy)uv(r).

}
(7.5)

uc, uv are lattice periodic parts of the Bloch eigenfunction with k = 0. Direct type inter-band optical absorption

probabilities are proportional to

⟨uc(r)|∇|uv(r)⟩
∫ ∞
−∞

dzϕe(z)
∗ϕh(z). (7.6)

In the case of infinite height barriers, the envelope functions are written as sin(nπz/L), cos(lπz/L) (n = 2, 4, · · · ,
l = 1, 3, · · · ) and the latter integration over z in (7.6) is finite only between electron envelope function and hole envelope
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Fig. 7.2 (a) Illustration of theoretically proposed optical absorption spectrum, in which both the coupling density
of states and the exciton density of states in the quantum well are taken into account. The approximation that the
transition exists only between electrons and holes with the same quantum index. In the valence band of fcc semi-
conductors we have heavy and ligh holes and transitions with the two bands are considered in the figure. (b) Optical
absorption spectrum of a AlAs/GaAs multiple (40 layers) quantum well with width 7.6 nm. The finite barrier height
causes transitions between the levels with different quantum indices, which appear in exciton peaks.

function with the same quantum index (n or l in this case). For finite heights, this orthogonality breaks leaving parity

selection rule but still elements between different quantum indices are small and we only consider the transition between

the states with the same index. The energy associated with the transition is

E = Eg +∆E(eh)
n +

ℏ2

2µ
k2xy, (7.7)

where ∆E(eh)
n is the sum of the energies for electron and hole in n-th energy levels, 1/µ = 1/m∗e +1/m∗h is the reduced

mass. The last term for two-dimensional kinetic energy indicates that there should be continuous absorption spectrum

above ∆E(eh)
n corresponding to the two-dimensional density of states.

From E = (ℏ2/2m∗)k2 and n = πk2/(2π)2 = (E/4π)(2m∗/ℏ2), the two-dimensional density of states can be

written as
dn

dE
=

m∗

2πℏ2
H(E) (H(x) : Heaviside function). (7.8)

This is constant for energy and with (7.7), we expect a staircase like optical absorption spectrum.

Formaion of excitons appears in optical absorption as peaks at energies lower than the fundamental absorption edge.

Such peaks for excitons in quantum wells are illustrated in Fig. 7.2(a). Only the ground states (n = 0) of the excitons

are considered. And coupling density of states between electrons and holes with different subband quantum indices

is ignored assuming that the barrier is high enough. Figure 7.2(b) shows an experimental result on an AlGaAs/GaAs

multiple quantum well with width 7.6 nm. The lineshape of the absorption spectrum can be understood as an overlap of

staircase-like shape reflecting the two-dimensional density of states (7.8) and absorption by excitons indicated as hh or lh.

Because the barrier height is finite in the experiment, peaks due to the transition between states with different quantum

indices are also observed. The effect of low-dimensionality is observable in increases of binding energy of excitons,

which results in wider separation of exciton peaks from absorption edges and the peaks persist up to higher temperatures.

Now we can see that the optical absorption spectra can provide experimental determination of band-discontinuities

∆Ec, ∆Ev. In the combination of GaAs-AlxGa1−xAs, reseachers could not separate lh and hh peaks in very early

experiments presumably due to low quality of samples. The result once led them to a wrong conclusion of∆Ec : ∆Ev =

85 : 15 because ∆Ev should be too small to accomodate the lh level. After the revised experiments, it was established
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that ∆Ec : ∆Ev = 57 : 43 is a good empirical law.

Appendix 6C: Trials for simple theory to find band discontinuities

The capacity of computers has increased dramatically, and first-principles calculations that require a lot of computer

resources as LAPW, can now be performed relatively easily. Even though, the researchers are still trying to construct a

theory to obtain band discontinuity from a small number of experimental parameters using simple physical principles.

I will introduce such researches so far, but it has been found that many cannot withstand the subsequent criticisms,

experiments, and first-principles calculations.

6C.1 Common anion rule

This “common anion rule” is considered for compound semiconductors[8] which have finite inonicity. The claim is as

follows. Because the valence band is mostly composed of p-orbitals of anion, ∆Ev ≈ 0 for the semiconductors with a

common anion. This is a surprizingly rough theory. The prediction is far from experiments and from other models.

6C.2 Pseudo-potential theory

The quantitiy “affinity” can be formally calculated from the first principles. In the era of Anderson’s research, ∆Ec are

determined from the experiments, and the affinity is obtained from the fitting. Here we see a theory, which is constructed

by Frensley and Krömer[9] aiming at finding band discontinuity from bulk parameters.

The calculation goes as follows. First with the self-consistent pseudo-potential method, the relative positions of bulk

bands are calculated in the electrostatic potential inside the crystal[10]. Next from the electronegativity of consisting

atoms and from the band structure, the electrostatic potential at the interface is calculated and the relative positions of

bands are obtained. They claimed the agreement with exeriments[9].

6C.3 LCAO theory

W. A. Harrison applied his linear combination of atomic orbitals (LCAO) theory to the heterostructure in ref.[11, 12].

In Harrison’s theory, LCAO forms the bands. Most of bands in semiconductors can be expressed with the combination

of the single s-orbital and the three p-orbitals. The valence band top is composed of p-orbitals and expressed as

Ev =
ϵcp + ϵap

2
−

[(
ϵcp − ϵap

2

)2

+ V 2
xx

]1/2
, (6C.1)

where ϵc,ap are the energies of p-orbitals of cation and anion respectively on their own sites, Vxx is the matrix element

between neighboring p-orbitals. According to the theory[11], Vxx is approximated as

Vxx = 2.16ℏ2/md2, (6C.2)

where m is the electron mass and d is the bond length. The number 2.16 is obtained by fitting the results for Si and Ge to

those of other band calculation[13].

In this method, the valence band discontinuities for many semiconductor can be easily calculated and often used for the

estimation. It is said to give fairly good agreements with experiments in many cases though with many exceptions e.g.,

in the case of GaAs-AlAs the Harrison theory gives ∆Ev=0.04 eV for about 0.5 eV in the experiments[14]. Actually the

main difference in ref. (6C.1) from the common anion rule is just ϵcp and still the approximation is rough.
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6C.4 Interface dipole theory

This theory had been pur forward by Tersoff and Harrison[15, 16, 17]. First Tersoff criticized Harrison’s LCAO theory

that the theory is not reallistic in that the charge transfer between the semiconductors is ignored and no dipole exists at

the interface[15]. Then they collaborated in constructing LCAO theories with electric dipoles[17].

In the Tersoff’s original idea, on the surface of a semiconductor (an insulator), an energy level of “charge neutrality”

can be defined in the band gap. The charge neutrality level is given at the point where the contributions of the valence

orbitals and those of the conduction orbitals are balanced. In a metal-semiconductor Schottky junction, this charge

neutrality level should be matched to the Fermi surface in the metal*3. The charge transfer through the interface is over a

very short distance, only single lattice constant. The transfer length scale is very different from the space-charge created

so as to match EF with the bulk value. When two semiconductors are jointed, there is no charge transfer for matched

charge neutrality levels. Otherwise the transfer occurs to match the charge neutrality levels. Hence, if we can calculate

the position of charge neutrality level, the band offset can be derived from that.

(a) (b)

Tab. 6C.1 (a) The in-gap state EB obtained by equating the contributions from the both bands to (6C.3) and the
positions of EF measured in the Schottky diodes with Au and Al as the electrodes.

For the calculation of the charge neutrality level (or, metal-induced gap states, MIGS), the contributions from the

valence and the conduction to the real-space averaged Green function

G(R, E) =

∫
d3r

∑
nk

ψ∗nk(r)ψnk(r +R)

E − Enk
=
∑
nk

eik·R

E − Enk
(6C.3)

are equalized to give MIGS EB . EB obtained with this method and the positions of EF obtained in Schottky diodes

with Au and Al electrodes[?] are listed in Tab. 6C.1(a). Already in this table, the agreement is not very good. And after

the publication, there occured many criticisms including the experiments. In conclusion, the theory is convenient in the

discussion of chemical trend but it is hard to say that it can be used for device design.

6C.5 Example of first principles calculation

Wei and Zunger proceeded with the so-called first-principles calculation of the interface, and the low accuracy of the

common anion law and even the simple LCAO theory is due to the roughness of the bulk band calculation rather than

the effect of the interface dipole[19]. That is, the bulk contribution ∆Eb
VBM and the surface contribution ∆Eis

VBM to the

energy difference ∆EVBM at the valence band maximum (VBM) are in the relation

∆EVBM = ∆Eb
VBM +∆Eis

VBM. (6C.4)

*3 In the most of real Schottky junctions, there are defect levels with very high densities and the Fermi levels are pinned there. At the heterointerface
with small defect densities, the situation is different.
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According to their claim, ∆Eis
VBM is small and the problem in LCAO theory rather lies in the estimation of ∆Eb

VBM.

That is in Harrison theory, only s and p orbitals are considered but particularly the contribution from the d orbitals of

cation is comparatively large and the most of disagreement with experiments can be explained with this (calculation was

done by all-electron generalized linear augmented plane wave method[20]).

Tab. 6C.2 ∆Ev for semiconductors with Te and As as anion. The results of simple LCAO, experiments, and
all-electron first principles calculation.

The calculated results are summarized in Tab. 6C.2. Now the LAPW method can be rather easily utilized in the form

of convenient packages like HiLAPW or VASP though still consumes large calculation resources and the jobs are heavy).

The method is only for periodic systems and in the case of heterointerface, the unit cell is taken large along vertical

direction to the interfaceso as to contain two intefaces and the periodic boundary condition is applied. This is, in a sense,

calculation of a superlattice band structure and can be used to check the staircase approximation of the heterointerface.

Appendix 6D: Recombination current and ideality factor

In the discussion of current-voltage characteristics of pn junctions in the text, we only considered the diffusion current.

In reallistic pn-junctions, various other factors contribut the current. Here we have a brief look at the current caused by

carrier recombination in the depletion layer at the junction interfaces.

First we consider direct gap semiconductors, in which the interband recombination rate is much higher than those in

indirect ones. Let the interband recombination rate be Re, this should be proportional to the carrier concentrations n and

p. Thus Re is proportional to the product pn. Let Rrc be the coefficient, then

Re = Rrcpn. (6D.1)

Re equals to the thermal activation rate Gth of the electron-hole pair in the dark and in equilibrium. Then the law of mass

action gives

Rrc =
Gth

pn
=
Gth

n2i
. (6D.2)

When there is optical activation or minority carrier injection by the external current, the activation rate and the recombi-

nation rate are not balanced and the difference is the net recombination rate U . In n-type semiconductors, the variation

in the hole concentration is the main factor. If we write pn = p0 +∆p, nn ≈ ND, then

U = Re −Gth = Rrc(pn− n2i ) ≈ Rrc∆pND ≡
∆p

τp
, (6D.3)

where we define the minority carrier lifetime as

τp =
1

RrcND
. (6D.4)

Similarly the electron lifetime in p-type semiconductors are written as

τn =
1

RrcNA
. (6D.5)
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In contrast, in the indirect gap semiconductors like Si or Ge, the carrier recombination is via the localized traps. In that

case, the net recombinatin rate is, according to so called Shockley-Read-Hall statistics[21] written as

U =
σnσpvthNt(pn− n2i )

σn

[
n+ ni exp

Et − Ei

kBT

]
+ σp

[
p+ ni exp

Ei − Et

kBT

] , (6D.6)

whereNt is the trap density, σn, σp are the capture cross-sections for electrons and holes respectively, Et is the trap level,

Ei is the Femi level of the intrinsic semiconductors. And vthe is the thermal velocity of the minority carrier

vth =

√
3kBT

m∗
. (6D.7)

In eq.(6D.6), U takes the maximum at Et ≈ Ei. Though actually Et distribute over the band gap, the trap levels close to

Ei contribute lartgely to U *4, then as a coarse approximation, we consider only single species of traps and put Et = Ei

then

U =
σnσpvthNt(pn− n2i )

σn(n+ ni) + σp(p+ ni)
. (6D.8)

Just like in the case of interband transition, we write U as ∆p/τp or ∆n/τn, giving

τp =
1

σpvthNt
, τn =

1

σnvthNt
. (6D.9)

Now we use quasi-Fermi levels introduced in eq.(6.4) and from eq.(3.13) the np product is written as

np = n2i exp
µe − µh

kBT
. (6D.10)

Substitutin the above into (6D.6), we obtain

U =

σnσpvthNtn
2
i

[
exp

eV

kBT
− 1

]
σn

[
n+ ni exp

Et − Ei

kBT

]
+ σp

[
p+ ni exp

Ei − Et

kBT

] . (6D.11)

Then again we put Et = Ei, and for further simplicity, we assume σn = σp = σ to obtain

U =

σvthNtn
2
i

[
exp

eV

kBT
− 1

]
n+ p+ 2ni

=

σvthNtn
2
i

[
exp

eV

kBT
− 1

]
ni

[
exp

µe − Ei

kBT
+ exp

Ei − µh

kBT
+ 2

] . (6D.12)

Further, when µe, muh are position dependent, U takes the maximum in the case Ei places in the middle between µe and

µh. Then (6D.12) reduces to

U ≈
σvthNtn

2
i

[
exp

eV

kBT
− 1

]
2ni

[
exp

eV

2kBT
+ 2

] ≈ 1

2
σvthNtni exp

eV

2kBT
eV > kBT. (6D.13)

Because the above is the maximum the estimation should be a bit large but the current density due to the recombination

can be written as

jrc =

∫ wd

0

qUdx ≈ qwdni
2τ

exp
eV

2kBT
. (6D.14)

In eq. (6D.14) in comparison with eq. (6.11), the voltage term in the exponential has an extra factor 1/2. To put it

plainly, this is because the energy exchange when recombination occurs in the trap is half that of the case where the

*4 This means that the lifetime of minority carriers is determined by a deep level, especially in indirect semiconductors. In “solar grade” Si, in
conparison with those for LSI (impurity −10 ∼ 10−11), the purity can be a bit lower while the deep level concentrations should be reduced.
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current is generated by overcoming the bandgap (6.11). In this way, different processes in which current flows generally

have different voltage coefficients. Then in experiments, the forward current is written as

JF ∝ exp
eV

ηkBT
(6D.15)

and the factor η (ideality factor) is fit to the experiment. When η is close to 1, the diffusion current is dominant and the

junction is close to the ideal case. When it is close to 2, the recombination current inside the depletion layer is dominant.

In the laboratories, η sometimes goes over 2 and still takes higher values. In the case of pn-junctions, the interface

comes to the middle of depletion layer and there is some interdiffusion of dopants, thus the factor 2 is frequently obtained

while it is usually close to 1 in the case of Schottky junctions.
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We have seen the effect of confinement with heterojunctions. When the barrier width is finite, the transport across the

barrier with quantum tunneling. These can be viewed as elementary quantum mechanics though it is an important step

that such phenomena can be observed in real systems in the very beginning of semiconductor quantum physics. Actually

the heterojunction technique leads to the prosperity of the field and many novel devices have been created.

7.1.3 Excitons in two-dimensional systems

In the previous section, in the absorption spectrum of a quantum well, we observed peak structures around the absorp-

tion edges. They are from the excitons explained in Sec. 3.3.2 thought the lowering of the spatial dimension results in

some quantitative differences from the excitons in the bulk. We would like to have a brief look at the excitons in both two

and three dimensions.

Let us treat it as a problem of a hydrogen atom then we treat Schrödinger equation with a Coulomb-type central force

potential Vc(r), (
− ℏ2

2m∗
∇2 + Vc(r)

)
ψ(r) = Eψ(r), (7.9)

in lower dimensions. Here m∗ is the electron-hole reduced mass. And we need to change the potential form as

V 2d
c (r) = − e2

4πϵϵ0|r|
, V 1d

c (r) = − e2

4πϵϵ0(|z|+ 0.3r0)
, (7.10)

particularly for one-dimensional (along z-axis) systems. This is because simple transformation of eq.(7.9) into one-

dimension causes anomalous behavior including divergence of binding energy. The potential form in eq.(7.10) is given

as an empirical formula which well fits to a practical numerical calculation on confinement into a finite width quantum

wire (a cylinder with radius r0). Below, we rapidly see the solutions, which are nothing but hydrogen atom solutions.

Under variable separation hypothesis, the solutions for eq.(7.9) can be written in the forms

ψ3d = ρle−ρ/2R(ρ)Yl,m(θ, φ), ψ2d = ρ|m|e−ρ/2R(ρ)eimφ, ψ1d = R(ζ). (7.11)

ρ and ζ are dimensionless variables, which correspond to radial variable and z variable respectively. The definitions are

ρ = αr, ζ = α(|z|+ 0.3r0), α =

√
−8m∗E

ℏ
. (7.12)

R(ρ), R(ζ) are the solutions of the following equations.
(
ρ
∂2

∂ρ2
+ (p+ 1− ρ) ∂

∂ρ
+ q

)
R(ρ) = 0 : 3-, 2-dimensional,(

∂2

∂ζ2
+

∂

∂ζ
+
λ

ζ

)
R(ζ) = 0, λ ≡ e2

4πϵ0ℏ

√
−m

∗

2E
: 1-dimensional,

(7.13)

where p, q are

p =

{
2l + 1 (3-dimensional)
2|m| (2-dimensional)

, q =

{
λ− l − 1 (3-dimensional)
λ− |m| − 1/2 (2-dimensional)

, (7.14)

where l is angular momentum quantum number and m is magnetic quantum number.

E9-1



Fig. 7.3 Exciton absorption peaks appeared in the absorp-
tion spectrum of a GaAs(8.3 nm)/AlAs(9.3 nm) superlattice
at room temperatre (red line). The coupling between the
quantum well in the superlattice is weak. n in the figure is the
subband index and different from the one of excitonic states
index. The peak at the ground subband (n = 1) shows the
splitting into lh and hh[1]. The n = 2 peak is considered as
from hh reduced mass.

For three and two dimensional systems, R(ρ) in eq.(7.13) is expanded as follows.

R(ρ) =
∑
ν

βνρ
ν , βν+1 = βν

ν − q
(ν + 1)(ν + p+ 1)

. (7.15)

For this R(ρ) to be finite, this expansion should stop at a finite number, which condition requires νmax = q. The main

quantum number q then is defined as follows.

n ≡ λ = νmax + l + 1 (3-dimensional), n ≡ λ− 1

2
= νmax + |m| (2-dimensional). (7.16)

The exciton energy levels for three- and two-dimensional systems can be expressed as follows.

E3d
bn = −E0

n2
n = 1, 2, · · · , (7.17)

E2d
bn = − E0

(n+ 1/2)2
n = 0, 1, · · · . (7.18)

Here the energy unit E0 is

E0 =
e2

8πϵϵ0a∗0
, a∗0 =

4πϵϵ0ℏ2

m∗e2
, (7.19)

where a∗0 is the effective Bohr radius. From eq.(7.16), we see that n = 0 is available for two-dimensional systems and

the ground bound state energy is−4E0. This means the binding energy is four times larger than that in three-dimensional

systems where the ground state energy is −E0. In the process of an exciton formation, spatial confinement increases the

kinetic energy due to the uncertainty in momentum. In three-dimensional systems, the enhancement occurs for all three

dimensions while in two dimensional systems, the confinement along the direction perpendicular to the plane has already

been included into the shift of band edge and the binding energy is measured from the edge. Hence it is qualitatively

easily understood that the exciton binding energy becomes larger with lowering the system dimension.

Generally radial wavefunction is expressed with Laguerre bi-polynomial and exponential functions. In three dimen-

sional systems, 1s wavefunction is written as ψ3d
1s ∝ exp(−r/a∗0). Similarly let ψ2d

1s ∝ exp(−r/a∗2d0 ), (7.13) へ

l = m = 0 and substitution into Schrödinger equation gives a∗2d0 = a∗0/2. The spatial size of excitons in two-dimensional

systems is half of that in three-dimensional systems in accordance with increment in the binding energy.
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In Fig. 7.3, we show the absorption coefficient of a GaAs(8.3 nm)/AlAs(9.3 nm) superlattice (red line) and taht of a

high purity bulk GaAs (blue line). In the bulk line, a shoulder structure at the absorption edge is observed. On the other

hand, the exciton absorptions take clear peak structures. Furthermore, the peak at the absorption edge of 1st subband

(n = 1) shows a clear splitting due to two effective masses lh and hh in the valence band, which result in the two reduced

masses. The exciton peak at the second subband edge is also clearly observed and considered as from hh reduced mass.

These observations are possible by the above enhancement in the binding energy due to the confinement.

7.2 Quantum barrier

“Upside down” of a quantum well potential gives a quantum barrier potential. In the quantum well problem, the focus

was on the bound states inside the well while in quantum barriers we see characteristic tunneling phenomena in the

upside-down states of resonant scattering.

7.2.1 Transfer matrix

Let us consider a region Q in a one-dimensional space and as shown in Fig. 7.5(a), and incoming wavefunction A(k)

with wavenumber k from the left hand side (LHS), outgoing wavefunction A2(k) to the right hand side (RHS), and

B2(k), B1(k) for the other way around. Here we take the momentum k to be common for the momentum conservation.

The suffices 1 and 2 indicates the boundaries 1 and 2.

Let us take for an example that a rectangular barrier with width L, and height V0. We define κ ≡
√
2mV0/ℏ. Let the

wavefunction inside the barrier be Vi(κ)+Wi(κ). V , W correspond to e−κx, eκx respectively and from the Schrödinger

equation, ∂Vi/∂x = −κVi, ∂Wi/∂x = κWi. The suffix i indicates positions in real space, just as above, putting 1 and 2

to the left and the right edges of the barrier and

V2 = V1e
−κL, W2 =W1e

κL.

Now the boundary condition can be written as ∂A1,2/∂x = ikA1,2, ∂B1,2/∂x = −ikB1,2, hence,

A1 +B1 = V1 +W1, A2 +B2 = e−κLV1 + eκLW1, (7.20)

ik(A1 −B1) = κ(−V1 −W1), ik(A2 −B2) = κ(−e−κLV1 + eκLW1). (7.21)

For short expression, k, κ for A ∼ V are not shown.

First we erase V1, W1, then (A2, B2) and be expressed with (A1, B1). Because of the linearity, the solution can be

written in a matrix form as (
A2

B2

)
=

(
m11 m12

m21 m22

)(
A1

B1

)
≡MT

(
A1

B1

)
. (7.22)

1 2

Q

A k1( ) A k2( )

B k1( ) B k2( )

Fig. 7.4 Scheme of T-matrix
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Then matrix {mij} is obtained as 
m11 =

[
cosh(κL) + i

k2 − κ2

2kκ
sinh(κL)

]
,

m12 = −ik
2 + κ2

2kκ
sinh(κL),

m21 = m∗12, m22 = m∗11.

(7.23)

Specific form of MT surely depends on shape of potential though the relation between input and output can always be

written in the matrix form as in (7.22) guaranteed by the linearity of Schrödinger equation. A matrix like MT is called

transfer matrix (T-matrix).

In Eq.(7.23), MT has the symmetry of m21 = m∗12, m22 = m∗11, which comes from the time-reversal symmetry and

the even symmetry in the potential shape.

Let B2 = 0, and the ratio of transmission wave A2 and reflection wave B1 to the incident wave A1 can be given from

(7.22), (7.23) as

t ≡ A2

A1
=
|m11|2 − |m12|2

m∗11
=

1

m∗11
=

2ikκ

(k2 − κ2) sinh(κL) + 2ikκ cosh(κL)
, (7.24)

r ≡ B1

A1
= −m21

m22
=

(k2 + κ2) sinh(κL)

(k2 − κ2) sinh(κL)− 2ikκ cosh(κL)
. (7.25)

t, r are called imaginary transmission coefficient and imaginary reflection coefficient respectively. They are related

to the transmission and reflection coefficients as

Transmission: T = |t|2, Reflection: R = |r|2, |t|2 + |r|2 = 1, (7.26)

and the T-matrix MT can be expressed with them as

MT =

(
1/t∗ −r∗/t∗
−r/t 1/t

)
. (7.27)

7.2.2 Transmission through double-barrier structure

Let us consider the transmission through the double barrier potential illustrated in Fig. 7.5. Quantum well and quantum

barrier are upside down to each other and the double barrier may have the position in between them. Let the boundaries

be 1∼4 as in the figure and the wavefunctions also as A1−4 and B1−4. For the left barrier the setup is the same as that

in the previous section and (7.23) is applcable. Next in the well part between the barriers, a particle gains a kinetic phase

factor exp(ikW ) during the traverse. Hence as T-matrix for this part we can adopt

MW =

(
exp(ikW ) 0

0 exp(−ikW )

)
. (7.28)

The right barrier is just the same as the left. The expression of T-matrix does not depend on local coordinates and MT

can be used as it it.

L LW

A1

B1

V0

B2 B3 B4

A2 A3 A4

1 2 3 4

Fig. 7.5 Schematic illustration of double barrier
potential.
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Then the total T-matrix MDW of the double barrier structure is, as obvious from the definition, obtained as the product

of all T-matrices as

MDW =

(
m11 m12

m21 m22

)(
eikW 0
0 e−ikW

)(
m11 m12

m21 m22

)
≡
(
T11 T12
T21 T22

)
. (7.29)

The transmission coefficient is, from (7.29),

T11 = m2
11 exp(ikW ) + |m12|2 exp(−ikW ) (∵ m12 = m∗21).

The interference effect due to the double barrier structure appears in the second term. Let the argument of m11 be φ, and

writing m11 = |m11| exp(iφ) we get

T11T
∗
11 = ((|m11|2e2iφeikW + |m12|2e−ikW )(|m11|2e−2iφe−ikW + |m12|2eikW )

= (|m2
11 − |m12|2)2 + 2|m11|2|m12|2 (1 + cos(2(φ+ kW )))

= 1 + 4|m11|2|m12|2 cos2(φ+ kW ).

The the transmission coefficient is obtained as

T =
1

|T11|2
=

1

1 + 4|m11|2|m12|2 cos2(φ+ kW )
. (7.30)

The final form of transmission coefficient is then in combination obtained with (7.23).

Figure 7.6(a) shows thus calculated transmission coefficient T for various barrier widths L as a function of energy

of incoming wave. The relation between the barrier width and the well width is fixed as W = 2L. Here L and E are

transfomed into dimensionless parameters l ≡ (
√
2mV0/ℏ)L and E は ϵ ≡ E/V0 respectively. The points where the

transmission coefficient hits 1 are due to resonant scattering and the condition is written as

φ+ kW =

(
n− 1

2

)
π (n = 1, 2, · · · ), (7.31)

from (7.30), where φ is witten from (7.23) as

φ = arctan

[
k2 − κ2

2kκ
tanh(κL)

]
, (7.32)

where we restrict the region to −π/2 < φ < π/2. With this, n should take a natural number.
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Fig. 7.6 (a) Transmission coefficient T calculated on (7.30) as a function of the energy of incoming wave for various
barrier widths. Well width - barrier width relation is fixed to W = 2L. (b) The same results are plotted in a gray
scale as a function of the incoming energy and the barrier width. White broken lines indicate the resonance condition
(7.31), (7.32).
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In Fig. 7.6(b), the same data are plotted in a gray scale versus a plane of energy and barrier width. White broken lines

indicate the resonant scattering condition in the above equation. With increasing l, the peaks become sharper, which

tendency is due to the elongation of time for staying inside the well, that makes the life width determined from the

uncertainty relation smaller. If we take the limit L → ∞ keeping W finite, the system becomes a quantum well with a

finite barrier height and the resonant scattering condition approaches to that for bound eigenstates.

7.2.3 Transport of double barrier diode

Double barrier diode is a device, which realized the double barrier structure with hetero-inferfaces. Here we introduce

an experiment on such a device with GaAs-AlAs hetero-interfaces, p-type doped electrodes. Hence the device works

as a double barrier for holes. The band discontinuity is ∆Ev =0.47 eV. There are two species of holes at the top of

valence band in GaAs with effective masses 0.51m0 and 0.082m0, which are called “heavy” and “light” holes (hh and

lh) respectively. We ignore the mass difference in AlAs for simplicity (actually the difference is not small but does not

affect the result significantly). The potential prepared has, as shown in the upper panel of Fig. 7.7(a), widths of 5nm both

for the barriers and the well. The barriers and the well parts do not have any doping. Figure 7.7(a) shows a photograph

of the sample cross section taken by a scanning transmission electron microscope, STEM.

The transmission coefficient T thus calculated with the above parameters and the structure shown in Fig. 7.7 is dis-

played as a function of energy in Fig. 7.8. Because the effective masses of holes are comparatively heavy and the barrier

height is high, the transmission peaks are very sharp. We thus can see the behavior of tail only in the semi-log plot. We

see below the barrier threshold, 5 heavy hole resonance peaks and 2 light hole peaks. Figure 7.7(a) shows the positions

of resonance levels in the well numerically calculated from eq.(7.31).

In order to see the behavior of tunneling, usually source-drain voltage Vsd is applied as illustrated in Fig. 7.7(b).

Inside the source and the drain, highly concentrated holes screen the electric field and the applied voltage should mainly

consumed across the double barrier regions. In actual situation, however, the contact resistances also cause significant

voltage drops.

(a)

5nm

0.46

0.32

0.30

0.55eV

0.17
0.083
0.077
0.019
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L2
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H3
L1
H2
H1

GaAs GaAs

A
lA

s

A
lA

s

eVsd

e
Souce

Drain

(b)

Fig. 7.7 (a) Upper panel: Potential diagram of the double barrier
diode prepared for the present experiment. The energy base is taken
to the top of the valence band and the energy of holes is positive in this
plot. H1 −H5, L1, L2 are the positions of resonant levels for heavy
holes and light holes respectively. Lower panel: Scanning transmis-
sion electron micrograph of the sample. Darker regions are AlAs. (b)
Schematic potential diagram for a source-drain biased double barrier
diode.
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Fig. 7.8 Energy dependence of transmission coefficient for the
double barrier structure with parameters given in the text and
with eq.(7.30). The peaks hit 1 actually but too narrow to be
sampled.

We ignore the distortion of the originally rectangular-shaped potential due to the applied electric field. Then, as in the

illustration, the energy of an injected hole is in accordance with the resonant level when the applied voltage reaches twice

of it. The transmission coefficient takes a peak at that time, that is the amount of holes passing through the barriers within

a unit time, namely the current should take a peak (see Appendix E for more realistic current lineshape).

A measured current-voltage curve in a double barrier diode (the one in Fig. 7.7) is shown in Fig. 7.9(a). Several current

peaks appear versus the voltage. To clarify the peak positions the absolute value of voltage-derivative the current with a

constant bias C is plotted in a semi-log scale in Fig. 7.9(b) *1.
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Fig. 7.9 (a) Current-voltage characteristics of the double barrier diode introduced in Fig. 7.7. Resonant levels corre-
sponding to the peaks are indicated by the arrows. The inset indicates peak positions of energy levels on the voltage
axis. (b) Emphasis is on the peak positions with differentiating the current with the voltage and the absolute value
being plotted in semi-log scale. The inset is enlargement around the origin.

*1 This transformation is just for the clarity in sight.
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7.2.4 Superlattice

The next step, in the course of quantum mechanics, we have double quantum well, which is very important as a qubit.

We skip it, to my regret, for the shortage of time. I would like to remind you we have lectures on “nano-quantum

information” in the applied physics department (but in Japanese). Here I would like to give a short introduction of

heterojunction superlattice, which was proposed by Leo Esaki and Raphael Tsu and has provided rich physics. The

basic idea of heterojunction superlattice is realization of Kronig-Penny type potential, illustrated in Fig. 7.10. This, in

a sense, recovers spatial translational symmetry of the lattice lost by the introduction of the interface but in a different

manner.

Let us express a Kronig-Penny type potential as VKP(x) and write down the Schrödinger equation as[
− ℏ2d2

2mdx2
+ VKP(x)

]
ψ(x) = Eψ(x), VKP(x) = VKP(x+ d). (7.33)

According to Bloch theorem, we write the eigenstate wavefunction as a product of a plane wave and a lattice periodic

function with d = L+W as the lattice constant.

ψK(x) = uK(x)eiKx, uK(x+ d) = uK(x), K ≡ πs

Nd
. (7.34)

s takes an integer from −N + 1 to N − 1. The transfer matrix Md corresponding to the unit cell of the system is

Md(k) =

(
eikW 0
0 e−ikW

)(
m11 m12

m21 m22

)
=

(
m11e

ikW m12e
ikW

m21e
−ikW m22e

−ikW

)
. (7.35)

As before, we write the input/output in the left hand side of i-th cell as (ai, bi), then from (7.34),(
ai+1

bi+1

)
=Md

(
ai
bi

)
= eiKd

(
ai
bi

)
(7.36)

should hold, that is, this is a problem of engenvalue eiKd of matrix Md. From the unitarity of Md, or from “reversed”

equation of (7.36), the two eigenvalues e±iKd are obtained. We re-use {mij} in (7.23) to get to the equations

eiKd + e−iKd = 2 cosKd = TrMd = 2Re(e−ikWm∗11), (7.37)

cos [K(L+W )] = cosh(κL) cos(kW )− k2 − κ2

2kκ
sinh(κL) sin(kW ). (7.38)

By use of φ in (7.32), expression

cos(Kd) = |m11| cos(kW + φ) =
1

|t|
cos(kW + φ) (7.39)

is available.

Transforming the Kronig-Penny potential to a series of δ-function potentials can be attained with taking limits L→ 0,

W → d, V0 →∞(V0L = C(constant) to obtain the condition

cos(Kd) = cos(kd) +
mC

ℏ2k
sin(kd). (7.40)

LW
V0

d

Fig. 7.10 One dimensional rectangular potential (
Kronig-Penny type potential)
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Fig. 7.11 RHS of (7.40) as a function of kd.
Here mdC/ℏ2 is taken to be 13. The gray belts
indicate “allowed bands”.

Figure 7.11 shows the RHS as a function of kd. The solution K for (7.40) exists for the RHS to be in [−1,+1] corre-

sponding to the gray bands namely the energy bands.

Let us simplify the energy dispersion relation of a single band as

E(K) =
Enw

2
(1− cosKd). (7.41)

The group velocity and the effective mass are

vg(K) =
Enwd

2ℏ
sinKd, m∗(K) =

ℏ2

Enwd2
secKd. (7.42)

The equation of motion of an electron in a periodic potential under a uniform electric field Em is written as

m∗
dv

dt
= ℏ

dK

dt
= F = eEm. (7.43)

We see an effective mass in a periodic potential can be negative.

An acceleration according to (7.43) results in K = eEmt/ℏ. Now we put a wave packet with zero-velociy at the origin

x = 0, and observe the time evolution. From (7.42),

vg(t) =
Enwd

2ℏ
sin

(
eEmd

ℏ
t

)
, x(t) =

Enw

2eEm

[
1− cos

(
eEmd

ℏ
t

)]
. (7.44)

The result indicates that in spite of the constant acceleration, the wave packet oscillates in space. The phenomenon is

called Bloch oscillation, an observation of which in an actual lattice is almost impossible due to various scattering. In a

superlattice, however, the super-period devides the large original band into “mini-bands” and the acceleration to the top

of a mini-band before scattering. The Block oscillation was thus observed in superlattices in optical measurements.

7.3 Modulation doping and two-dimensional electrons

The most popuar artificial structure made with heterojunctions is the two-dimensional electrons with modulation doped

heterojunctions (two-dimensional electron gas, 2DEG). As is illustrated in Fig. 7.12, in a single heterojunction, doping is

given just in the wider band region. Now let us see what happens here for n-type doping.

Let us take the z-axis vertical to the surface and the hetero-interface plane as in the figure. In a “rigid band” model, the

conduction band discontinuity ∆Ec emerges and the carriers re-distribute. Let us take the plain case of the combination

of AlxGa1−xAs and GaAs. Then we can adopt the approximation that the envelope function in the effective mass

approximation as the electron wavefunction itself, and electron-electron interaction can be treated within the Hartree
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Fig. 7.12 Schematic cross sectional view of two-dimensional electrons at a modulation doped AlxGa1−xAs/GaAs heterointerface.

approximation*2. Then, the Poission-Schrödinger equation including the electrostatic potential formed by ionized donor,

the band discontinuity and the 2DEG itself should be solved self-consistently for obtaining quantilzed energy levels and

wavefunction (envelope function) along the direction perpendicular to the 2DEG plane.

z-axis is taken to be perpendicular to the heterointerface plane. As in Fig. 7.12, the surface Schottky barrier creates a

surface depletion layer. Let the charge at the surface be −Q and the electric field from the charge should be compensated

with that from charges at ionized donors (in the figure Si) +Q in the amount and screened from inside. Let us write the

number of all the residual ionized donors per unit area (integrated along z-axis) asNddep. The electrostatic potential from

the charges is, far inside the lattice from the doping region, VD(z) = (4πe2/ϵϵ0)Ndepz. Between the doped region and

the hetero-interface, a non-doped region called “spacer ” is often places. The spacer spatially separates the 2DEG and

the ionized impurities, decreases scattering probabilities of two-dimensional electrons, resulting in very high mobility of

electrons. A too thick spacer, however, lifts up the band depletes the well and throws out the 2DEG.

Let us adopt a variable separation type expression for 2DEG wavefuntion, Ψ(r) = ψ(x, y)ζ(z). ζ(z) is the envelope

function along z-axis. The areal concentration n2d is the function of discretized energy level Ez , which is in other words

the kinetic energy along z-axis for ζ(z). The areal charge density at position z′ is then−en2d|ζ(z′)|2, the sheet charge of

which creates the electric field−(4πe2/ϵϵ0)n2d|ζ(z′)|2|z−z′| as calculated from the Gauss theorem. In the Hartree-only

mean field approximation, the potential should include these terms. The potential created by the 2DEG itself is

V2d(z) = −
4πe2

ϵϵ0
n2d(Ez)

∫ ∞
−ξ
|ζ(z′)|2|z − z′|dz′.

Here the integral cut-off ξ should be taken longer enough than the penetration depth of ζ(z) in to AlGaAs barrier. We

write a step potential with discontinuity ∆Ec just at the interface as Vh(z). Now the total potential can be written as

V (z) = Vh(z) +
4πe2

ϵϵ0

[
Ndepz − n2d(Ez)

∫ ∞
−ξ
|z − z′||ζ(z′)|2dz′

]
. (7.45)

Schrödinger equation for ζ(z) [
− ℏ2

2m∗(z)

∂2

∂z2
+ V (z)

]
ζ(z) = Ezζ(z) (7.46)

should be solved self-consistently to obtain (consistent) ζ(z). The effective masses m∗ are different in the two species of

semiconductors and the boundary condition should be

ζ(0)(A) = ζ(0)(B),
1

m∗A

dζ(A)

dz

∣∣∣∣ = 1

m∗B

dζ(B)

dz

∣∣∣∣ . (7.47)

In the Poisson-Schrödinger procedure, one should solve the equations from (7.45) to (7.47) consistently. The above only

treats the Hartree term. In general, the Fock term, or the correlation effect is also important in mean field theory. However,

it is known that the correlation effect does not affect ζ(z) or Ez so much and here we ignore it for simplicity.

*2 Even within the mean field theory, the interaction term contains the Fock term (exchange), but the contribution was calculated to be small.
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It is comparatively easy to solve Poisson-Schrödinger equation numerically for a simple band with small spin-orbit

interaction, like the conduction band in GaAs. For more complicated cases, e.g., multiple valleys, strong spin-orbit

interaction, etc., the scale of numerical calculation increases. If one needs to expand the calculation to other quantities

with obtained ζ(z) for such a case, approximate formulas with simple mathematical forms are convenient. For example,

in Fang-Howard approximation, the formula

ζ(z) =

√
b2

2
z exp

(
−bz

2

)
(7.48)

is used as the trial function with b as a parameter for variational calculation. The result of the variational calculation is

given as

b3 =
48πme2

ϵϵ0ℏ2

(
11

32
n2d +Nd

)
. (7.49)

In this approximation, penetration of wavefunction into the barrier (spacer) is ignored. Another approximation form

which takes such penetration into account is given in, e.g. ref.[3].

7.4 Fabrication of quantum wires

Nowadays we have so many methods to fabricate quantum wires and reviewing in this narrow space is impossible.

Here we have a short look at a few examples of them.

7.4.1 Split gates, other physical approach

The split gate method starts from a 2DEG. Metallic films on the surface form Schottky barriers and deplete the electrons

underneath them. Then we can build potentials with various shapes through those of the metals.

In the split gate method, enlargement of depleted regions with reverse (negative) bias voltage V as in Fig. 7.13(a) is

often used. Let us consider a simple model illustrated in Fig. 7.13(b), where two half-infinite metals are placed with a

distance w. The line density of charge σ, created by applied gate voltage is assumed to be uniform. The electric field

formed by these charges has the z-component Ez(x, d) as,

Ez(x, d) =
−σ
2πϵϵ0

[
π + arctan

(
x− w/2

d

)
− arctan

(
x+ w/2

d

)]
. (7.50)

(7.50) depends on d, but as a coarse approximation, we ignore the dependence within the depth η of the two-dimensional

electron gas (2DEG) potential and the potential modulation due to the split gate is summarized as Vsg(x) = eηEz(x, η).

(a) (b)

Fig. 7.13 (a) Schematic illustration of micro-fabrication by split-gate method. (b) Electrostatic potential formed by a split gate
calculated on a simple model in the text.
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3 mm
500nm

Fig. 7.14 (a) Scanning electron mi-
crograh of InAs nanowires along
[111] grown by vapor-liquid-solid
phase method with metal particles
as catalyst on an InAs(111)B sub-
strate. (b) GaN-InGaN core-shell
type nanowires.

(a) (b)

An example of Vsg(x) is shown in the lower panel in Fig. 7.13(b). As indicated by the broken line, a parabollic potential

well approximates Vsg(x) around the bottom *3.

The gate electrodes in Fig. 7.13(b) hence give confinement along x in addition to z-direction heterinterface confinement

potential. The kinetic energies for these two directions are quantized and quantum wires are realized. Density of states in

one-dimensional systems has a divergence at the bottom of band, which corresponds to the descrete energy levels in the

potential in Fig. 7.13(b).

Another way to form quantum wires with physical methods is “cutting” of 2DEG into thin and long shapes with wet

(i.e. in some solvent) or dry (i.e. in some plasmas) etching method. There are also several ways such as regrowth

of heterostructures onto a cleaved edge of another heterostructure to form T-shaped thin-line potential, ion-inplantation

inactivation, etc.

7.4.2 Self-assembled nanowires

After putting some “seeds” onto semiconductor substrates by electron beam irradiation, etc., crystal growth onto it

causes nanowire growth at the seeds under some conditions. In such a growth, with changing “flying” materials het-

erostructures or doping can be installed in the wire. Figure 7.14(a) shows InAs nanowire along [111] grown on an

InAs(111)B substrate with Au nanoparticles as the catalyst by vapor-liquid-solid phase method. Fiugre 7.14(b) shows

GaN-InGaN core-shell type nanowires.

Well-known carbon nanotubes, which are rolled up graphenes with nanometer-size diameters, may not be classified

into one-dimensional systems, are also a kind of “self-assembled systems”.

7.5 Fabrication of quantum dots

Fabrication methods of quantum dots are also classified into physical methods, self-assemble methods, and their com-

binations. I would like to introduce just a part of them.

7.5.1 Physical method

Quantum dots (QDs) are expected to have a very wide range of optical applications, and quantum dot lasers are already

on the market. Here, however, we restrict ourselves to the QD for the study of transport. To measure the electric

conduction, we need to touch electrodes to the dots. As the electrode material we consider a normal metal with an

ordinary Fermi surface. And as the “connection”, we consider tunneling junctions, through which electron can transmit

*3 Anyway a rounded bottom of symmetric potential can often be approximated by a parabolla because the leading term in the power expansion is
usually of the second order.
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with quantum tunneling. At least a single electorode is required. And to compose structure for measurement of transport

between two particle reservors just like quantum wires, FET, two electrodes, hence two tunneing junctions are required.

As shown in Fig. 7.15, these electrodes are called just like FET, source and drain.

In quantum dots, the density of states is like a series of δ-functions. The electric conduction is determined by the

tunneling probability of junctions and the relative positions of the δ-function like density of states and the Fermi levels

in the drain and the source. If we place another metallic electrode close to the dot without tunneling probability, the

electrochemical potential of the dot can be controlled with the electric field from the electrode. The electrode is called

gate. Figure 7.15(a) shows the total schematic of the quantum dot for conduction measurement.

The split-gate method introduced for the quantum wire can also be applied to form quantum dots. Figure 7.15(b)

illustrates a possible pattern of Schottky electrodes. For the tunnel junctions, quantum point contacts near the pinch-off

condition are used. For the gates, also Schottky electrodes are used in the reverse bias condition. As can be imagined

from the figure, because the reverse bias voltage enlarges the depletion layer to squeeze the dot region, the size of the

quantum confinement potential is diminished that widens the level intervals other than the single electron effect, which

will be discussed later. Hence the gate is sometimes called “plunger” gate. In this kind of configuration, the source, dot,

drain line up side by side along the two-dimensional electrons, hence called “lateral” quantum dots. When the number

of electrons in a quantum dot is reduced by the gate voltage, the dot size also becomes smaller, it is spatially separated

from the source and drain, the tunnel probability becomes smaller, and conduction becomes unmeasurable. This once

considered as a difficult problem but has been overcome by the remote charge detection. The structure in Fig. 7.15(c)

is made from the double barrier structure The structure shown in Fig. 7.15(c) is made by cutting out a double barrier

structure into a cylinder shape. Then Schottky gate electrodes are deposited on the side of the cylinder. This is called a

“vertical” quantum dot. The tunnel couplings are determined by the double barrier structure, not affected by the electron

number. The property makes the structure apropriate for the experiments for small number of electrons. There is a

problem in connection with external quantum circuits, which requires various devicing.

7.5.2 Self assembling method

The epitaxial growth has various “mode” in the growth process. The layer-by-layer growth mode is called Frank-van

der Merve (FvdM) mode (Fig. 7.16(a)). When the interface energy accumulation between the thin film and the substrate

is large due to the combination of materials, the deposited material is repelled from the substrate in the beginning of the

growth and a three dimensional growth begins. As a such growth mode, the Volmer-Weber (VM) mode is illustrated

in Fig. 7.16(b). In Fig. 7.16(c) we show the Stranski-Krastanow (SK) mode, in which the growth is two-dimensional

at the very beginning but changes into three-dimensional due to the lattice distortion inside the film. With such three

(a) (b) (c)

source dot drain

gate

source drain

dot

gate

gate

source

drain

tunneling
barrier

tunneling
barrier

dot

Fig. 7.15 (a) Schematic of quantum dot structures for transport measurement. Two electrodes for examining con-
duction, a source, and a drain are connected via a tunnel barrier across the quantum dot, and a gate electrode that
controls the potential of the dot is arranged at a distance. (b) Illustration of a “lateral” quantum dot. Nano-fabricated
metallic gates on two-dimensional electrons are used. (c) Illustration of a “vertical” quantum dot. The dot layer is
between two barrier layers and the doped upper and lower layers are the source and drain. The layers are cut to a piller
and the metallic gate is deposited surrounding it (in the figure a part of the gate is drawn).
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dimensional growth, the structures with dimensions less than two can be obtained.

(a) (b) (c)

Fig. 7.16 Various epitaxial growth modes. Blue-gray circles represent atoms in the substrate, while open circles do the atoms in
the fim. (a) Frank-van der Merve. (b) Volmer-Weber. (c) Stranski-Krastanow.

A representative example of self-assembling of low-dimensional systems is the growth of quantum dots with SK mode

growth. Such examples are shown in Fig. 7.17. When some amount of a semiconductor InAs, which has the lattice

constant 7% larger than that of GaAs, is deposited on a GaAs substrate and kept at some high substrate temperature for

some time, the indium atoms on the substrate migrate and accumulate to form quantum dot structures.

In the case of InAs, dots are self-assembled because when a relatively small number of In atoms are present on the

substrate, it is more energetically stable to perform three-dimensional growth to escape from the interface, which gets

strong lattice distortion from the substrate. The indium atoms first form a two-dimensional wetting layer with thickness

of a few lattice constant then dots are randomly formed in the shape that depends on the crystal direction of the surface.

The quantum dots produced by the SK mode growth have random sizes and positions. On the other hand, the SK dots

are with high crystal qualities and with high densities, and thus widely used for optical devices like quantum dot lasers.

In addition, since InAs has low junction resistances with metals, conduction measurement is also performed by attaching

metal electrodes. A method often adopted as a combination of self-assembling and physical methods is to attach gates

and barrier electrodes to self-forming nanowires by lithography to make dots. In particular, the self-assembling of InSb

or InAs, to which heterojunction technique is difficult (though not impossible) to apply, is used to form quantum dots and

other structures with many gate electrodes. There is also a method to form quantum dots with implementing the barrier

layers into nanowire during the growths.

100nm

5nm

(a) (b) (с)

3 mm

Fig. 7.17 (a) InAs quantum dot growth on GaAs (001) substrate. Upper panel: RHEED pattern of two-dimensional
growth at the beginning of InAs growth. Lower penel: RHEED pattern of three-dimensional growth of quantum dot
structure. (b) Atomic force micrograph of self-assembled quantum dots. (c) Scanning tunneling micrograph of a
quantum dot. The lattice image can be seen, manifesting that the whole dot is a single crystal.

7.5.3 Colloidal quantum dots

In recent years, the colloidal manufacturing method has come to be widely used to form optical quantum dots for optical

use. As shown in Fig. 7.18, this is a method of obtaining quantum dots by injecting a dot material called a ”precursor”

into a solvent, dissolving it, making it supersaturated by a temperature change, and precipitating a part of it. From the

relationship between surface area and volume, when the degree of supersaturation falls below a certain value, dots that

continue to grow and dots that redissolve are separated, so dots with relatively uniform sizes can be obtained. This is
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called Ostwald reipening. After the growth reached saturation, surface covering of the grown dots with another material

is possible by adding a different precursor into the solvent. Such covered quantum dots obtained in this way are called

core-shell type quantum dots. The luminescence wavelength of the quantum dots can be tuned by their size and hence it

is possible to form high efficiency luminous materials. They are already applied to, e.g. quantum dot displays.

Fig. 7.18 Left (A): Illustration of quantum dot formation with precipitation from supersaturated solvent. The time
dependence of the density of precursor is plotted in the graph. Left (B): Illustration of experimental setup of precipita-
tion method. Right upper: Schematics of core-shell type quantum dots. [4] Right lower: Illumination from CdS-based
core-shell quantum dots and TEM images. (Ocean Nanotech. web site. https://www.oceannanotech.com/)
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I would like to introcude some of optical devices with hetrojunctions though the confinement scales are not in quantum

regime.

7.6 Confinement of injected minority carriers and optical devices

The minority carriers injected with pn junctions or with optical excitations, are transported by diffusion currents or

drift currents in solids. Spatial geometries, injection currents etc. are used for the control of diffusion currents. A

typical example is the bipolar transistor. Drift currents can be controlled through internal potentials introduced by hetero,

Schottky, MOS junctions, and through bias voltages, and gate voltages. A simple example is the window layers of solar

cells. As illustrated in Fig. 7.19(a), a window layer is placed on the top layer of a pn-junction solar cell. It should have a

larger band gap than that of the material for the pn-junction.

One of the factors of lowering the conversion effciency of solar cells, is the non-radiative recombination of injected

minority carriers via the highly dense surface states, which also cause the pinning of the Fermi level in Schottky junctions.

The current through the device is driven by minority carriers swept out by the built-in potential of the pn-junction.

Minority carriers created inside the semiconductor have a random initial momentum and diffuse also to the surface. Many

of them are lost at the surface with non-radiative recombination and thier energies either as heat. When the surface has

some decolation to prevent reflection, the increase of the surface area reults in the enhancement of surface recombinatn

rate.

Fig. 7.19 (a) Upper: Illustration of a solar cell with a window layer. An example of AlGaAs/GaAs pn junction.
Lower: Schematic band-diagram of the solar cell shown in the upper panel. (b) The schematic diagrams of quantum
collection efficiencies of cells with (red line) and without (blue line) the window layer. (c) Illustrations from brochure
of HIT solar cells, which demonstrates the enhancement in the conversion efficiency with the heterojunctions.
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If the cell has the layer with a larger bandgap Eg2 on the top as illustrated in Fig. 7.19(a), the diffusion of minority

carriers to the surface is blocked with the heterojunction barrier. The materials are chosen so as to have a good connection

at the junction and not to have in-gap recombination centers as AlGaAs-GaAs in the figure. Then the minority carriers

reflected at the junction diffuse back to the pn junction and contribute to the photocurrent. Figure 7.19(b) illustrates the

quantum efficiency spectra η(hν) of pn junctions (energy gapEg1) with and without the window layer with the energy gap

Eg2. hν is the energy of photons. ν is the photon frequency throuout this section. The quantum efficiency is defined as

the ratio of the number of electrons in the photocurrent to that of the photons in incoming flux. Without the window layer

(blue line), η(hν) decreases with increasing the photon energy due to the increase of minority carrier creation close to

the surface and hence the increase of surface recombination. With the window layer (red line), the surface recombination

is reduced and the value of η is kept close to 1 up to around hν ∼ Eg2. Above Eg2, due to the absorption in the window

layer, the surface recombination increases and the efficiency decreases. If we can choose Eg2 around the energy above

which the mode density of sun light is small, we can expect large enhancement in the conversion efficiency. The window

layer can be viewed as an example of reducing the diffusion current with a kind of drift current caused by barriers at

heterojunctions.

An ingenious example of the application of above technique to market-selling devices is the solar cells named HIT

(heterojunction with intrinsic thin-layer), which were developed in SANYO and now are produced and sold in Panasonic

bland. The base is a crystal Si solar cell but they utilized the fact that amorphous Si has a larger effective band gap.

In the structure a Si active layer is sandwitched by clad amorphus layers, which cause confinement of minority carriers

inside the crystal Si. HIT still has a top-class conversion effciency but unfortunately, it has been announced that it will be

discontinued due to various reasons.

7.6.1 Light emitting diodes

Fig. 7.20 Electroluminescence spectra of a GaAs
pn-junction. From [1].

To take an important example of confinement of minority

carriers, we consider luminescent devices with pn-junctions

as the injectors of minority carriers. Such electroluminescent

devices are called light emitting diode (LED).

There are various processes of photon emission by the re-

combination of injected minority carriers, but here we restrict

ourselves to the direct recombination of electrons in the con-

duction band and holes in the valence band. The luminescent

intensity I(ν) is written as

I(ν) ∝ ν2(hν − Eg)
1/2 exp

[
−(hν − Eg)

kBT

]
. (7.51)

Figure 7.20 shows an example of luminescent spectra from a

GaAs pn-junction. With decreasing the temperature, the band

gap Eg widens mainly due to the variation of lattice constant.

As a result, the luminescent peak narrows and shifts to high-

energy (blue-shift). As for the second peak in the spectrum at

77 K, the authors of Ref. [1] commented only the existence,

but it looks like the luminescence from the impurities.

Important parameters of LED characteristics are the wave-

length and the efficiency. In the case of homo pn-junction

luminous layer, the wavelength is almost determined by the band gap as in Eq. 7.51. The quantum efficieency ηq is
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defined as the ratio of the radiative recombination processes Rr to the total recombination processes R of the injected

carriers as
ηq ≡

Rr

R
=

τnr
τnr + τr

=
τtot
τr
,

1

τtot
≡ 1

τnr
+

1

τr
, (7.52)

where τnr, τr are the lifetimes limited by non-radiative recombination and radiative recombination respectively. τtot is

the total lifetime of minority carriers obtained from Matthiessen’s rule. The interband radiative recombination probability

is proportional to the electron-hole density product, that is

Rr ∝ np. (7.53)

Under the injection of minority carriers, the law of mass action naturally does not hold: np ̸= n2i .

The current density of minority carriers is, as seen in Eq. (6.11), gvien by the sum of the electron flux density, the hole

flux density,

je + jh = e

[
Denp0
Le

+
Dhpn0
Lh

] [
exp

(
eV

kBT

)
− 1

]
, (7.54)

and the recombination rate inside the depletion layer (width wd) expressed in the form of current as

jR =
eniwd

2τ0

[
exp

(
eV

2kBT

)
− 1

]
. (7.55)

The recombination in the depletion layer mainly occurs at mid-gap deep levels resulting in the factor 1/2 in the term eV

just as in Eq. (6D.13). We take the case of an n+p junction, in which the n-side is heavily doped and the luminescence is

mainly by electron-hole recombination in the p-layer. Then the injection efficiency of the junction is

γ =
je

je + jh + jR
. (7.56)

The internal quantum efficiencyis thus defined from Eq. (7.52) and Eq. (7.56) as

ηiq = γηq. (7.57)

There are various limiting factors of the internal quantum efficiency, some of which are related to the crystalinity as deep

levels. The device structures also affect the efficiency through the surface recombination, etc.

The external quantum efficiencyhas the ultimate importance for the LEDs. As we can see from Eq. (7.51),

the energy of photons emitted by direct interband transition has a peak slightly above the energy gap. Then

the reabsorption of light by the crystal itself occurs and the absorbed photons result in the absorption loss.

As shown in the left figure, we take x as the distance

from the surface to the emission point, θ as the angle

of the ray from vertical to the surface. Let α be the

absorption coefficient and we have the absorption loss

ζabs = 1− exp(−αx/ cos θ). (7.58)

When a light pass through the interface between the ma-

terials with refractive indices n̄1 and n̄2, we have the

reflectance

Γ =

(
n̄2 − n̄1
n̄1 + n̄2

)2

. (7.59)

The loss at the surface by the reflection is called Fresnel loss. Because the reflactive index inside semiconductors is

generally larger than that in the vacuum or in the air, when θ exceeds the critical angle θc, the surface causes total

reflection, which reults in the optical loss. The ratio of the number of photons finally emitted from the surface nf to

that of photons once produced inside the crystal is called optical efficiency. The ratio of nf to the number of injected
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Fig. 7.21 Conceptual diagram of double-heterojunction LED.
InGaN is taken as the material for the active layer.

carriers is called external quantum efficiency. Let ηopp, ηexq be the optical efficiency and the external quantum efficiency

respectively, then from the definitions
ηexq = ηoppηiq. (7.60)

Generally, simple pn-junctions have very low external quantum efficiency less than few %.

As in the solar cells, surface textures to cause multiple reflection are effective to reduce the Fresnel loss and the total

reflection loss. And also like the case for solar cells, double-heterojunction(DH) is frequently used to enhance the

internal quantum efficiency and to reduce the absorption loss. The concept is shown in Fig. 7.21. The radiative layer

is inserted between the cladding layers of materials with larger band gap than the active material. In the figure, the

chemical dopings are just done in the cladding layers. The elimination of chemical doping in the active layer reduces the

recombination in the depletion layer. Injected minority carriers are confined into the thin active layer, resulting in high

np product and in high internal quantum efficiency. Furthermore, the energy of emitted photon is less than the band gap

of cladding layers and the absorption does not occur there. Mirror-like layers are often placed at the back planes to reflect

forward the photons emitted backward. In Ref. [2], the authors reported the external quantum efficiency of 77% in YAG

active type LED with InGaN-LED activation. ηexq ∼ 30 % were the highest then, and the case of YAG is extraordinary.

But now the technology is widely used for LED illumination.

7.6.2 Laser diode

The light emission in LEDs is by spontaneous emission drawn in Fig. 4.1(b). Now we consider the stimulated emission

drawin in (c). |A0|2 in the transition probability is proportional to the energy density of electromagnetic field. We write

the energy density as nλℏωλ/V , where V is the system volume, nλ is the number of photons in mode λ. Such a coherent

electromagnetic field excites electric dipole moment µ in the material, creating the transition element between |a⟩ and |b⟩
(see Fig. 4.1(c) for the two-level system). If we write r = r0 cos(ω0t), then p = mωλr. We rewrite e⃗ ·p as (ωλm/e)e⃗ ·µ
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Fig. 7.22 (a) Confinement of photons with parallel mirrors. Also can be viewed as the feedback by mirrors. (b)
Illustration of double heterojunction laser diode structure. AlGaAs and GaAs are taken as representative materials.
With forward bias, the distribution inversion is realized. (c) Fabry-Pérot type lase structure, which is constituted of
parallel mirrors of cleaved surfaces. Material B is sandwitched by material A with larger band gap. (d) Distributed
feedback (DFB) type laser structure, in which corrugation type grating is built in at the A-B interface.

and put ω = ω0 = ωλ. Then the probability of stimulated emission with the transition |b⟩ → |a⟩ is

Pba(t) =
ωλ

ϵϵ0ℏV
|⟨a|e⃗ · µ|b⟩|2nλ

t2

2
, (7.61)

which is proportional to nλ. The symmetry of Eq. (7.61) tells that the probability of light absorption with transition

|a⟩ → |b⟩ is Pab = Pba. Equation (7.61) tells that the more photons in a mode the higher the probability of stimulated

emission to this mode. The phenomenon can be interpreted as a Bosonic stimulation, which is the origin of Bose-

Einstein condensation. And the photonic state is described as a coherent state[3]. The coherence can be understood in a

classical picture that µ is excited coherently by the electromagnetic field.

As a model of the medium of photon propagation, we consider a set of such two-level systems. Let Na, Nb be the

concentrations of the two-level systems at the state |a⟩, |b⟩ respectively. When the light of ωλ propagates the media, the

enery absorbed by the media in unit volume is written as

E = (Na −Nb)Pba(τ)ℏωλ, (7.62)

where τ is the averaged interaction time of light with each two-level system. If the state Nb > Na is realized E < 0,

namely the light absorbs energy from the media and the light is amplified. The light is in coherent state with a common

phase of photon. Such amplification of photons (increment in the photon number in the same mode) and the device

(apparatus) to realize the phenomenon is called light amplification by stimulated emission of radiation, LASER.
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A laser diode (LD) is a light emitting element that uses a pn junction like an LED, but uses a double heterojunction (or

a stronger confinement structure) to create an inversion distribution and to cause laser action. In order to strongly amplify

light, it is necessary to advance the light in the population inversion medium, but the light is also strongly amplified by

confining it in the resonator using a mirror surface and reciprocating in the same medium(Fig. 7.22(a)). Figure 7.22(b)

shows an LD structure in the beginning of the research. An example of the simplest Fabry-Pérot type cavity of the laser

oscillation is illustrated in Fig. 7.22(c). In Fig. 7.22(d), the structure called distributed feedback (DFB) type laser diode

is illustrated. A corrugation is introduced at the hetero-interface as a grating and to make the structure a cavity.
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Chapter 8 Basics of quantum transport

Let us go into quantum transport, which is one the major subjecs in semiconductor physics, because one-dimensional

systems are the best for the construction of theoretical models.

8.1 Classical transport and quantum transport

We treated electrons as particles in the secton of “classical transport” besides counting the number of cases while in the

sections of heterojunction and quantum confinement, they were treated as quantum mechanical waves. The difference in

the treatment of electrons in the same material comes from the scales of energy and spatial range. Until now we have

treated pn-junctions classically and double barrier diodes quantum mechanically, but these two are actually marginal

cases. In a pn junction, the deletion layer becomes thinner with increasing the doping concentrations. When both the p-

layer and the n-layer are highly doped, the depletion layer is very thin and the Fermi level penetrates into the conduction

band in n-layer and the valence band in p-layer. Now in the both layers the density of states exist around the Fermi level

and they are very close with a thin separation. Then a quantum tunneling, which is nothing but a quantum phenomenon

occurs through the depletion layer. The structure is called “Esaki diode”, a representative quantum device. On the other

hand in some double barrier diodes, depending on the materials and the structures, no resonance peak can be observed

e.g. at room temperatures. Let us briefly discuss here in what case we need to treat a phenomenon quantum mechanically.

We already had a very short discussion in the beginning section of classical transport. Let us go a bit deeper here.

Now in what case does quantm coherence appear in transport? The “length” which expresses the criteria is quantum
cohrence length *1 . In very short, when an electron travels in a solid, the averaged length over which the electron

propagates with quantum coherence, is called “quantum coherence length” and often written as lϕ.

Whether we can observe quantum coherence in experiments or not depends not only on the essential quantum coherence

of each particle but also on the coherence between the particles i.e., statistical fluctuation of the interference. The former

is, in very short, due to quantum entanglement with a large number of surrounding freedoms (environment).

y
2

y
1

c
1

c
2

scattering
centers

Let us consider a double slit experiment shown in the left. The interfer-

ence pattern on the screen is

|ψ|2 = |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos θ,

where the third term in the RHS is the quantum interference. Consider the

situation that from the starting point to the screen there exist some scat-

terings, at which the electron has interactions with a quantum mechanical

state χ (quantum mechanical freedom other than the electron). The inter-

action should be different for the two paths 1 and 2, then

ψ1 → ψ1 ⊗ χ1, ψ2 → ψ2 ⊗ χ2.

As a result, the interference term changes into

2|ψ1||ψ2| cos θ⟨χ1|χ2⟩.

*1 The word “coherence length” is used in various ways in different meanings. In condensed matter physics, for example, it appears in treating
superconductivity for multiple meanings.
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Hence if χ1 ⊥ χ2 the inner product is zero and the interference term vanishes. In such a state, two freedoms ψ and χ

are in maximally entangled state (Appendix F). In other words, the quantum coherence length in this case is the length

over whch the electron (freedom) makes up a maximally entangled state with another degree of freedom (envirnment).
A little question here is that χ1 and χ2 may be orthogonal at one-moment but the time evolution after that may restore

the interference killing the orthogonality. There are, of course, many such setups *2. Here we adopt that in not-specially

designed quantum systems, with time evolves the entanglement spreads over many other freedoms and disentanglement

never occurs.

There is another kind of “dephasing” in experiment. Even if each particle is able to interfere with itself, when the

wavelengths of particles are widely distributed, in other words monochromaticity is not high enough, the interference

patterns are also distributed and averated out. Let us estimate the characteristic length, over which the difference in the

patterns is small enough for them to survive after averaging. Electrons being fermion, the energy of movable electron

at absolute zero is EF, i.e., they are completely monochromatic. The energy width appears at a finite temperature T as

∆E = kBT . The difference in the electron phase accumulated during time τ is 2π∆fτ = 2π∆Eτ/h = 2πkBTτ/h. A

criterion in time can be the time for the phase difference becomes 2π, that is

τc =
h

kBT
.

In diffusive transport, the diffusion length is written as l =
√
Dτ , and this determines a kind of coherence length lth as

lth =

√
hD

kBT
, (8.1)

which is called thermal diffusion coherence length. In ballistic transport, the electrons get few scatterings during the

traversal through the sample. They get through the sample with the velocity vF and

lth =
hvF
kBT

. (8.2)

After traversal over the above themal length, the coherence is lost from the result of averaging even though intrinsic

quantum coherence survives. Attention should be paid for lth particularly in experiments.

After knowing lϕ, what are the conditions for the quantum mechanics to appear in transport? Firstly we should list up

the case that the sample size is shorter than lϕ. For even shorter sample size, shorter than the representative de Broglie

length (i.e. the Fermi wavelength), as we already saw, quantum confinement effect (descretized energy levels) emerges,

into which we do not go into here. Secondly, we often have some characteristic lengths in transport besides the sample

size. A representative is the magnetic length, which appears when an external magnetic field is applied. The magnetic

length, or minimum cycrotron radius is written as lB =
√
h/eB for magnetic flux density B. When lB ≤ lϕ, there

appear various quantum effects in magneto-transport.

We finish up this very short section for quantum coherence and decoherence here. Below we go into quantum coherent

transport.

8.2 Landauer formula

In this lecture, I would like to introduce one view point, from which we view the transport in quantum systems as the

conduction in “quantum circuits”*3. In this section we see the most basic part of it.

*2 This can be experimentally verified. With this fact, some people claim that the theory of decoherence based on environmental freedom is wrong.
But this is, of course, misunderstanding. In the theory of decoherence from the environmental freedom, “intrinsic decoherence” does not exist
besides the thermodynamic limit. In real systems no thermodynamic limit has been achieved though the results of statistical mechanics apply. In
the same way, with progress of entanglement with many degree of freedoms, the disentanglement becomes more difficult and impossible at last.

*3 Here “quantum circuit” is different from what we use in schematization of quantum information manipulation.
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The Kubo formula is an ultimate form of linear response, which was studied from the beginning to middle of 20th

century in Bell labs and other places. It is now an indispensable tool for theoretical studies in condensed matter physics.

On the other hand in practical analyses of experiments, the Landauer formula, which can be derived as a one expression

of the Kubo formula[4], is often used. I hope students refer to other lectures e.g., statistical physics, for the introduction

of the Kubo formula and here we go into quantum transport with the simplest introduction of the Landauer formula.

8.2.1 Conductance quantization

L R

S

mL

mL
eV

The lowest dimension in which “transport” exists is one. We thus

first consider the conductance of a one-dimensional fermion system.

Here we adopt an ingenious modeling by Rolf Ladauer, illustrated

in the left figure. A one dimensional conductor without scattering is

connected to two particle reservoirs, in which the chemical poten-

tials are well defined as they have huge (infinit) number of particles

and are in thermal equilibrium. Let the chemical potentials of left

and right reserviors as µL, µR respectively. The current brought by

a state with wavenumber k can be written as

j(k) =
e

L
vg =

e

ℏL
dE(k)

dk
, (8.3)

where L is the length for normalization, thus e/L is the charge density. The total current J then is

J =

∫ kR

kL

j(k)
L

2π
dk =

e

h

∫ µL

µR

dE =
e

h
(µL − µR) =

e2

h
V. (8.4)

The conductance is finally obtained as

G =
J

G
=
e2

h
≡ Gq ≡ R−1q . (8.5)

This is the conductance for one-dimensional conductor without scattering and called conductance quantum. If we

consider the spin degree of freedom, and when the spin can be treated as just a double degeneracy of quantum states, we

simply multipy Gq by two and may call 2e2/h a conductance quantum. Rq is called quantized resistance.

The above discussion is, in a sense, a paraphrase of te uncertainly principle. Let us see that in a more transparent

form. The problem is equivalent to that we pack wavepackets with a width∆k in k-space into a one-dimensional fermion

system. The highest charge density in the system is e/∆x for wavepackets with a width∆x in the real space. The velocity

of the packet is ∆E/ℏ∆k, giving the current as

J =
e

∆x

∆E

ℏ∆k
=
e2

h
V, (8.6)

which is the same result as before. Here we write ∆x∆k = 2π, ∆E = eV .

8.2.2 Quantum point contact and concept of conductance channel

One dimensional fermion system discussed above is in other expression quantum wire (QW) or quantum point
contact (QPC). A way to realize them in semiconductor structures is to confine a two-dimensional electron gas (2DEG)

into a narrow region.

In the case of QPC, “a narrow region” means, as in Fig. 8.1(a), a narrow short region gradually squeezed from a wide

2DEG. As is easily imagined, such a structure can be realized with the split gate technique introduced in Sec.??. This

can be modelized as in Fig. 8.1(b). x-axis is taken to longitudinal to the QPC “waveguide”. Here we assume adiabatic
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Fig. 8.1 (a) Schematic of quantum point contact. (b) Simplified model of a QPC. Upper panel: Electrons are
excluded from hatched regions and confined in white region, one dimensionally at the narrow gap. The right figure
shows the confinement potential along the cross section at the broken line. Descrete eigen energies E1,2,3 correspond
to the three effective potential drawn in the lower panel. Lower panel: Illustrates effective potentials Veff(x) in
eq.(8.8).

propagation of electrons through a QPC, that is, the total energy of an electron E = Ekx + Eky does not change during

the traversal though Ekx, Eky transform each other.

Though harmonic potentail like in Fig. ??(b) is generally a good approximation for such kind of confinement, here

we take, for simplicity, the hard-wall approximation illustrated in Fig. 8.1(b). With W being the width of confinement,

the wavefunction in y-direction is written as φn(y) = cos(nπy/2W ) (n: an odd number ), sin(nπy/2W ) (n: an

even number). We assume that change of W for x is slow enough so that we can separate x and y dependencies as

ψ(x, y) = φn(y)ϕ(x). Then, the equation is

Hψ(x, y) =
ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
φn(y)ϕ(x)

= φn(y)
ℏ2

2m

(
∂2

∂x2
+
( nπ
2W

)2)
ϕ(x) = Eφn(y)ϕ(x). (8.7)

(8.7) depends on x, and the assumption of adiabaticity requires it holds for each x-position. This can thus be viewed as a

potential problem with effective potential along x-direction

Veff(n, x) =
ℏ2

2m

(
nπ

2W (x)

)2

. (8.8)

The situation is illustrated in the lower panel of Fig. 8.1(b). The effective potential Veff(n, x) has index n, which is for

the descrete quantized energy along y. The partitioning of total energy is, then,

Etot = Ekx(n, x) + Veff(n, x), (8.9)

and we can treat a propagating state as a one-dimensional one indexed with n. Such a one-dimensional state is called

conductance channel, the density of states to which is proportional to 1/
√
E − Ec. When the system is in equilibrium,

EF is, of course, constant over the system though the effecive potential Ekx(n, x) is channel dependent and thus the

Fermi wavenumber kxF, the density of states should be determined for each channnel.
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Fig. 8.2 (a) Atomic force microscope of a QPC gate structure. White raised regions are the gate electrodes placed on
an AlGaAs/GaAs two-dimensional electrons. (b) Conductance of a QPC at 30 mK as a function of the gate voltage.

8.2.3 Transport experiments in QPCs

Let us see some experimental results on transport through real QPCs. With increasing the negative voltage to the gate

electrodes, the effective potential in (8.8) becomes higher due to the narrowing of W (x) and the number of conduction

channels whch can go over the potential top decreases.

Figure 8.2(a) shows an AFM image of a split gate structure fabricated with nano-fabrication techniques. In Fig. 8.2(b),

we plot the electric conductance G of the QPC as a function of the gate voltage Vg. G shows staircase-like variation

versus Vg with a constant height of stairs about 2e2/h. Namely G is quantized to an integer times 2e2/h. The system

holds the time-inversion symmetry and the spin degeneracy. Hence the experiment confirms the result of Eq. (8.5).

In the experiment shown in Fig. 8.3, the conductance of a QPC is adjusted on the plateau of n × 2e2/h (n: integer)

and the tip of an atomic force microscope (AFM) is placed just on the surface close to the QPC. Then the image potential

of the tip in the two-dimensional electrons causes weak scattering of the electron wave resulting in a small shift of

the conductance from the quantized value. With scanning the tip the shift is plotted versus the tip position, then as in

Fig. 8.3(b), on the plateau of n = 2, we observe a wave with two anti-node is flowing out from the QPC. The number

of anti-node is three for n = 3 and one for n = 1. The above results shows the number of anti-node of standing wave

along y, that is the number of channels transmitting through a quantum wire is equal to the quantization number n of the

conductance *4.

8.2.4 Conduction channel and transmission probability

In the above we have introduced the concept of conduction channel referring to the QPC experiments. The shortness

of QPC is to escape from the scattering and longer structure is available if the mean free path exceeds the size. Actually,

in longer quantum wires made of high-mobility two-dimensional electron systems, the quantization of conductance has

been observed. Next we consider the widening of the quantum wire. With the increase of width, the level spacing of

quantization along the width narrows, the number of states below the Fermi level EF increases if the position of EF from

*4 Some of you may think that if the number of channels is, say 3, then the waves with antinodes 1, 2, and 3 should be overlapped. The argument
is correct. However, the density of states of one-dimensinonal systems is expressed as 1/

√
ϵ− ϵ0 with ϵ0 as the band edge. Then in actual

measurement, the amplitude of wavefunction with highest channel is detected. Also, the electrons traversing on the highest channel have the
lowest the kinetic energy along x and easily scattered by the probe potential, detected in the experiment.
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Fig. 8.3 (a) Illustration of experimental setup to measure the wavefunction amplitude with a scanning probe micro-
scope (SPM). With measuring the conductance of the QPC, the tip is scanned over the conduction channel. (b) The
image of the shift in the conductance from the quantized value measured with this setup. The center part is drawn
from the topography obtained by AFM measurement. The upper is measured on the nch = 2 conductance step. The
lower is for nch = 3. (The data are taken from Topinka et al., Science 289, 2323 (2000))

the bottom of the band is fixed. We take the limit of infinity in width and the system is now a two-dimensional. We write

the electron density as n2D then we find the number of channels per unit length is
√
n2D.

So far we have considered systems without scattering. What we are treating here is coherent quantum transport and

random inelastic scatterings by phonons etc. are out of scope. However, the potential scatterings by impurities or lattice

imperfections do not break quantum coherence and they can be taken into account. The scatterings are transitions between

the propagating states, or from the view point introduced here, transitions between the conduction channels. Hence we

express the scattering centers with points as in Fig. 8.4(b) and through the points electrons enter different channels.

Note that they are quantum mechanical scattering and the electrons do not completely “change” their tracing lines at

the scatters. Instead the electron waves are devided at the scattering points and continue propagation. The conduction

channels play the role of waveguide for microwaves. With such waveguides and joints in various shapes, we can separate

or join microwaves. At such joints there also should exist reflection which reverse the direction of propagation. The same

should happen at the scattering centers. When the number of scattering center increases and the system can be viewed as

a “disordered metal,” the system in the channel expression is like a cobwebs as illustrated in Fig. 8.4(c). At first sight,

it looks difficult to treat. But instead of treating inside, we just pay our attentions to the channels at the inlet and at the

outlet. We write the transmission probability of electron propagation from i-th channel at the inlet to j-th channel as Tij .

From the fact that the single channel without scattering has the conductance of e2/h with the transmission probability

T = 1, the conductance G of a conductor that has the matrix of transmission probability {Tij} is (with consideration of

the spin degree of freedom 2)

G = 2
e2

h

∑
i,j

Tij . (8.10)

Equation (8.10) is called Landauer formula for 2-terminal conductance.
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Fig. 8.4 (a) A two-dimensional conductor is expressed as a set of one-dimensional channels. Two-terminal con-
figuration. (b) Introduction of a scattering center, which causes transitions between the conduction channels. (c)
Disordered conductor with multiple scattering centers.

8.3 S-matrix

We have introduced scattering centers (joints) through the comparison of conduction channels with waveguides for

microwave. Actually researchers often call conduction channels electron waveguides. Also, we often use interference

circuits, in which quantum wires are joined/devided at some points just like joints of waveguides. For the treatment of

such joints, scattering matrix, S-matrixis often used as is in the case of microwave circuits. As in Fig. 8.5(b), we write

the wavefunctions coming into a scatterer from left and right as a1(k), a2(k) respectively, and the same for outgoing ones

as b1(k), b2(k). The S-matrix representing the scatterer is defined as(
b1(k)
b2(k)

)
= S

(
a1(k)
a2(k)

)
=

(
rL tR
tL rR

)(
a1(k)
a2(k)

)
, (8.11)

where tL,R, rL,R are complex transmission and reflection ratios from left and right respectively. They bare phase shifts
occurring at the scattering in their complex phases. Here we adopt the lower case expression for the “wavefunction flows”

in order to distinguish them from Ai(k) etc. so far used because the directions of the flows are different by definition.

There are the relations to transmission and reflection probabilities TL,R, RL,R as

TL,R = |tL,r|2 = 1−RL,R = 1− |rL,R|2. (8.12)

Unlike T-matrices, S-matrices cannot have the output as the next input because the channels are mixed in the operand

vectors. On the other hand, as seen in Eq. (8.11), each element has clear physical meaning and the parameters of the

scatteing can be readily extracted.

In the above, in a sense, we have considered a connection of two channels with the same wavenumber. If we consider

the extension to more general cases, we need to take care that each channel has different wavenumbers, dispersions. Even

in the simplest case of a QPC, when it is on the plateau of G = n × 2e2/h, it has n conduction channels and the Fermi

A1 a1A2 a2

B1 b1B2 b2

MT S

(a) (b)

Fig. 8.5 (a) Conceptual diagram of T-matrix MT . (b) Conceptual diagram of S-matrix S.
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wavelengths are different for different channels. In such a case, we cannot simply use wavefunctions for a1(k). Instead,

we write
ai(k) =

√
vFiψai(kF), (8.13)

where ψai(kF) is the wavefunction (the same for bi). Under this definition, the norms of input/output vectors represent the

strengths of “probability density fluxes.” We call t as a comlex transmission probability and |t|2 = T is (real) transmission

probability. Then in this way, we can call ai(k) etc. in (8.13) as complex probability flow.

8.3.1 Connection (joint) of S-matrices

For the series connection of T-matrices, as we did in the double barriers, we can simply take the product of them, which

procedure simplifies the calculation and saves the trouble. On the other and for the series connection of S-matrices, as in

the figure shown below, the eight lines for input/ouput should be in cross connection and the results should be expressed

in terms of a new S-matrix. For the calculation we first write(
b1
b2

)
= SA

(
a1
a2

)
=

(
r
(A)
L t

(A)
R

t
(A)
L r

(A)
R

)(
a1
a2

)
,

(
b3
b4

)
= SB

(
a3
a4

)
=

(
r
(B)
L t

(B)
R

t
(B)
L r

(B)
R

)(
a3
a4

)
. (8.14)

SA SB

a1 a3a2 a4

b1 b3b2 b4

By using the boundary conditions

b2 = a3, a2 = b3, (8.15)

we drop these variables from the final simultaneous

equations, to get the single S-matrix. The result is the

following S-matrix SAB.

SAB =

r(A)
L + t

(A)
R r

(B)
L

(
I − r(A)

R r
(B)
L

)−1
t
(A)
L t

(A)
R

(
I − r(B)

L r
(A)
R

)−1
t
(B)
R

t
(B)
L

(
I − r(A)

R r
(B)
L

)−1
t
(A)
L r

(B)
R + t

(B)
L

(
I − r(A)

R r
(B)
L

)−1
r
(A)
R t

(B)
R

 . (8.16)

At the first sight, it looks just complicated and you may wonder why we need to take such a way for calculation.

However, the expression shows the behavior of wave propagating over two series scatterers. To see that we take out (1,1)

element of Eq. (8.16) and expand the second term as(
I − r(A)

R r
(B)
L

)−1
= I + r

(A)
R r

(B)
L + (r

(A)
R r

(B)
L )2 + (r

(A)
R r

(B)
L )3 + · · · . (8.17)

a1

a2

a3
aj

bj

b1

b2

b3

S

This clearly shows that the second term is the summation of the processes,

each of which is a reflection including multiple reflections between the

two scatterer A and B. Elements of S-matrices have clear meanings as in

Eq. (8.11) and are easy to be interpreted. And because the inputs and the

outputs are separated, we can easily apply them for multiple channels or

electrodes.

In the above, we did not consider the evolution of phase when the wave

propagetes between the scatterers. This can be taken into account by in-

serting T- or S-matrix to express the phase rotation. With this we can treat

the case that the transmission line works as a resonator.

We have redefine the input/output as in Eq/ (8.13), and expansion to

multi-channel systems can be done with increasing the dimension of in-

put/output vectors. When we write down (8.17), the care is taken for the
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order of product, the denomination is expressed as the multiplication of the inverse, and 1 is expressed as I . These are

for the expansion to multi-channel systems with converting a1 etc. to vectors, r (A)r etc. to matrices.

We do not consider any interaction (scattering) between the channels on the transmision line. Therefore, in the case of

multiple channel, assignment of the channels to the transmission lines is not a crutial problem in the S-matrix treatment.

Hence, as illustrated in the figure, the wire connection can be done regardless of the lines. In that sense, S-matrices are

“nodes” of the lines. T-matrices shceme is not so easy to be applied to channel multiplication. We utilize both methods

to treat the electron waveguide circuits.

8.4 Onsager reciprocity

An important property of S-matrices is the unitarity. From the definition of complex probability flow in (8.13) and

the conservation of probability requires |a|2 = |Sa|2. Then it is almost trivial that S-matrices should be unitary. From

the unitarity, a very important property in the symmetry called Onsager reciprocity is derived. The Onsager reciprocity,

which holds generally in the transport phenomena, is expressed in the form of S-matrix as

S(B) = tS(−B) (Smn(B) = Snm(−B)), (8.18)

where B is the external magnetic field.

The derivation is as follows. The problem here is essentially the potential scattering described by the Schrödinger

equation [
(iℏ∇+ eA)2

2m
+ V

]
ψ = Eψ. (8.19)

We take the complex conjugate of (8.19) and revert the direction of the magnetic field with A→ −A to get[
(iℏ∇+ eA)2

2m
+ V

]
ψ∗ = Eψ∗ ∴ {ψ∗(−B)} = {ψ(B)}. (8.20)

This means ψ(B) and ψ∗(−B) forms the same set of solutions (here {· · · } means the set of · · · ). Remember that ψ(B)

is a scattering solution of Schrödinger equation (8.19). Let us express a scattering state as Sc{a→ b}(a is the incoming

wave to the S-matrix, b is the scattered wave).

Sc{a(B)→ b(B)} ∈ {ψ(B)}, (8.21)

i.e., b(B) = S(B)a(B). (8.22)

We take the complex conjugate of (8.22) as

b∗(B) = S∗(B)a∗(B). (8.23)

Now to take the complex conjugate of a propagating wave exp(±ikr) corresponds to the inversion of direction of prop-

agation*5. That is, by taking the complex conjugate, the incoming wave and the scattered wave are exchanged.

Sc(b∗(B)→ a∗(B)) ∈ {ψ∗(B)} (8.24)

∴ B → −B results in Sc{b∗(−B)→ a∗(−B)} ∈ {ψ∗(−B)} = {ψ(B)} (8.25)

i.e. a∗(−B) = S(B)b∗(−B). (8.26)

From (8.26)
b∗(B) = S−1(−B)a∗(B), (8.27)

*5 Schrödinger equation (8.19) does not depend on time, and then taking the complex conjugate of means the sign reversal of ikr keeping the sign
of iωt.
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and the comparison with (8.23) gives

S∗(B) = S−1(−B) = S†(−B) (∵ unitarity SS† = S†S = I)

∴ S(B) = tS(−B). (8.28)

Q. E. D.

The following simple symmetric property is derived for the case of so far discussed two-terminal transport, in which

the system only has single inlet and single outlet, and the resistance (ρxx) is defined as the ration of the voltage drop

between the electrodes to the current.
ρxx(B) = ρxx(−B). (8.29)

In the above proof, the linearity of the transport coefficients is assumed. Hence in non-linear devices, the reciprocity

is broken under finite bias. Even for the non-linear devices, if the I-V characteristics is symmetric to the origin, the

reciprocity recovers with including reversing the bias.

8.5 Landauer-Büttiker formula

So far we have treated coherent transport in two-terminal conductors. As in the S-matric scheme, experiments of

coherent transport can be seen as a kind of scattering experiments. The terminals correspond to the detectors catching

the scattered wave, and the number of terminals can be larger than two in general transport measurements. The scattering

theory, which treats many terminals with equal footings, is the Landauer-Büttiker formalism.

Let us index the terminals with p, q (Fig. 8.6). Terminal p is connected to the particle reservor which has the chemical

potential µp = −eVp. The net current Jp which flows from terminal p into the sample is obtained as follows. We

consider the sum of the electron fluxes times −e flowing into p from other terminals to p. And we subtract the sum from

the electron flux times −e flowing from p to the sample.

Jp = −2e

h

∑
q

[Tq←pµp − Tp←qµq]. (8.30)

qq
eV-=m

1

2

p

q

11 eV-=m

1J

2J

p
J

q
J

22 eV-=m

pp
eV-=m

Sample

Fig. 8.6 Model to derive LB formalism.

With expressing Tp←q etc. in the form of matrix T as

Tpq ≡ Tp←q (p ̸= q), Tpp ≡ −
∑
q ̸=p

Tq←p,

and with writing J =t (J1, J2, · · · ), µ =t (µ1, µ2, · · · )
(column vectors), we can express

J =
2e

h
T µ.

Also

Vq =
µq

−e
, Gpq ≡

2e2

h
Tp←q とおくと

Jp =
∑
q

[GqpVp −GpqVq]. (8.31)

The above is the essence of Landauer-Büttiker formal-

ism but it still needs some constraints as below.

First, the current conservation tells that ∑
q

Jq = 0. (8.32)
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Next, when all the terminals are at the same potential, the currents should be zero, i.e.∑
q

[Gqp −Gpq] = 0. (8.33)

Further, for the external magnetic field B, the Onsager reciprocity

Gqp(B) = Gpq(−B) (8.34)

holds. This can be proven from the Onsager reciprocity of S-matrix. The above is Landauer-Büttiker formalism (LB

formalism) of electron transport.

Let us apply the LB formalism to a sample with four terminals. We take the origin of energy so as for the fourth

chemical potential to be zero, i.e. µ4 = −eV4 = 0. Then we can write downJ1J2
J3

 =

G12 +G13 +G14 −G12 −G13

−G21 G21 +G23 +G24 −G23

−G31 −G32 G31 +G32 +G34

V1V2
V3

 . (8.35)

Now we consider the boundary condition
J1 = −J3, J2 = −J4, (8.36)

which is called Casimir problem. The problem is reduced to ordinary situation of four probe measurement with J2 = 0 in

that the current is flowing through 1 and 3 while the voltage between 2 and 4 is measured without current. With writing

Vij ≡ Vi − Vj , the solution of this problem is given as(
J1
J2

)
=

(
α11 −α12

−α21 α22

)(
V13
V24

)
, (8.37)

where

α11 = 2Gq[−T11 − S−1(T14 + T12)(T41 + T21)], (8.38a)

α12 = 2GqS
−1(T12T34 −T14T32), (8.38b)

α21 = 2GqS
−1(T21T43 −T23T41), (8.38c)

α22 = 2Gq[−T22 − S−1(T21 −T23)(T32 + T12)], (8.38d)

S = T12 + T14 + T32 + T34 = T21 + T41 + T23 + T43. (8.39)

In Eq. (8.37), the current is expressed with the voltages, but in real experiments often the current is given by the external

circuit and the voltages (chemical potentials) V1 ∼ V3 are rearranged to fulfill the condition (8.36).

The reciprocity (8.34) gives the constraint

α11(B) = α11(−B), α22(B) = α22(−B), α12(B) = α21(−B) (8.40)

to the solution (8.37). We apply this to ordinary four-termial problem and assign 1 and 3 to the current probes, 2 and 4 to

the voltage probes and write the resistance obtained from LB formalism asR13,24. Then we see

R13,24 =
V2 − V4
J1

=
α21

α11α22 − α12α21
, (8.41)

which does not show the symmetry to the magnetic field inversion like (8.29) though each matric element fulfills the

Onsager reciprocity. On the other hand, the resistance measured with current-voltage exchanged terminals is

R24,13 =
α12

α11α22 − α12α21
, (8.42)

which is, from Eq. (8.40) symmetric to the reversal of magnetic field.

Generally from

Rmn,kl = Rq
TkmTln −TknTlm

D
, D ≡ R2

q(α11α22 − α12α21)S, (8.43)
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the reciprocity
Rmn,kl(B) = −Rkl,mn(−B) (8.44)

holds. The minus sign is just due to the order of terminals.

The above results bring intresting information in measuring magnetoresistances of four terminal samples in quantum

coherence. That is, generally in four terminal measurement, the magnetoresistance is not symmetric to B = 0 (ρ4t(B) ̸=
ρ4t(−B). However, if we exchange the set of voltage probes and that of current probes and reverse the field direction

B → −B, then the resistance is unchanged.
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8.5.4 Aharonov-Bohm ring

As an application of S-matrix, we consider the transmission coefficient of an Aharonov-Bohm (AB) ring. The channel

configuration is shown in Fig. 8.19(a). We write the S-matrix for the two junctoins with three channels as *1

St =

 0 −1/
√
2 −1/

√
2

−1/
√
2 1/2 −1/2

−1/
√
2 −1/2 1/2

 . (8.51)

The AB phase is taken into account by inserting

SAB =

(
0 eiθAB

e−iθAB 0

)
, θ ≡ 2π

ϕ

ϕ0
=
e

ℏ
ϕ (ϕ is the flux piercing the ring) (8.52)

into one of the parallel paths. We insert the S-matrix

Sw =

(
0 eiθ0

eiθ0 0

)
(8.53)

into the counter arm to express the phase difference between the two paths. The phase shift θ0 from the path difference

does not depend on the direction of the propagation while the sign of θAB is inverted with inversion of propagation. The

Onsager reciprocity (8.18) is kept with these mathematical settings.

From the total S-matrix, the complex transmission coefficient of the ring is obtained as[3]

t =
4 sin θ0

1 + eiθAB(eiθAB + eiθ0 − 3e−iθ0)
. (8.54)

The transmission coefficient T = |t|2 shows AB oscillation of the period ϕ0 in ϕ (the magnetic flux piercing the ring). T

also oscillates versus θ0 with the period of 2π. |t|2 is symmatric for ϕ = 0, which is due to the reciprocity induced on

(8.54) by the Onsager reciprocity introduced into S-matrix (8.52).

The phase of the oscillation with period ϕ0 varies on θ0 as a rectangular wave with amplitude π. The amplitude

of the oscillation disappears around the phase jumps, which does not mean the disappearance of the magnetoresistance

oscillation and the ϕ0/2 period and higher frequency components increase in the amplitudes. As above, the ϕ0-oscillation

only takes the phase offset of 0 or π, which property is called “phase rigidity[4].” The phase rigidity means that we cannot

detect the phase shift over the quantum dot inserted into one of the arms of an AB ring*2 ．

8.6 Qauntum transport and particle statistics

As a transport phenomenon in a semiconductor, the transport of electrons (charge and spin) is often considered, but

some quasiparticles baring transport behave differently from electrons. We will have a look how we apply the quantum

transport theory (or not apply).

*1 This form is frequently adopted though it is completely symmetric and a bit special in that sense.
*2 If we consider multiple conductance channels and also restrict the region of magnetic field, the phase looks smoothly changes with flux[5]

though this does not mean the breaking of the Onsager reciprocity.
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Fig. 8.19 (a) S-matrix modeling of an AB ring. (b) The transmission coefficient of the AB ring |t|2 is plotted (surface
plot) as a function of the phase shift from the path difference (θ0) and the magnetic flux piercing the ring ϕ/ϕ0. (c)
Color plot of the same calculation over a bit wider region. (d) The same transmission coefficient as a function of
ϕ/ϕ0 with θ0 as a parameter. The AB oscillation of period ϕ0 once disappears around θ0 = 1.6 and then the reverted
oscillation, that is, with π-shift in the phase appears.

8.6.1 Bunching, anti-bunching

In the previous section, we have introduced the Landauer formula to treat the electric conduction in semiconductor

quantum structures. In the discussion, we assumed the transport of electrons and used the unit charge and the Fermi

distribution in the derivation. And the conductance quantization is derived from the anti-bunching of fermions on quantum

wires. On the other hand, in order to calculate the transmission coefficient Tij , we have introduced T-matrices and S-

matrices scheme. These are only to calculate the transmission and reflection of waves without the relation to the particle

statistics. Hence the method should be applicable regardless of particle statistics.

Let us have a look on bunching and anti-bunching properties. The wavefunction for identical two particls is in real

coordinate representation as

ψ(r1, r2) =
1√
2
[ϕ1(r1)ϕ2(r2)± ϕ1(r2)ϕ2(r1)]. (8.55)

In the double sign, + corresponds to bosons, and − to fermions.
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Fig. 8.20 (a) Schematic probability densities in coordinate representation |ϕ1(r)|2, |ϕ2(r)|2 of one-particle wave-
functions. The two wavefunctions have a partial overlap. (b) In the case of (a), the spatial probability density of
particle 2 is plotted as a function of coordinate r2 with taking the position of the particle 1 r1 as the origin in the
two-particle wavefunction ϕ in (8.55).

As shown in Fig. 8.20(a), we consider gaussian shaped wavefunctions ϕ1,2(r) with partial overlap. Figure 8.20(b)

shows the probability density of the two-particle wavefunction versus the relative position. As we can easily see by

putting r2 = r1, the probability densities are

|ψ(r1, r1)|2 =

{
2|ϕ1(r1)|2|ϕ2(r1)|2 (boson),
0 (fermion).

(8.56)

That is, in the case of bosons, the probability density is twice the case of single particle while in the case of fermions the

density is zero. This means that the bunching occurs for bosons while the anti-bunching occurs for fermions.

The discussion of (8.3)∼(8.5), which leads to the Landauer formula can be understood in this context of anti-bunching.

That is, the difference in the chemical potentials of two electron reservoirs, eV is the energy window to be used to form

the wave packets of elctrons i.e., ∆E ∼ eV . The time for such a wave packet to go through a point in the real space

is, from the uncertainty relation, ∆t = h/∆E = h/eV . From the anti-bunching property or Fermi statistics, a single

wave packet can accomodate a single elecrtron (if the spin degree of freedom is taken into account, two electrons). Then

the current flowing though the one-dimensional system is J = e/∆t = (e2/h)V (with spin freedom, (2e2/h)V ), which

results in the same conclustion in the previous section.

The above discussion is the same calculation of that done in the k-space though it gives an important insight of the

flow of electrons on quantum wires. When the conductance is quantized in such a quantum wire, the electrons flow with

the time interval of h/eV . As is describe in the shot noise section of Appendix 8A, the current flow is approximated

as a periodic series of delta-functions and the shot noise disappears. In the Landauer’s discussion, the conductance

quantization is the consequence of the fermion’s anti-bunching property and the above consideration means that can be

experimentally confirmed through shot noise measurement.

We expand the above to quantum wires with transmission coefficients T less than 1 to get G = T Gq. In this case,

there appear free spaces between the wave packet due to the electron reflection and the packing of electrons becomes

stocastic to some degree. This states can be viewed as follows. A perfectly ordered series of wave packets are occupied

by electrons with probability T , by holes with probability 1−T . Identical electrons (also holes) cannot be distinguished

and the number of cases for vacancies, i.e. the degree of randomness is proportional to T (1 − T ). In the limit T → 0,

this goes to Eq. (8A.3) and with using the relation J = 2T GqV for voltage V , the noise power spectrum is given as[?]

S ≡ ⟨(δJ)
2⟩

∆f
= 2e

2e2

h
V T (1− T ). (8.57)

The above S is suppressed from SPoisson in Eq. (8A.3) by factor 1 − T . Generally, we refer to Fano factor as the ratio

of variance to the average. In the present case that corresponds to the ratio of the shot noise to the Poisson noise and is

1− T .
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Fig. 8.21 Shot noise measured on a quantized conductance plateau of a QPC, and at around transition regions. (a)
QPC conductance as a function of the gate voltage. Positions for noise measurements are indicated by color-framed
open symbols. (b) Shoit noise measured at the three points indicated in (a) as a function of the source-drain voltage.
(c) Fano factor (red circles) as a function of the conductance of the QPC. The blue line is obtained from a simple
model, in which Fano factor should be 1− T . From [6].

Figure 8.21 shows an example of shot noise measurement of a QPC. In panel (a), the conductance is shown as a

function of the gate voltage and the current noise (spectral density of the square of current fluctuation) were measured at

the three points indicated by color-framed symbols (on a conductance plateau and at neighboring transition regions). In

panel (b), the current noise is plotted versus the source-drain voltage. In the transient regions, the noise increases with

the voltage indicating the appearance of shot noise while around the center of plateau, the increase of noise is very small,

indicating the reduction of noise. In panel (c), the noise data are converted to Fano factor and shown as a function of the

conductance. The blue line shows the consequence of a simple model, in which the Fano factor should be 1 − T . The

data distribute a bit above the model line confirming the noise reduction with the conductance quantization.

8.6.2 Transport of exciton-polaritons

As a bosonic quasiparticle, we consider exciton-polariton (E-P), which is introduced in Sec. 4.4.2. An E-P is a com-

posite of photons and excitons created as a result of strong coupling of light and matter. Being pairs of fermions, excitons

obey Bose statistics but the effective mass is the sum of those for electrons and holes as me +mh. On the other hand,

as can be seen from the dispersion relation in Fig. 4.7, an E-P has a very small effective mass around k ≈ 0. This makes

the control of phase of E-Ps easier and the reseachers are trying to apply E-Ps for optical integrated circuits. The light

effective mass makes the critical temperature of BEC (8B.10) very high. Actually, the observations of BEC have been

reported.

8.6.2.1 Cavity exciton-polariton

In the section of laser diode, we have seen a structure of two-dimensional cavity. In Fig. 8.22(a) we show a transmission

line made by cutting the two-dimensional cavity into a thin mesa structure. Here, the structure is such that GaAs is used as

a quantum well, which is sandwiched between GaAs / AlGaAs superlattices (SL), and a GaAs clad layer is placed on the

outside. The effective refractive index of the SL part is lower than that of GaAs, and photons are confined in this region.

On the other hand, excitons are confined in the central GaAs quantum well because the SL regions work as barriers due

to the band discontinuity. The excitons in this case are confined in the two-dimensional plane of the cavity and as we saw

in Sec. 7.1.3 the binding energy of the excitons becomes larger and they are stabilized. With the above devicing, E-Ps can

propagate the waveguide but for stable propagation, we need to prepare some low temperature environments. The limit of

temperature is extimated from the gap between the upper and the lower branches in the dispersion relation in Fig. 8.22(c)

and that can be go over the liquid nitrogen temperature.
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Fig. 8.22 Example of transmission line for exciton-
polariton. (a) Cross sectional view of the transmis-
sion line, in which a GaAs quantum well is inserted
into AlGaAs/GaAs superlattices. (b) Upper: Con-
finement of photons with distribution of reflactive in-
dex. Lower: The cladding superlattice parts form
the confinement potential. (c) Dispersion of cavity
exciton-polarioton in a different cavity from (a) and
(b). From [10].

The dispersion relation in Fig. 4.7 is made up from photons in crystals and excitons. In the present E-P waveguide,

the photons are strongly confined into the micro-cavity and the photon dispersion relation changed from that in bulk.

Figure 8.22(c) shows the avoided crossing between the cavity photon and the exciton caused by the strong coupling of

light and matter. The structure of cavity here for the calculation of the dispersion is shown in Fig. 8.24.

In the left panel of Fig. 8.23, a conceptual figure of a Mach-Zehnder (MZ)-type interference device composed of the

cavity transmission line shown in Fig. 8.22(a). As mentioned in the section of exciton, because the response to the electric

field is opposite for electrons and holes, if is is a comletely single-body composite particle, the effect of the electric field

can be hardly observied. However, in the structure of Fig. 8.22(a), the binding energy of excitons can be varied by the

electric field and with that, the wavenumber varies as

∆φ = L

[√
2mEk

ℏ
−
√
2m(Ek − δE)

ℏ

]
. (8.58)

δE represents this variation in the kinetic energy and L is the length of the gate region. This gives modulation in the

output of the two-path circuit shown in the left panel of Fig. 8.23. Finally the output is transposed into light at the edge

of the transmission line and the output can be detected as the light strength. The transmission circuit in Fig. 8.23 is called

in the paper[7], as an MZ interferometer though, because it has a single output line, some reflection exists at the joint, it

should be called as a two-path AB-type (in the present case, the AB phase does not exist and “ring-type” may be a better

expression). As shown in Fig. 8.23(a), (b), with the voltage the light ouput power can be controlled by over 10 dB and

voltage-light switching function is realized.
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Fig. 8.23 Left panel: Concept of Mach-Zehnder (MZ)-type interference device. (a) Variation in the ouput of MZ
interference device versus gate voltage (4.5 K). (b) The same for 77 K.

Fig. 8.24 Left panel: Schematic view of the cavity transmission line for the observation of exciton-polariton conden-
sation. Upper figure shows the refractive index. Right panel: (a) Calculated reflection coefficient of hte left cavity. (b)
Structure of reflactive index in the cavity. The red line is the distribution of electric field along z-axis for the localized
mode showing the sharp resonant dip around the center of the spectrum shown in (a). From [10].

8.6.2.2 Condensation of exciton-polariton

While electrons are the representative of fermions flowing through quantum circuits, as we have seen above, E-Ps

in microcavities is a system, with which we can explore the boson flow through quantum circuits experimentally. The

consequence of Fermi statistics on fermion flow in quantum circuits is the conductance quantization and the reduction of

shot noise. On the other hand, bunching of the identical particles is the characteristics of the Bose statistics, as we have

seen in Sec. 8.6.1. As a result, Bose-Einstein condensation (BEC) or similar phenomenon with condensation occurs.

The stimulated emission is also a phenomenon similar to the boson bunching, and photons in a cavity of a laser can be

viewed as a kind of condensation though the lasing occurs in non-equilibrium open systems while BEC is a phenomenon

in equilibrium. There is thus a clear difference[8, 9]．

Figure 8.24 shows the diagram of refractive index in the cavity prepared for the observation of BEC. This figure also
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(a)

(b)

Fig. 8.25 (a) Conceptial diagram illustrating the “cooling” process for micro-cavity E-P to cause BEC. (b) Ditri-
bution of E-Ps in the space of wavenumber and the energy measured from the optical emission. Pth is the critical
excitation power to create E-Ps with the critical particle density for BEC. from [9].

shows the energy density of electric field along z-axis in the mode localized at the center of cavity, which is calculated

with T-matrix method. T-matrice and S-matrices are thus used to calculate various quantities related to wave propagations.

A short summary on BEC of three dimensional ideal boson gas is given in Appendix 8B. As the expression of the

critical temperature Tc in Eq. (8B.10), the lighter the effective mass is, and also the higher the particle density is, the

higher Tc becomes. Conversely, when the mass and the temperature are given, the critical particle density for BEC to

appear is defined.

Figure 8.25(a) illustrates the process of creation of a BEC with laser light irradiation on the cavity system. In the

beginning of the process, many E-Ps with high energies are excited with the lase pulse. They emit energies as phonons to

the crystal and are cooled down. If the laser power is higher than the critical value Pth, as cooling, a BEC is created and

a macroscopic number of E-Ps fall into the lowest energy state. In Fig. 8.25(b), the wavenumber-energy distributions of

E-Ps measured from light leakage, are given around the BEC critical power.

Here we need to be careful about the meaning of “BEC.” The present E-P system is composed of modes confined to a

2-dimensional plane and 3-dimensional BEC in App. 8B cannot be directly applied. In the space with dimension lower

than or equal to 2, no infinitely long range order does not exist as mentioned in Mermin-Wagner theorem[11]. Instead,

Berezinskii-Kosterlitz-Thouless (BKT) transition occurs and the order decays with some power of the distance[12]. Ac-

tually, the existence of BKT transition was evidenced in detailed analysis of experiments. And the observation of vortex-

pair is announced. There are so many reports on the BEC of E-P systems and the research is active both in theory and

experiment.
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Appendix 7A: Laser diode and waveguide

Here a short supplement on the structure of waveguide for laser diode (LD) is given. Let us consider the Fabry-Pérot

type LD with waveguide (cavity) length L. Let mj , n̄ and λ be an integer, the reflactive index, and the wavelength in the

vacuum respectively, then the condition of resonance is

mj
λ

n̄
= 2L. (7A.1)

Therefore the interval in the resonant wavelengths and that in the resonant frequencies are

∆λ =
λ2

2Ln̄
, ∆ν =

c

2Ln̄
, (7A.2)

respectively. In usual systems, λ ≪ L. When the amount of carrier injection is large and the luminescence is broad in

wavelength, precise determination of l is not requied monstly and multi-mode oscillation around a center wavelenth is

observed.

In the above, we write the light intensity simply as I0 exp(−α′z). Then α′ can be expanded as I(z) = I0 exp((g−α)z),
where g is the optical gain, α is the material specific absorption coefficient. Let us write the reflection ratio of the two

mirrors as R1 and R2 respectivly, then the condition for the amplification to occur is

R1R2 exp[(g − α)2L] > 1.

Thus the threshold optical gain gth for the total amplification is

gth = α+
1

L
ln

(
1

R1R2

)
. (7A.3)

The reflactive index n̄1 is common for both sides of the homo pn-junction, while the reflactive index in the active layer

n̄2 is larger than n̄1. z-axis is taken as in the figure and we consider the electromagnetic wave propagate along the z-axis.

The propagation mode is transverse electric (TE), i.e., the electric field along z axis is absent (Ez = 0). Also the mode is

assumed to be uniform in y direction. Thus we only need to consider the elecric field in y direction, which is determined

from [
∂2

∂x2
+

∂2

∂z2
− µ0ϵ0ϵ

∂2

∂t2

]
Ey = 0. (7A.4)

The change of magnetic permeability in semiconductors from the vacuum is little then we use µ0 here.

p-AlGaAs

p-AlGaAs

n-AlGaAs

n-AlGaAs

GaAs

GaAs
R1

R2

L

Fig. 7A.1 Left panel: Schematic band diagram of a pn-junction for LD. The active layer is non-doped GaAs and the
doping layers with larger band gap than that of the active layer, are AlGaAs. Right panel: Substrate edges are formed
by cleaving and work as half mirrors, which make the active GaAs layer into a cavity.
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Fig. 7A.2 Distribution of normalized electromagnetic en-
ergy density of fundamental mode on x (origin at the center
of active layer) in a cavity with an active (i-)layer of GaAs,
The parameter is the content of Al.

We treat the system as a waveguide and look for a solution of standing wave on x and propagating wave on z. Then we

find a solution inside the active layer (|x| ≤ d/2) as

Ey(x, z, t) = A cos(κx) exp[i(ωt− βz)], (7A.5)

where
κ2 = µ0ϵϵ0ω

2 − β2 = n̄22k
2
0 − β2, k0 =

ω

c∗n̄2
. (7A.6)

And outside the active layer (|x| > d/2), the solution should decay with |x| → ∞. The condition of connection at

x = ±d/2での Ey restricts the solution to

Ey(x, z, t) = A cos

(
κd

2

)
exp

[
−γ
(
|x| − d

2

)]
exp[i(ωt− βz)]. (7A.7)

Equation (7A.4) requires
γ2 = β2 − n̄21k20. (7A.8)

From Maxwell equation, the continuity in z-component of magnetic field at x = ±d/2 requires

tan

(
κd

2

)
=
γ

κ
=

√
β2 − n̄21k20√
n̄22k

2
0 − β2

. (7A.9)

The values of κ, γ and β are determined from the above equations. Because tangent is a π-periodic function, there are

multiple solutions, each of which forms a descrete mode.

Appendix 8A: Shot noise

We express information as a time-varying physical quantity and transmit it using various transport phenomena. Every

physical quantity has fluctuations and among them time varing ones are called noise *3. The noise can be classified into

external noise and intrinsic noise. While the former comes from “outside” of the system, the latter is included in the

physics of the quantity itself. Particularly in the case of electric current by electron flow, the representative intrinsic

noises are thermal noise (Johnson-Nyquist noise) that caused by random thermal motion of electrons and shot noise that

originates from the particle nature of electrons and the randomness in the flow.

Let us consider first the current by a single electron observed at time tp, expressed as Jp(t) = eδ(t − tp). From the

Fourier expansion

Jp(t) = e

∫ ∞
−∞

exp[2πif(t− tp)]df = 2e

∫ ∞
0

cos[2πf(t− tp)]df, (8A.1)

*3 Fluctuation means the distribution of observed values in multiple identical measurements and the parameter of sampling is not restricted to time.
An example of non-time dependent fluctuation is aperiodic conductance oscillations in disordered mesoscopic conductors(P. A. Lee and A. D.
Stone, Phys. Rev. Lett. 55, 1622 (1985)).
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we see that the current itself has an amplitude of 2e independent of frequency. In the infinitesimal frequency width df

at frequency f , we take the average ⟨· · · ⟩ over one period. Let us write the integrand in (8A.1) as jp and the current

flusctuation is δJp =
√
⟨j2p⟩df =

√
2edf .

Next we consider an electric current by two electrons observed at tp and tq , Jpq = e[δ(t − tp) + δ(t − tq)]. In the

Fourier transform of Jpq , there is a phase difference ϕ = f(tq − tp) between the two Fourier components from the two

delta-functions. The phase difference appears in the square of Fourier transformed function as an interference term:

j2pq = j2p + j2q + 2jpjq cosϕ. (8A.2)

The interference terms, however, cancel out when we add up many such two-electron currents and take the average

(represented as · · · due to the randomness in tq − tp, i.e. j2pq = 2(
√
2e)2. A current by many electrons randomized

on time is equivalent to this many sampling. Hence, let N be the time averaged number of flowing electrons then the

averaged current is J = eN and the current fluctuation over the bandwidth ∆f is

⟨(δJ)2⟩/∆f(≡ SPoisson) = N × 2e2 = 2eJ. (8A.3)

The square of current fluctuation is proportional to the average of current corresponds to the fact the variance of Poisson

distribution is the average (the number of electrons per unit time N ). This case of complete randomness is called Poisson
noise.

On the other hand, when the electrons flow with a constant interval, there is no fluctuation(timing of sampling would

result in shifts of e in counted charge, but this is not a random variation). This can be understood from Fourier analysis

of the current. Let us write the regular series of delta function with interval as τ as δτ (t). Because δτ (t) is a τ -periodic

function, the Fourier series expansion on the region [−π/τ, π/τ ] is possible as follows.

δτ (t) =
1

τ

∞∑
n=−∞

exp

(
−in2π

τ
t

)
. (8A.4)

Then the Fourier transform is written as

F{δτ (t)} =
∫ ∞
−∞

[
1

τ

∞∑
−∞

e−in(2π/τ)t

]
eiωtdt =

1

τ

∞∑
n=−∞

∫ ∞
−∞

exp

[
i

(
ω − n2π

τ

)
t

]
dt

=
2π

τ

∞∑
n=−∞

δ

(
ω − n2π

τ

)
=

2π

τ
δ2π/τ (ω), (8A.5)

that is, it is also a regular series in ω space and there is no continnum spectrum, which is the sign of random variation.

This means the disappearance of shot noise.

Appendix 8B: Bose-Einstein condensation

The Bose-Einstein Condensation (BEC) *4 is called a phase transitoin that is not due to the interaction between freedoms

(quantum statistical phase transition). Though phase transitions caused by interaction beween some freedoms can be

intuitively understood, there are different types of phase transitions, in which the transitions are caused as the results of

competition between various factors. A representative is BEC.

In the case of bosonic systems, in spite of the absence of “force” betwen the particles, there exists the tendency for

them to occupy the same quantum state originating from their statistical property. Let us see that for the case of two

*4 The acronym of BEC is applied to both Bose-Einstein Condensation and Bose-Einstein Condensate. In actual use, the confution is not serious.
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particles. We write a solution of the wave equation for two particles as ψ(x1,x2). For the composition of wavefunctions

of the system Ψ(x1,x2) that reflects the statistical property of bosons, the symmetrization of ψ results in

Ψ(x1,x2) =
1√
2
[ψ(x1,x2) + ψ(x2,x1)] . (8B.1)

Hence the probability of finding the system at (x1,x2) is

|Ψ(x1,x2)|2 =
1

2

[
|ψ(x1,x2)|2 + |ψ(x2,x1)|2 + ψ(x1,x2)

∗ψ(x2,x1) + ψ(x1,x2)ψ(x2,x1)
∗] . (8B.2)

This reveals that the last two interference terms intensify the probability of finding the system under the condition of

x1 = x2. Let us write the de Broglie wavelength as λ and the averaged distance between the particles as l. Then at low

temperatures λ ∼ l, this tendency of bosons makes many of them to occupy the state of k = 0, which behavior leads to

BEC. The above discusstion is expressed as

Ek =
p2

2M
= kBT,

∆p ∼
√
MkBT

∴ λ =
h

∆p
∼ h√

MkBT
. (8B.3)

λ elongates as 1/
√
T with lowering the temperature. And with growing of the overlapp between the single particle

wavefunctions makes them undistinguishable and the symmetrization of the wavefunction cause the condensation to the

ground state in the phase space (r,p). The phase transition to the condensate at a certain temperature is BEC.

8B.1 Bose-Einstein condensation of ideal gas

Let us consider spin 0 ideal Bose gas. For the Bose distribution

f(ϵ) =
1

e(ϵ−µ)β − 1
(β ≡ (kBT )

−1) (8B.4)

we define the point of µ = 0 as follows. At T = 0, from (8B.4) all the particles fall into the ground state, there we define

µ(T = 0) = 0. (8B.5)

At finite temperatures, let N be the number of particles in the system:

N =
∑
i

f(ϵi).

In the usual case we can write
N →

∫
f(ϵ)D(ϵ)dϵ. (?)

Here the number of particle at the ground state N0 should be

N0 =
1

e−µβ − 1
∼ 1

−µβ
= −kBT

µ
→ µ ∼ −kBT

N0
. (8B.6)

If we calculate the particle distribution on this line, for three dimensional ideal gas

ϵ(k) =
ℏ2k2

2m
then D(ϵ) = m3/2V√

2π2ℏ3
√
ϵ. (8B.7)

Therefore

N =
V m3/2

√
2π2ℏ3

∫ ∞
0

√
ϵ

e(ϵ−µ)β − 1
dϵ =

(mkBT )
3/2

√
2π2ℏ3

V

∫ ∞
0

√
x

ex−α − 1
dx, (8B.8)
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where x ≡ ϵβ and α ≡ µβ. We write the definite integral term as I(α), then I is

I(0) =

∫ ∞
0

√
x

ex − 1
dx =

√
π

2
ζ

(
3

2

)
∼ 2.6, (8B.9)

which decreases with increasing of the absolute value of α < 0. Then, in this logic, with T → 0 the maximum number

of N determined from (8B.8) goes to zeo. It is apparent that we have dropped something from the counting. That is, of

course, the macroscopic number of particles fall into the ground state.

From Eq. (8B.8),

I(α) =

√
2π2ℏ3

(mkBT )3/2
N

V
.

When this excessds (8B.9) at low temperatures the anomaly (increase in the particle number at the ground state.) occurs.

This critical temperature Tc is

T < Tc ≡
2πℏ2

mkB

[
N

ζ(3/2)V

]2/3
. (8B.10)

Here l ≡ (V/N)1/3 is the average distance between the particles and Eq. (8B.10) is interpreted as

l =
h

ζ(3/2)
√
2πmkBTc

∼ λ(T = Tc). (8B.11)

This confirms the statement that the BEC takes place when the average de Broglie wavelength is comparable with the

average particel distance.

Below Tc, we add the number of ground state particles N0 to Eq. (8B.8):

N =
V m3/2

√
2π2ℏ3

∫ ∞
0

√
ϵ

e(ϵ−µ)β − 1
dϵ+N0. (8B.12)

From Eq. (8B.6), N0 becomes a macroscopic number fro T < Tc, then µ = 0. Therefore

N0 = N − V m3/2

√
2π2ℏ3

∫ ∞
0

√
ϵ

eϵβ − 1
dϵ = N

[
1− V

N

(mkBT )
3/2

√
2π2ℏ3

I(0)

]
= N

[
1−

(
T

Tc

)3/2
]
. (8B.13)

This is just like a spontaneous magnetization rapidly grows to finite values below the critical temperature in the ferro-

magnetic transition.

The total energy of the system for T < Tc is calculated as

E =
V m3/2

√
2π2ℏ3

∫ ∞
0

ϵ3/2

eβϵ − 1
dϵ (8B.14)

ここで T < Tcでは
∫ ∞
0

x3/2

ex − 1
dx =

3
√
π

4
ζ

(
5

2

)
より

E =
3

2
ζ

(
5

2

)( m

2πℏ2
)3/2

V (kBT )
5/2. (8B.15)

Then the heat capacity at constant volume is calculated as

Cv =
15

4
ζ

(
5

2

)( m

2πℏ2
)3/2

V k
5/2
B T 3/2. (8B.16)

Cv shows a cusp at Tc indicating that this is the phase transition.

8B.2 Bosonic stimulation

Here we have a look at bosonic stimulation for N particles, which is, though, essentially the same as what has been

mentioned on the case of two particles in Sed. 8.6.1. As we have seen, the bosonic stimulation works as if it is a driving
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Fig. 8B.1 Specific heat at constant volume of three di-
mensional ideal Bose gas as a function of temperature. Tc

is the critical temperature of the BEC.

force in BEC or laser oscillation. Let us consider a identical boson system the case a particle in state φini gets perturbation

and transitions to other single particel state φfin. Now the problem is the difference in the transition probabilities to the

state occupied with N particles and to the empty state. We write the initial state as

ψ
(i)
+ (r1, · · · , rN+1) =

1√
(N + 1)N !

∏
l nl!

N∏
m=1

R̂m,N+1det
(+){φi(rj)}φini(rN+1). (8B.17)

The symbol det(+) represents permanent, which is obtained by making the signs of all the terms into +. The final

state ψ(f)
+ is obtaned by exchanging φini with φfin. Let the matrix elements of perturbation Hamiltonian be a, i.e.

⟨φfin|Ĥ1|φini⟩ = a.

Assuming that φi (i ≤ N) is orthogonal to φfin, among ⟨ψ(f)
+ |Ĥ1|ψ(i)

+ ⟩, number of terms that give non-zero a is

(N+1)N !
∏

l nl!. This is equal to the sqare of the denominator in normalization constant. Then finally ⟨ψ(f)
+ |Ĥ1|ψ(i)

+ ⟩ =
a.

On the other hand, assuming all of φi (i ≤ N) are φfin, we can write

ψ
(i)
+ =

1√
(N + 1)

N∏
m=1

R̂m,N+1φfin(r1) · · ·φfin(rN )φini(rN+1). (8B.18)

All of the N ! terms in det(+) are φfin(r1) · · ·φfin(rN ) and devided by N ! in the denominator of normalization constant

to 1. However the final state is
ψ
(f)
+ = φfin(r1) · · ·φfin(rN )φfin(rN+1). (8B.19)

Then we get ⟨φfin|Ĥ1|φini⟩ = a
√
N + 1, and from the Fermi’s golden rule, the transition probability should be N + 1

times larger.
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8.7 Single electron effect and quantum confinement

In the end of the chapter, we will have a look on single electron effect and quantum confinement to zero-dimensional

system in quantum dots.

8.7.1 Single electron effect

In the transport through quantum dots the first importantce is on the single electron effect. The single electron effect

is in very short, the the electrostatic energy of an electrostatically isolated system changes with adding(extracting) an

electron, and when this increase is larger than the thermal fluctuation, the tunneling of the electron is prohibited. This

effect is called Coulomb blockade. The electrostatic energy of a quantum dot is described with a capacitance C of the

dot and the electrostatic energy of charging by a single electron is Ec = e2/2C, which is finite and even can be large for

small C. As a first approximation we separates the electronic states into two: states inside the dot and those outside the

dot. Hence the number of electrons in the dot takes an integer (descrete value). There are two possible simplest transport

processes of single electrons from a source to a drain: the dot catches an electron from the source then releases one to the

drain, and conversely the dot releases one to the drain first, then catches one from the source.

Let us take the simplest constant interaction model, in which any pair of electrons in the dot has the same (constant)

Coulomb interaction energy U . Then the total Coulomb energy in the dot with N electrons is

EcN =NC2U =
N(N − 1)U

2
=
U(N − 1/2)2

2
− U

8
. (8.59)

The variation in the Coulomb energy with the transition N → N + 1 is

∆E+(N) = (N − 1)U. (8.60)

mN

mN

mN+1

mN+1

mN+2

mN-1

mN-1

EF EFEF EF

Vg

Vg

U

Vg

G

(a) (b) (c)

Fig. 8.26 (a) Schematic diagram of chemical potentials in the constant interaction model, in which the chemical
potentials are descrete with the same distance U (the amplitude of two-electron interaction). At zero-bias, when none
of the descrete chemical potentials meets the Fermi level EF in the source and drain, a finite energy is required for an
electron to tunnel, which prohibits the tunneling (Coulomb blockade). (b) When the origin of the descrete chemical
potentials is shifted by the gate voltage Vg and one of them hitsEF, the tunneling thus the electric conduction becomes
possible. (c) When Vg is swept, a repetition of processes (a) and (b) results in the series of sharp peaks with a regular
interval in the quantum dot conductance G (Coulomb oscillation).
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If we ignore other kinds of energy,∆E+(N) should be the electrochemical potential ofN -th electron and from Eq./ (8.60)

we see that the electrochemical potentials are ordered with the same distance being proportional to N .

8.7.2 Coulomb oscillation, Coulomb diamond

Let us write the electrochemical potential of the dot with N -electrons µN , and let N0 be the electron number when

the dot is in equilibrium with the electrodes, then µN0 < EF < µN0+1. When µN0 is equal to EF (Fermi energy in the

electrodes), electrons can go into or out from the dot with tunneling from the electrodes, then at zero source-drain voltage

(Vsd = 0) the electric conductance (G(0)) takes a finite value. When µN0
does not hit EF, the tunnleing of an electron

between the electrodes and the dot requires a finite energy and is prohibited (Coulomb blockade). As in Fig. 8.26(a),

(b), that condition of finite G(0) appears with a constant interval. Hence G(0) forms regular peaks for a sweep of Vg as

shown in Fig. 8.26(c), which is called Coulomb oscillation.

The constant interaction model can also be described as a simple circuit model illustrated in Fig. 8.27(a). Here the

charge of an electron is −e.

Q1 +Q2 = −eN, Q1 = CVd, Q2 = Cg(Vd − Vg), (8.61)

and the charging energy is

E =
1

2
CV 2

d +
1

2
Cg(Vd − Vg)2, (8.62)

in which the second term is the integral of the work done by the power source connected to the gate electrode from

voltage 0 to Vg. When we thermodynamically treat the problem whether the process proceeds or not under the condition

that some system outside automatically provides energy, we need to consider enthalpy, which in the case of the pressure

of atomosphere, written as H = U − PV . Here PV , the product of pressure and volume, corresponds to the automatic

energy supply corresponding to the second term in Eq. (8.62). Then from (8.61) and (8.62),

H(N,Vg) =
(Ne− CgVg)

2

2(C + Cg)
. (8.63)

If we plot this as a function of Vg, as shown in Fig. 8.27(b), parabollas are lined up corresponding to N and the Coulomb

peaks appear at the crossing points of the prabollas.

Next we consider the case that the gate voltage is fixed, the drain is grounded, and the source voltage is swept. The

simplest model for such situation is shown in Fig. 8.28. At the positions of Coulomb peaks, the topmost chemical

potential of the dot hits the Fermi level in the source and drain electrodes. The number of electrons differs by 1 at (a)

and at (c). When Vg is at (b), the current is blocked at zero bias. Then if we increase the source voltage (decrease EF in

the source), and the chemical potential position used for the conduction at (a) goes in between the Fermi levels of source

Vg

dot

C

CgQ1

Q2
-Ne

Vd

Vg

H N V( , )g

N=0 1 2

J

Fig. 8.27 (a) Simple model of the sin-
gle electron charging in a quantum dot
described with a self capacitance C and
a gate capacitance Cg. (b) Enthalpy
H(N,Vg]) calculated in the model as a
function of Vg.

(a) (b)
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and drain, a finite conductance appears. Then a conduction appears outside the yellow parallelogram, inside which the

conduction is Coulomb blocked. The parallelogram is called Coulomb diamond *1.

The color plot in Fig. 8.29 shows an example of measured Coulomb diamonds. The sizes of the diamonds are not the

same mostly because of the quantum confinement effect explained in the next section. There also should be the variation

in the dot size by Vg and the variation in the effective capacitance. Various other effects should affect the sizes of the

diamonds and conversely from the size we can know various physical propaties of the dot[2].

We see some line structures outside the diamonds, which come from the quantum confinement and the level descrete-

ness (next section). There are also vague tile-like structures outside the diamond, which is called Coulomb staircase and

due to the increase in the number of possible chemical potential levels. In the experiment, we also see that the vertical

boundaries have a bit slanted. This is due to the capacitance between the source electrode and the dot. The capacitance

mediates some of the electric force lines from the source to the dot.

Vg

Vsd

(a)

(b)

(c)

(d)

(e)

Fig. 8.28 Simple description of Coulomb diamonds. In
the present case the bias voltage is applied to the source
electrode (the drain is grounded). Yellow colored region is
a Coulomb diamond (Coulomb blocked region). (a), (c) At
zero-bias condiction, electric conduction occurs with tun-
ing the dot chemical potential through the gate voltage. In
(b), the system is out of the above resonance condition and
the conduction is Coulomb blocked. At finite bias voltages
on the source, the conduction appears, in (d) with the use of
the chemical potential position that used in (a), vice versa
in (e). Finally, the conduction is prohibited in the yellow
colored region.
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Fig. 8.29 Coulomb diamond structure appeared in the transport through a quantum dot made from 2DEG at a het-
erointerface. The abscissa is the gate voltage Vg. The upper panel shows the zero-bias conductance, which shows
Coulomb oscillation. In the lower, the conductance is color plotted on the plane of Vg-Vsd. Clear diamond structures
are observed. The parallel lines outside the diamonds are from the conduction through excited states in the dot.

*1 The parallelogram becomes a diamond for symmetric configuration of voltage sources.
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Fig. 8.30 Coulomg oscillation in a vertical type quantum dot. (a) Dot current as a function of the gate voltage. There
is no Coulomb peak for further negative Vg than the region indicated as N = 0. The inset illustrates the sample
structure. (b) Distances between the Coulomb peaks as a function of the electron number. The data are from [5].

8.7.3 Quantum confinement

Next we consider the case we cannot ignore the descreteness of the orbital energy due to quantum confinement. We

number the orbital energy levels from the ground state (different numbers are assigned to all the degenerate states). Let

the energy of i-th state be ϵi. We also ignore the terms that do not have relation with N . Then enthalpy H is

H(N) =
(Ne− CgVg)

2

2Cs
+ ϵN . (8.64)

The crossing points are obtained as

∆H(N,N + 1) = H(N + 1)−H(N) =
e

Cs

{(
N +

1

2

)
e− CgVg

}
+∆ϵN ∆ϵN ≡ ϵN+1 − ϵN

VgX(N,N + 1) =
1

Cg

{(
N +

1

2

)
e+

Cs

e
∆ϵN

}
, (8.65)

which has a shift from the Coulomb peak position ∆ϵN as in Eq. (??). From the shift we can get the energy spectrum in

the quantum dots. This method is called addition energy spectroscopy. Because in the case of degeneracy, ∆ϵN = 0 and

from the position of Kramers degeneracy, we can perform quantitative spectroscopy with this as a standard.

Let us have a look on a famous example, in which the researchers realized a two-dimensional harmonic potential. In

this experiment, a two-dimensional quantum well was inserted into barrier layers and metallic doped “electrode” layers

(source and drain) were placed at the top and the bottom of a cylindrical specimen (vertical type quantum dot). The

confinement along vertical direction is strong and we only consider the ground state for this direction. Figure 8.30(a)

shows the Coulomb oscillation and there is no peak in the left side (negative Vg) of a small peak at about −1.6 V, which

fact indicates that the dot is empty in this region. Then we can assign N = 0 to this region and then we can also assign

the other number of electrons to blockade regions.

We review two-dimensional harmonic oscillator shortly. The two dimensional coorinate is take to xy. The in plane

confinement potential V (x, y) and the descrete eigenenergies can be written with the parameter ω0 representing the

strength of the potential as

V (x, y) =
mω2

0

2
(x2 + y2), Enh

= ℏω(nh + 1) (nh = 0, 1, 2, · · · ), (8.66)
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which have an equidistance. Bound eigenstates of an isotropic potential can be indexed by the quantum number of angular

momentum l and the radial quantum number nr. In the above case nh = 2nr + |l|. The number of possible combinations

(nr, l) is nh + 1, then with spin degeneracy, Enh
has 2(nh + 1) fold degeneracy.

As a simplest analysis of the data in Fig. 8.30(a), the peak intervals are plotted versus the number of electrons N in

Fig. 8.30(b). Clear peaks are observed at N = 2, 6, 12. This reflects the fact that the bound states in two dimensional

harmonic potential take shell structures at
∑nh

j=0 2(nh + 1) = (nh + 1)(nh + 2). In the simplest model, the shift of

Coulomb peaks should correspond to ℏω0, hence the peak height in Fig. 8.30(a) should be common. In the experimental

data, however, there is a strong tendency that the peak interval decrease with the number of electrons. The tendency is

considered to be mainly due to the increase in the effective capacitances. We also see small peak structures at the middle

of the clear peaks N = (nh + 2)2 (4,9). This comes from Hund’s rule, which tells that the states should be occupied

by electrons as to maximize the total spin due to the exchange energy. With quantum dots we can perform experiments

knowing the number of electrons and informaiton on potential, quantum dots are sometimes called as “artificial atoms.”

Let us see the effect of magnetic field vertical to the 2d-plane. Here we ignore the Zeeman effect. The effect of

magnetic field on the orbitals appears in two terms in Hamiltonian. First is the inner product of angular momengum l

and the field flux density vector. Second is the confinement into two-dimensional harmonic potential due to the cyclotron

motion. The second effect modifies the effective confinement potential as

Veff(x, y) =
mΩ2

2
(x2 + y2), Ω ≡

√
ω2
0 + (ωc/2)2, (8.67)

where ωc = eB/m is the cyclotron frequency for magnetic flux density B. Then the energy corresponds to (nr, l) is

E(nr, l) = ℏΩ(2nr + |l|+ 1) + ℏωcl/2. (8.68)

For general finite fields the orbital degeneracy is lifted by the angular momentum. The eigenstates with energies in (8.68)

are called Fock-Darwin states. The energies in Eq. (8.68) vary with magnetic field as plotted in Fig. 8.31(a). We write
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Fig. 8.31 (a) Energy levels of Fock-Darwin states (from the ground state to 10th excited state at zero field) as a func-
tion of magnetic field. They converge into Landau levels at high fields. Line colors are assigned from corresponding
Landau levels. Thick red line is the trace of ground state for electron number N = 12. (b) Coulomb peak positions of
the quantum dot in Fig. 8.30 versus vertial magnetic field. Black dots are calculated from Eq. (8.69), which represents
the position of last crossing point for fixed N . The potential parameter ω is determined from the peaks N = 3 ∼ 6.

E12-5



nL ≡ nr + (|l| + l)/2 and take the limit B → ∞, to obtain E(nr, l) → ℏωc(nL + 1/2). That is, they converge into

Landau quantized levels.

As shown in Fig. 8.31(a), the levels depend on magnetic field with many crossings. The ground state of electrons with a

fixed number is given by packing electrons from lower levels. The line of topmost level accommodating electrons should

have kinks at such crossings. In Fig. 8.31(a), one of such a line is indicated as a thick red line for N = 12. The series

of kinks ends up at the field where all the electrons are accomodated into the states corresponding to the lowest Landau

level. The last crossing is between the line going to the lowest Landau level for N and the line for (nr, l) = (0, 1).

Because of the spin degeneracy (ignoring Zeeman splitting), the former is given as (nr, l) = (0,−int(N/2)) (int(x) is

the largest integer smaller than or equal to x). This condition is given as

2ℏΩ+ ℏωc/2 = ℏΩ(int(N/2) + 1)− ℏωcint(N/2)/2

∴
(ωc

ω

)2
= int(N/2)− 2 +

1

int(N/2)
. (8.69)

In the first approximation the Coulomb peak distance is constant and ignoring the last term for large N , the last crossing

points depends on magnetic field prabolically. Actually such behavior is observed in Fig. 8.31(b). If we determine ω to

fit Eq. (8.69) to kinks of N = 3 ∼ 6, and put dots to the predicted end points of kinks, they agree nicely with the data up

to N = 14.

8.8 Quantum dots and quantum circuits

Quantum dots (QDs) can be connected with quantum wires to form quantum circuits. A QD affects the circuit con-

ductance though the transmission probability and the phase shift as characteristics of resonant scattering. Here the effect

of single electron charging is only on the positions of chemical potentials for resonant scatterings. Hence in the simplest

approximation, QDs are treated simple resonators and we do not consider the single electron effect explicitly.

8.8.1 Quantum dot and scattering experiment

Transport in mesoscopic systems can be viewed as scattering experiments in solids. We can see that clearly in quantum

circuits with QDs.

q=2

1

0.5

0

ε =(E−E0)/Γ

T
 (

ε)

-10 -5 0 5 10
0

1

2

3

4

5
For example, in the scattering of electrons with an atom, the Fano

resonance occurs as the interference between the incident wave with

continuous energies and the wave scattered by discrete atomic lev-

els. And the same effect is observe in circuits with QDs. In the Fano

effect, the scattered wave gets rapid phase shift by π over the reso-

nance position and the interference results in distorted lineshape in

the resonance. There the energy dependence of transmission coeffi-

cient is given as

T (ϵ̃) ∝ (ϵ̃+ q)2

ϵ̃2 + 1
, ϵ̃ ≡ E − E0

Γ
. (8.70)

Here q is called Fano parameter, which determines the lineshape as

in the left figure. The larger absolute value in q results in the larger

asymmetry and q = 0 gives a symmetric dip (anti-resonance).

Here we do not go into the derivation of (8.70)[2]. Rather we modelize the circuit with S-matrices and obtain the

lineshape numerically. One-dimensional band of quantum wires are assigned to “continuum states” and quantum confined
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Fig. 8.32 (a) Upper: Double barrier model. Lower: Transmission coefficient (red) and phase shift (blue) of the
model in the upper panel. k corresponds to gate voltage. The reflaction coefficient of a barrier is 0.7. (b) Color
plot of conductance of the system shown in the right upper inset (AB ring+QD) versus plane of k (gate voltage) and
magnetic flux ϕ piercing the ring. The conductance is higher for black → red → yellow. In the AB ring model in
Fig.8.19(a), Sw is replaced with the S-matrix obtained in (a), and a finite transmission coefficient is introduced into
SAB. Reflection at the dot barrier is 0.7 and that in the reference arm is 0.82. (c) Transmission of (b) is plotted versus
k for ϕ/ϕ0 =0, 0.01, 0.19, 0.29, 0.38, 0.48 from down to up.

discrete states in a QD are assigned to “discrete states.” To have interference between incident wave and scattered wave,

the incident wave is devided into two, one of which goes through a QD and the ohter directly goes to the outlet. A QD is

formed as a one-dimensional double barrier structure. The model is described by S-matrices as in Fig. 8.32(a). That is,

the barrier and the dot S-matrices are

Sb =

(
cos θ i sin θ
i sin θ cos θ

)
, Sd =

(
0 eikd

eikd 0

)
. (8.71)

Here k is the wavenumber representing kinetic energy, which corresponds to a gate voltage. In this model, the transmis-

sion coefficient and the phase shift are calculated from the composite S-matrix as shown in Fig. 8.32(a), where π phase

shift at the resonance peak is clearly observed. This is common for resonance. Resonance is a response of system, in

which a pole exists in the region Re(z) < 0 on the complex z-plane. The angle from the pole to a point on the real axis

changes from −π to 0 with the movement of the point from −∞ to +∞.

As in Sec. 8.5.4, an S-matrix for two junctions with three channels is written as

St =

 0 −1/
√
2 −1/

√
2

−1/
√
2 1/2 −1/2

−1/
√
2 −1/2 1/2

 . (8.72)

Also for the AB phase, we insert an S-matrix

SAB =

(
0 eiθAB

e−iθAB 0

)
, θ ≡ 2π

ϕ

ϕ0
=
e

ℏ
ϕ (ϕ is flux through the ring.) (8.73)

to one of the parallel paths. And the QD represented in (8.71) is inserted into the other path. Though thus obtained ana-

lytical form of transmission coefficient is complicated, numerical calculations shows clear Fano effect as in Fig. 8.32(b),

(c). The direction of the lineshape distortion (parameter q in (8.70)) changes with the period ϕ0 as shown in (c). This

is natural consequence of the interference and evidences that the distortion comes from the rapid π change in the phase

shift appeared in Fig. 8.32(a).
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Fig. 8.33 (a) Color plot of conductance of an AB ring with a QD on one of the paths versus gate voltage and magnetic
field. (b) Scanning electron micrograph of the sample. The gates with × mark are not used. (c) Coulomb oscillations
at three representative magnetic fields[1]．

Figure 8.33 shows results of an experiment. The Fano lineshape and Fano parameter vary aginst the flux piercing the

AB ring as expected.

8.8.2 Qauntum dot and the Kondo effect

The Kondo effect in QDs originates from the indirectinteraction between electrons in electrodes via localized states.

We do not go into the details due to time limitation. In Appendix 8C, very short summary is given. At low temperatures

most of the freedoms die out and conductors are like empty cavities (electron “waveguides” are also cavities just like

microwave wavefuides). An exceptional case comes from the existence of energy-degenerated freedoms just at the

Fermi level. Fermi spheres themselves are such exceptions but if there exists another degenerated freedom exists and the

freedom has quantum entanglement with electrons at the Fermi level, the Kondo effect appears. The Kramers degeneracy

due to time-reversal symmetry, i.e. spin degeneracy is an easiest example of such degenerated freedom. Hence QDs with

odd number of electrons are convenient for the experiments because the topmost level is occupied by a single electron

and has spin 1/2.

The Kondo effect first appeared as increase of resistance in diluted magnetic alloys with decreasing temperature. Jun

Kondo gave theoretical solution to this problem and simultaneously found the divergence in the second order perturbation.

This Kondo problem became a big problem of physics beyond the frame of solid state physics. For the problem,

Anderson impurity model was proposed, renormalization group theory was developed. The renormalization group

theory was applied to quark confinement problem in particle physics and led to the concept of asymptotic freedom and

the establishment of quantum chromodynamics.

As shown in App. 8C, in very short, the Kondo effect in QDs is anomalous enhancement of tunneling probability

from Hamiltonian HT by many body resonance between degenerate freedom and the Fermi surface. In the case of

QDs, the process expressed by HT is the transmission of electrons through the QDs. That is, enhancement of HT

means enhancement of conductance. If we consider the anaoly with double barrier resoance, the Kondo many body

resonance anomalously enhances the conductance and even when the original conductance is very small due to the
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Fig. 8.34 (a) Illustration of electric conductance through a quantm dot as a function of temperature with the emer-
gence of the Kondo effect. Solid blue line is for odd number of electrons in the QD. In this case the Kondo effect
emerges and at high temperatures the conductance is enhanced in proportion to lnT as the temperature decreases,
whereas below TK the enhancement is saturated to reach the unitary limit 2e2/h. Green broken line is for even num-
ber of electrons and the conductance goes to zero with the Coulomb blockade. (b) The Kondo effect appeared in the
conduction experiment of a QD. The parameter is temperature and the arrows indicate the direction of lowering the
temperature, with which the conductance increases in the valleys with odd nubmer of electrons and decreases in those
with even number of electrons[6].

Coulomb blockade, the final transmission probability should be 1 (unitary). In this case, the conductance is, from the

Landauer formula, the universal value 2e2/h.

A characteristic feature of the Kondo effect is that it is always in resonance with the Fermi surface. Therefore roughly

speaking in the Coulomb valleys with odd number of electrons the conductance is 2e2/h and in those with even number of

electrons the conductance is zero. In Fig. 8.34, we show conceptual behavior and actual observation of QD conductance

around the temperature characteristic of the Kondo effect (Kondo temperature, TK).

Appendix 8C: The Kondo effect

We consider a QD with the impurity Anderson model, in which only one electrons exists in the dot (n = 1) as the

ground state. The dot has spin 1/2, can be viewed as a kind of magnetic impurity. We write the energy required to add an

electron as ∆E+, that required to extract one as ∆E−. Then

∆E+ = µ2 − µ = ϵ0 + U − µ, ∆E− = µ− µ1 = µ− ϵ0. (8C.1)

These energies give the state-allowance-times h/∆E± from the uncertainty relation for the excited states. There should

be, then, second order tunneling processes with HT by utilizing these excited states as the intermediate states. The

probabilities of such processes are
−γ∗LγR
∆E−

,
γ∗LγR
∆E+

. (8C.2)

Such tunnel processes of higher order is called co-tunneling. The Kondo effect can also be regarded as a phenomenon in

which the tunnel probability amplitude due to co-tunneling increases anomalously.

First, the Hamiltonian
H = Hleads +Hdot +HT (8C.3)
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is unitary-transformed as {
ckσ = (γ∗LcL,kσ + γ∗RcR,kσ)/γ

c̄kσ = (−γRcL,kσ + γLcR,kσ)/γ
, γ2 ≡ γ2L + γ2R (8C.4)

Then the tunnel Hamiltonian is transformed as

HT =
∑
k,σ

[(γLc
†
L,kσ + γRc

†
R,kσ)dσ + h.c.]

=
∑
k,σ

[γc†kσdσ + h.c.], (8C.5)

in which we can ignore c̄kσ because it has nothing to do with the coupling to the dot. This transformation renormalizes

the two electrodes model of QD into “a QD and a system with a Fermi surface” model. It formally equalizes a QD for

transport experiment with electrodes to a magnetic impurity in a metal *2．

The transformed Anderson impurity model Hamiltonian is written as

H =
∑
kσ

ϵkc
†
kσckσ +

∑
σ

ϵdd
†
σdσ +

∑
kσ

(γc†kσdσ + h.c.) + Ud†↑d↑d
†
↓d↓. (8C.6)

The condition for having single electron in the ground state of the dot is

ϵd < EF < ϵd + U. (8C.7)

Under the condition, we regard the interaction term (the third term with Vkd) of the conduction electron (s-electron) in

the electrode and the dot electron (d-electron) as a perturbation. The first order of perturbation does not exist because it

changes the number of d-electron, and the leading order is second. This means we need to consider co-tunneling process

as of the leading order.

There are following four perturbation processes on the state in which the d-electron has up-spin ↑. The contraint is that

only ↓-electron is allowed to enter the dot by Pauli principle. We write the unperturbed state as ψ↑.

1) k ↓→ d ↓→ k′ ↓
2) k ↓→ d ↓，d ↑→ k′ ↑ (down-spin electron goes into the dot then up-spin electron goes out)

k

k’

d

k

k’

d

k

k’

d

k’

d

k

k’

d

k’

d

1)

2)

3)

4)

Fig. 8C.1 2nd order possible tunneling processes
for the initial states of an up-spin electron inside the
dot These 1)∼4) correspond to 1)∼4) in Eq. (8C.8),
(8C.9) respectively.

*2 There is a difference in the physical meaning. In the case of magnetic impurities, c†
k′σckσ means impurity scattering. In the case of QDs,

on the other hand, it represents transmission and reflection via co-tunneling. Another difference is that in the case of impurities, k should be
three dimensional vectors. This can be, however, transformed to one-dimensional problem with partial wave expansion of scattered wave, and
mathematical equivalence is kept. This method is used to find the exact solution based on the Bethe ansatz.
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3) d ↑→ k′ ↑，k ↑→ d ↑ (up-spin electron goes out then up-spin electron goes into the dot)

4) d ↑→ k′ ↑, k ↓→ d ↓ (up-spin electron goes out then down-spin electron goes into the dot)

Effective Hamiltonians for these processes are

1)→ − γ2

∆E+
c†k′↓d↓d

†
↓ck↓, 2)→ − γ2

∆E+
c†k′↑d↑d

†
↓ck↓, (8C.8)

3)→ γ2

∆E−
d†↑ck↑c

†
k′↑d

†
↑, 4)→ γ2

∆E−
d†↓ck↓c

†
k′↑d↑. (8C.9)

Just same as above, four perturbation processes exist for the case that ψ↓ is the initial state. The effective Hamiltonians

for these processes are obtained by the replacement ↑↓→↓↑. These terms are summed up to be

∑
kσ

γ2

∆E−
d†σdσ +

∑
kk′σ

γ2

∆E+
c†k′σckσ

+
∑
kk′

γ2
(

1

∆E+
+

1

∆E−

)
(c†k′↑ck↑d

†
↑d↑ + c†k′↓ck↓d

†
↓d↓ + c†k′↑ck↓d

†
↓d↑ + c†k′↓ck↑d

†
↑d↓).

(8C.10)

The first term represents process 3) for the case of k = k′. Because k is outside the Fermi surface, at low temperature

under Fermi degeneracy condition, we assume ckc
†
k = 1, c†kck = 0. The second term is for process 1). To obtain this

term we use the fact that from d↓ψ↑ = 0, we can write d↓d
†
↓ = 1, d†↓d↓ = 0. The residual part of process 3) and those of

2) and 4) are expressed in the third term.

Here we transform the above to

c†k′↑ck↑d
†
↑d↑ + c†k′↓ck↓d

†
↓d↓ =

1

2
(c†k′↑ck↑ − c

†
k′↓ck↓)(d

†
↑d↑ − d

†
↓d↓) +

1

2
(c†k′↑ck↑ + c†k′↓ck↓)(d

†
↑d↑ + d†↓d↓).

Because the spin operator of the dot Ŝ is expressed as

Ŝz =
1

2
(d†↑d↑ − d

†
↓d↓), Ŝ+ = d†↑d↓, Ŝ− = d†↓d↑,

the summation of the second and the third term in (8C.10) is rewritten to the summation of the following two Hamiltonians

(Hd,Hsd):

Hd =
∑
kk′σ

γ2
[

1

∆E+
− 1

2

(
1

∆E+
+

1

∆E−

)]
c†k′σckσ, (8C.11)

Hsd =
∑
kk′

γ2
[

1

∆E+
+

1

∆E−

] [
Ŝ+c

†
k′↓ck↑ + Ŝ−c

†
k′↑ck↓ +Ŝz(c

†
k′↑ck↑ − c

†
k′↓ck↓)

]
. (8C.12)

Let us define J as

J = γ2
(

1

∆E+
+

1

∆E−

)
, (8C.13)

then

Hd =
∑
kk′

(
−J
2

)
c†k′σckσ (8C.14)

is ordinary potential scattering, which does not depend on spin. On the other hand,

Hsd = J
∑
kk′

[
Ŝ+c

†
k′↓ck↑ + Ŝ−c

†
k′↑ck↓ +Ŝz(c

†
k′↑ck↑ − c

†
k′↓ck↓)

]
= J

∑
j

[
(Ŝx + iŜy)(ŝxj − iŝyj) + (Ŝx − iŜy)(ŝxj + iŝyj) + 2ŝzjŜz

]
= 2J

∑
j

ŝj · Ŝ

(8C.15)

is expressing the exchange interaction between spin of conduction electrons sj and spin on the dot. This is often called

sd-Hamiltonian, which originally expresses interaction between electron spin (s) and localized spin (in many cases, in
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k
k’

d d

HT

Fig. 8C.2 Diagram representing electron scattering k → k′ by a dot
in the first order of HT . The time flows from the left to the right. d
represents the dot and the up/down arrows indicate spins.

d-orbital, then d-spin) in diluted magnetic impurity system. Now with unitary transformation in (8C.4), we can also apply

the sd-Hamiltonian to QD-electrode systems.

Then as transmission Hamiltonian HT we ignore potential scattering Hd and take only Hsd. Then with adding the

electorons in electrodes, the effective Hamiltonian

Heff =
∑
kσ

ϵkc
†
kσckσ + J

∑
kk′

[
Ŝ+c

†
k′↓ck↑ + Ŝ−c

†
k′↑ck↓ +Ŝz(c

†
k′↑ck↑ − c

†
k′↓ck↓)

]
. (8C.16)

is obtaiend (Schrieffer-Wolff transformation).

Kondo calculated the scattering amplitude by the effective Hamiltonian (8C.16) to the second order in Born approxi-

mation. That is, he treated J in (8C.16) as the parameter of perturbation and calculated up to the quadratic term of J (the

forth term of γ). The operator of transition between the left and right electrodes is given as

T̂ = HT +HT
1

ϵ−H0 + iδ
HT + · · · . (8C.17)

The tunnel probability of L→ R is formally written as

ΓL→R = 2
∑
k,k′

2π

ℏ

∣∣∣⟨Rk′|T̂ |Lk⟩∣∣∣2 δ(ϵRk′ − ϵLk)f(ϵLk − µL)[1− f(ϵRk′ − µR)]. (8C.18)

Let us treat the scattering |k ↑⟩ → |k′ ↑⟩. Perturbation to the first order of J is expressed in the diagram shown in

Fig. 8C.2 and calculated as
⟨d ↑; k′ ↑ |T̂ (1)|d ↑; k ↑⟩ = J/2. (8C.19)

The conduction process HT requires two consecutive tunnelings and this corresponds to the second order of γ (J is thus

proportional to γ2), and co-tunneling process in (8C.2).

There are three types of processes in the second order of J ⟨d ↑; k′ ↑ |T̂ (2)|d ↑; k ↑⟩ as shown in Fig. 8C.3 and

Fig. 8C.4. The first and second processes are not associated with spin flip and they are distinguished as electron process

(Fig. 8C.3(a)) and electron-hole pair process (Fig. 8C.3(b)) for the intermediate propagation process *3．The contribution

of these two terms is calculated as∑
q

(
J

2

)2
1

ϵ− ϵq + iδ
[1− f(ϵq)] +

∑
q

(
J

2

)2 −1
ϵ− (2ϵ− ϵq) + iδ

f(ϵq)

=
∑
q

(
J

2

)2
1

ϵ− ϵq + iδ

=

(
J

2

)2 ∫ D

−D
dϵ′ν

1

ϵ− ϵ′ + iδ
ν : Density of states

=

(
J

2

)2

ν

[
ln

∣∣∣∣D + ϵ

D − ϵ

∣∣∣∣− iπ] . (8C.20)

*3 Here “hole” state refers to Fermi liquid lacking single electron. This is largely different from the “hole” state defined as the state created by
extracting an electron from valence band (Sec. 3.1.2).
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k k’

d d

q

d d

k k’

q
HT HT

HT HT

(a) (b)

Fig. 8C.3 Non spin-flip
processes for 2nd order
of HT . (a) Process with
electron excitation as the
intermediate state. (b) In
the intermedate state of this
process, an electron-hole
pair propagates. The hole is
annihilated by recombination
with an electron in the
electrode.

k k’

d d

q

d d

k k’

q??

HT HT

(a) (b)

Fig. 8C.4 Processes with
spin flipped intermediate
stats in the second order
of HT . (a) Process with
electron excitation as the
intermediate state. This
process is absent due to
the angular momentum
conservation. (b) In the
intermedate state of this
process, an electron-hole pair
propagates.

The result does not show any anomaly as a consequence of electron-hole symmetry. Here as for the electronic states in

metal, we have adopted a rough (or abstract) approximation that a band spread over [−D,D] on energy with a uniform

density of states ν. Such a “toy” model is often good to see the essence of phenomenon.

In the processes shown in Fig. 8C.4, spin flips occur in the intermediate states. However in (a), the dot spin should be

3/2 for the conservation of angular momentum, and this process is prohibited. In (b), an electron-hole pair propagates in

the intermediate state and the contribution is calculated as∑
q

J2 1

ϵ− ϵq + iδ
f(ϵq) = J2ν

∫ D

−D

1

ϵ− ϵ′ + iδ
f(ϵ′)dϵ

≈

{
−J2ν ln |ϵ|/D |ϵ| ≫ kBT,

−J2ν ln kBT/D |ϵ| ≪ kBT.
(8C.21)

This term diverges logarithmically with temperature lowering or smaller ϵ. This is the anomalous term found by Kondo.

And various phenomena originate from this anomaly are called the Kondo effect.
Let us consider the origin of this term. In the case of non-spin-flip processes, the anomalous terms cancel each other

due to the electron-hole symmetry. That is, if we look electrons or holes separately the anomaly exists regardless of

spin-flip and the origin is the existence of Fermi surface, which represents huge asymmetry. At absolute zero, states

inside a Fermi sphere are fully occupied while those above the Fermi surface are completely empty with almost infinite

degeneracy. In the processes without spin flip, the electron-hole symmetry perfectly cancels this huge asymmetry. On the

other hand in the processes with spin flip, conservation of spin angular momentum prohibits electron propagation process

in the intermediate state *4, and the asymmetry at the Fermi surface appears as the anomaly.

Because the perturbation leads to the divergence, the perturbative treatment itself is in failure for the condiitons close

*4 Mathematically this comes from non-commutativity of Ŝ+ and Ŝ− (the commutation relation yields Ŝz), hence one can say that this is due to a
quantum mechanical effect.
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to the divergence. Treatment of this problem thus requires various methods other than simple perturbation. In order for

handling this Kondo problem, a number of methods including renormalization group, have been developed. Here we do

not go into the detail of such methods. Instead we have a look on the results at lowest temperatures obtained from years

of research.

In sd Hamiltonian (8C.15), there is antiferromagnetic interaction between the dot spin and the conduction electron

spin. That is, the dot spin attracts electrons with anti-parallel spins and repels those with parallel spins through exchange
interaction arises from co-tunneling. As a result, seen from a distance, a cloud of spin polarization of conduction

electrons appears to cling to the dot spin. The Kondo problem indicates the anomalous enhancement of the above effect.

The cloud like state of spin polarization created as above is called Kondo cloud. On the other hand, the spin polarization

surrounding the dot spin reaches complete screening of the dot spin, further polarization stops. This is called unitary
limit.

This phenomenon can be viewed as many-body resoance. A representative of single-body resonance (resonace that

comes from potential) is the resonant tunneling through double barrier structures. In the double barrier structure, no

matter how high the barrier height is and how small the tunnel probability is, where the energy of the incident wave is

in resonance, the reflected and transmitted waves are infinite sum up of coherent reflection and transmission by the two

barriers. And finally the reflections cancel each other out, the total transmittance is 1. This resonance energies are close

to the bound state energies of an imaginary quantum well composed by making the barrier thicknesses infinite. When the

barrier thickneeses are finite, resonance makes average staying time anomalously long and the modes are called quasi-

bound states. Even if an electron enters the quasi-bound state, it eventually leaks to the outside, so it is in a resonance

state with the free electrons in the electrodes. When the Fermi level hits resonance, the transmission probability reaches

a peak value. An example is shown in Fig. 8C.5.

The Kondo effect has many common features with double barrier phenomenon. While single-body resonance is based

on infinite number of reflections, the Kondo resonance occurs as a result of infinite degeneracy at Fermi surface. In

potential resonance, orbital effect results in non-uniform probability distribution. In the case of the Kondo effect, the

force works among spins and no charge inhomogeneity appears. Instead, localized spin polarization occurs as Kondo

cloud. The biggest difference is that the Kondo cloud is always in resonance with Fermi surface.

Electrons stay in quasi-bound states for finite times. Let τa be the average staying time and the resonance has lifetime

broeadning h/τa(= ℏΓ, Γ is tunneling frequency). Does the Kondo cloud have width? If it does, how large is that?

When the thermal broadening of Fermi surface is larger than the resonance width, the temperature dependence of the

contribution of resonance to conduction should be weak. On the contrary, when the thermal width is narrower than

the resonance width, the temperature dependence also disappears. The energy scale representing resonance width is, in

temperature unit, called Kondo temperature, for which symbol TK is often used.

a bE

x

V0

E/V0

T

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 8C.5 Left: Schematics of dou-
ble barrier potential. Vertical axis is
energy, horizontal axis is space co-
ordinate. Broken lines indicate the
positions of quasi-bound state ener-
gies, i.e. positions of resonant tun-
neling. Real wavelengths of incident
waves are much longer than the il-
lustration. Right: Example of trans-
mission probability under condition
of k0 ≡

√
2mV0/ℏ and k0b=5.0.

Solid line is for k0a=0.5 and broken
line is for k0a=2.0.
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For correct estimation of Kondo temperature, perturbation in (8C.21) is not enough and the effect of higher order terms

should be taken into account in some way. Though, roughly speaking, TK can be estimated as the temperature-dependent

term in (8C.21) is comparable with J at high temperature side. That is, from

−J2ν ln kBTK/D ∼ J,

TK is given as
kBTK ∼ De−Jν .

In the above rough estimation, with increasing the anti-ferromagnetic coupling strength J , TK dcreases exponentially.

Larger J corresponds to higher barriers in double barrier, narrower lifetime width with decreasing tunneling probability.

The same for the density of states ν. On the other hand, widening of band D makes resonance wider, TK higher. Actually

in the present simple model, J andD are not independent. But with ignoring that, widening of the resonance by increasing

D is interpreted as the increase of contribution from deeper inside the Fermi sphere.
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Chapter 7 The Quantum Hall effect

In many cases, transport in higer dimensions can be understood as that in networks of one-dimensional quantum wires.

On the other hand in the case of Landau quantization, mixing of two-dimensional freedoms is important and it is easier

to treat the system as continuous two-dimensional space (see Sec.[?] for discrete treatment)..

10.1 Two-dimensional electrons under magnetic field

Let us write the Hamiltonian as

H =
m

2
v2 =

(pc + eA)2

2m
≡ π2

2m
=
π2
x + π2

y

2m
. (10.1)

π ≡ pc + eA, (10.2)

where π is dynamical momentum, corresponding to real space velocity as v = π/m∗. π has commutation relations

among themselves and with space coordinates as

[πα, β] = −iℏδαβ , (α, β = x, y), [πx, πy] = −i
ℏ2

l2
. (10.3)

We see that x and y components of the momentum do not commute. The fact corresponds to the classical circulating

orbits, which mix up the x and y coordinates, in other words they are no longer independent. l is called magnetic length
defined as

l ≡
√

ℏ
eB

=

√
1

2

√
ϕ0
πB

, (10.4)

which is 1/
√
2 times the radius of circle for single flux quantum (ϕ0 ≡ h/e). l is also called minimum Landau radius.

The factor 1/
√
2 corresponds to the zero-point energy term ℏωc/2 in Eq. (10.9), which we will see later.

We define the operator R̂ of guiding center coordinate (X,Y ) as

r̂ = R̂+
l2

ℏ
(πy,−πx), (10.5)

where r̂ is the real space operator of electrons. The second term in the right hand side is from the classical solution (not

in this note). From the commutation relation between πx and πy , we get

[X,Y ] = il2. (10.6)

The Hamiltonian does not depend on (X,Y ), thus (X,Y ) is a constant of motion while from the commutation relation

in (10.6), there is an uncertainty between X and Y . Now we see that as a set of canonically conjugate variables of the

system we can take R, π other than (r,pc).
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10.1.1 Landau quantization

As in (10.1), the Hamiltonian is quadratic for π and in the form of harmonic oscillator *1, by introducing down/up

operators as

a =
l√
2ℏ

(πx − iπy), a† =
l√
2ℏ

(πx + iπy), (10.7)

it can be written as

[a, a†] = 1, H = ℏωc

(
a†a+

1

2

)
. (10.8)

This is in the harmonic form and the engenenergies are given as

En = ℏωc

(
n+

1

2

)
(n = 0, 1, 2, · · · ). (10.9)

This is interpreted as the discretization of (angular) momentum with quantum confinement by magnetic field. Such

quantization of orbitals by magnetic field is called Landau quantization.

10.1.2 Guiding center

Because R commutes with Hamiltonian (10.1), the eigenenergies in Eq. (10.9) do not depend on R, thus they are de-

generate as the degree of freedom in R. Two dimensional systems under perpendicular uniform magnetic field still keeps

spatial translational symmetry. In the set of eigenfunctions which have the guiding center as an index, the translational

symmetry is kept through the freedom in R. The Landau levels have large degeneracy and the basis can be taken in

various form. The uncommutability between the components of R brings large variaty in the outlooks of the basis.

Let us find the basis that diagonalizes X . For that Landau gauge A = (0, Bx, 0) is convenient. Form Eq. (10.1),

Schrödinger equation is given by

H ψ =
(pc + eA)2

2m
ψ =

−1
2m

[
ℏ2∂2

∂x2
−
(
−iℏ∂
∂y

+ eBx

)2
]
ψ(r)

=
1

2m

[
−ℏ2∇2 − 2iℏeBx

∂

∂y
+ e2B2x2

]
ψ(r) = Eψ(r). (10.10)
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y

y
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y
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=0
=0j
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=2j
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4
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0.6

0.8
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Fig. 10.1 (a) Gray scale plots of probability
densities |ψnk(r)|2 in eigenstates (10.12) with
three values of n, which diagonalize X . The
unit of length is lB , the width along x is about√
2n+ 1lB . (b) The same for the basis, which di-

agonalizes X2 + Y 2 (not mentioned in the text).
In the case ofN = 0, the distribution is around the
circle with the radius |

√
2|mj |lB at the origin.

*1 It is written as a sum of π2
x and π2

y . πx and πy are canonically conjugate operators.
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This Hamiltonian does not contain operator y and y-dependent part of the wavefunction should be a plane wave. Thus

we substitute variable separable form ψ(r) = u(x) exp(iky) into the above equation to obtain[
− ℏ2

2m

d2

dx2
+

(eB)2

2m

(
x+

ℏ
eB

k

)2
]
u(x) =

[
− ℏ2

2m

d2

dx2
+
mω2

c

2
(x+ l2k)2

]
u(x) = Eu(x). (10.11)

This is an equation of a one-dimensional harmonic oscillator that has the center at x = −l2k. The eigenvalues are given

in Eq. (10.9), and the eigenfunctions are written as

ψnk(r) ∝ Hn

(
x− xk
l

)
exp

(
− (x− xk)2

2l2

)
exp(iky) (xk ≡ −l2k), (10.12)

where Hn is n-th order Hermite polynomial. In each of these states, X is fixed as X = xk = −l2k = −l2py/ℏ while

it is a plane wave on y spreading over whole space, namely Y is fully uncertain. In the states given by Eq. (10.12), the

energy does not depend on k. Though the states are extended along y, hence the group velocity is zero (∂E/∂k = 0).

On the other hand ∂X/∂k is not zero, then if some x-dependent potential is added to the system, the states gain a finite

group velocity and motions along y.

Figure 10.1(a) shows gray scale plots of probability density in Eq. (10.12). We see they are uniform along y while

one-dimensional harmonic oscillators along x. We are not showing the functional form here but the eigenstates can be

chosen so as to diagonalize X2 + Y 2. In this case, as shown in Fig. 10.1(b), the probability densities are localized both

for x and y. The reason why their outlooks are so different in spite of the fact that they have the same eigenenergy, is of

course it has large degeneracy and also the degeneracy comes from the freedom in R, which is the freedom in the real

space.

10.2 Integer quantum Hall effect

10.2.1 Shubnikov de Haas (SdH) oscillation

Let us consider the process of increasing magnetic field applied perpendicular to a two-dimensional electron system.

With Landau quantization (10.9), the energy levels are as in Fig. 10.2, spead radially from the origin (Landau fan, fan

diagram). How the electrons occupy those Landau levels when the system is connected to particle reservoirs as in

transport experiments? The external particle reserviors make the Fermi level EF constant but if we impose this condition,

the origin in Fig. 10.2 should shift with magnetic field. The origin in Fig. 10.2 is defined as the zero-point of kinetic

energy in xy-plane, namely energy levels quantized along z-axis. In the simple approximation in Sec. 7.3, the position

of EF is determined to screen the electrostatic potential formed by ionized potential with arial density Ndep. Then

with variation in the density of states for kinetic freedom in xy plane, the distribution of occupied states also varies to

compensate the potential from the impurities. This leads to the shifts in self-consistent potential and the position of the

lowest level (origin). If we look the Landau fan from the coordinate in which the origin is fixed, EF varies with magnetic

field. Below, we adopt this coordinate (constant 2DEG arial density ns).

Let us find the arial density of states per single Ladau level nL. For that we count the number of possible wavefunctions

in Eq. (10.12) in the area ofWx×Wy in xy-plane. The function in Eq. (10.12) is a plane wave along y and the “distance”

of the states in k-space in 2π/Wy . On the other hand, the section 0 ≤ X ≤ Wx corresponds to −Wx/l
2
B ≤ k ≤ 0 in

k-space for the wavefunctions. Hence the number of of states in the area S =WxWy is

Wx/l
2
B

2π/Wy
=

S

2πl2B
∴ nL =

1

2πl2B
=
eB

h
=
B

ϕ0
, (10.13)

that is the number of quantum flux in the flux density. The number of Landau levels occupied by electrons is

ν =
ϕ0ns
B

, (10.14)
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Fig. 10.2 Landau levels in (10.9) as a function of mag-
netic field. The broken line indicates the potision of EF in
this frame under the condition of constant ns. E(0)

F is for
zero magnetic field.

which is called filling factor
At absolute zero, electrons occupy Landau levels from the lowest one and EF is locked to the highest occupied Landau

level. With increasing magnetic field, the changes of “topmost occupied level” take place at the points ν hit integers,

where EF shifts from E = ℏωc(ν + 1/2) to ℏωc(ν − 1/2). To summarize, in Fig. 10.2, EF oscillates as indicated by

broken line. This oscillation and the resultant oscillation in the electric resistance is called Shubnikov-de Haas (SdH)

oscillation.

10.2.2 Localization of wavefuntion

I believe there is no rigorous proof but it is widely believed that in two-dimensional systems with some potential disor-

der, time-reversal symmetry, no spin-orbit interaction, all the particle states (wavefunctions) localize spatially (Anderson

localization). Magnetic field breaks the time reversal smmetry and the Anderson localization is simultaneously broken.

However, with further increase in magnetic field, the cyclotron radius becomes shorter than the characteristic length of

the potential disorder, localization appears due to a bit different mechanism.

E

(a) (b)

Peak

Bottom

localized

delicalized

Fig. 10.3 (a) Schematic diagram showing how the Landau level wavefunction is localized by the impurity potential
in a strong magnetic field. Wavefunctions in the form of Fig. 10.1(a) are bound on equipotential lines of disordered
potential. The lines that depict drifting while rotating are classical orbits. (b) Landau level energies are broadened
by disordered potential and localized as shadowed. Delocalized states exist around the centers of Landau “bands,”
corresponding to the concave-convex transition equipotential lines.
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Fig. 10.4 Example of integer quantum Hall ef-
fect. 2DEG at an AlGaAs/GaAs interface is fab-
ricated into the shape of Hall bar shown in the in-
set. A current is applied to the long thick line (x-
direction), ρxx is obtained from the voltage be-
tween two probes placed along x while ρxy is ob-
tained from the probes placed face to face along
y.

Such behavior is illustrated in Fig. 10.3(a). Electric field applied to electons in cyclotron motion causes movement

perpenducular to the field. In nonuniform potential as shown in the figure, such movement of electrons results in a

rounding motion bound on an equipotential line. Then the state as a whole is spatially localized. Such spatial confinement

leads to broadening of Landau levels as we have seen in Fock-Darwin state. Then the delta-function density of states

of original Ladau level gets broadening as illustrated in Fig. 10.3(b). On the other hand, there are a small number of

equipotential lines that do not make a closed loop between potential peaks and dips as in Fig. 10.3(a). Such a state on

non-closed equipotential line should be extended and it is known that each broadened Landau “band” has a single such

extended state at the center. This is also illustrated in Fig. 10.3(b).

10.2.3 Characteristics of integer quantum Hall effect

In Fig. 10.4 we show an example of measured integer quantum Hall effect (IQHE). Increasing magnetic field perpen-

dicular to two-dimensional plane, the Hall resistance ρxy deviates from classical linear dependence on magnetic flux

density B (Eq. (5.15)) and a clear staircase structure emerges. In the IQHE, the heights of the plateaus are exactly

ρxy =
h

e2
1

n
=

1

n
(RK) ≈

2.5812× 104

n
(Ω), (n = 1, 2, . . . ). (10.15)

As can be guessed in Fig. 10.4, in the plateau regions simultaneously ρxx = 0, that is, finite current flows without

longitudinal voltage. The current here is, like superconductivity, a kind of supercurrent without energy dissipation.

10.2.4 Explanation based on edge mode transport

Comparing the experiment shown in Fig. 10.4 and the localization/delocalization diagram in Fig. 10.3(b), we see that

the supercurrent which causes ρxx = 0 flows and ρxy is quantized when EF does not exist in the regions of delocalized

states. To put this the other way around, ρxy is in a transient region between quantized plateaus when EF exists in

the retions of delocalization. Namely the quantization and supercurrent take place when two-dimensional electrons are

insulating in the bulk.
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Fig. 10.5 Two-dimensional electrons under
strong magnetic field are confined by “gutter-
like” potential V (x). The effective potential in-
cluding the effect of magnetic field is expressed
as U(x) (sum of V (x) and magnetic confinement
potential). Formation of edge states is indicated
by broken lines. The lower panel illustrates clas-
sical skipping orbits.

The “edge state model” explains the phenomenon based on edge mode transport. A sample with a finite width as

illustrated in Fig. 10.4 inevitably has edge states*2. To model that, we consider a two-dimensional electron gas confined

in x-direction by a well-like potential V (x) with width W , spreading over y. In this model the current is applied in

y-direction (for convenience the coordinate is rotated by π/2).

V (x) is added to Eq. (10.10) for the wave equation. Figure 10.5 illustrates the situation, in which the gutter-like

potential and the harmonic potential by magnetic field co-exist. V (x) = 0 deep inside the bulk and ordinary Landau

quantization takes place while in the vicinity of edges, V (x) makes the effective harmonic potential narrower, i.e. effec-

tive ωc larger, hence Landau levels go up with approaching the edges. The increase of n-th Landau level begins where

X-coordinate of guiding center is in the width of wavefunction
√
2n+ 1lB/2 to the edge. In the region of such level

increase,
⟨vy⟩ = dE/ℏdk = −(l2B/ℏ)dE/dX (10.16)

becomes finite, giving spatial motion to Landau quantized electrons. Such mobile states correspond to classical skipping

orbits, which consist of cyclotron motions and collisions to an edge as illustrated in the lower panel of Fig. 10.5. They

are called edge states. In the edge states the direction of electron motion is determined by the sign of magnetic field.

Normalizing the edge mode wavefunction in the length Ly along y, the current brought by the mode is j = (e/Ly)⟨vy⟩.
A single mode at one-side edge is occupied up to the electrochemical potential µ. We take a base energy E0 lower than µ

and higher than the bulk Landau level with the same Landau index as the edge mode. The current brought by the electrons

occupying the states from E0 to µ in this edge state is obtained from (10.13) and (10.16) as

J =

∫ Xµ

X0

LydX

2πl2B

e

Ly
⟨vy⟩ =

e

h

∫
dX

dE

dX
=
e

h
(µ− E0). (10.17)

AB

-W/2 W/2

m

m
A

A

B

B XX X

Fig. 10.6 Schematic drawing of a Lan-
dau level with edge modes. Finite net
current is flowing perpendicular to the
figure (y-direction) and consequently fi-
nite gradient in x-direction is given (ex-
aggerated).

*2 There is no edge state along the current if the two edges are connected. Such a structure in a plane is called “Corbino disk.”
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When EF is in regions of localization, in equilibrium the chemical potential is uniform over the sample and the edges

opposite to each other have counter-flowing currents with the same amount, the bulk states are localized and the net

current is zero (circular equilibrium current is flowing at the edge). Now we apply the boundary condition that the net

current Jy flows along y. As in Fig. 10.6, Jy is the difference between currents JA and JB at edges A and B respectively.

Hence from Eq. (10.17), there should be a difference between µA and µB, which leads to the Hall voltage. Then

σxy =
Jy
Vx

=
e(JA − JB)
µA − µB

=
e2

h
. (10.18)

This is the conductivity for single Landau level, and for ν levels σxy is ν times of this value, thus the IQHE is explained.

The above derivation is the same as that of the Landauer formula other than crossing of x and y. The quantization is

not so pricise for QPC conductance while surprizingly high precision is achieved for IQHD because of the chirality and

the geometrical effect in the edge modes. In the case of QPC, conductance channels with opposite direction are spatially

overlapped and backscattering of electrons can easily occurs. On the other hand in the case of IQHE, there is a macro-

scopic spatial distance between counter-flowing edge states and the probability of backscattering is astronomically low,

and the transmission coefficient is exactly one. Therefore, the quantization of IQHE should be inaccurate if the sample

width is narrowed and scattering between the edge states is likely to occur, which has been confirmed by experiments.

In the above simple model, we ignore the Hall electric field inside the sample. dE/dX caused by the Hall electric field

leads to finite bulk current though they cancel each other, does not contribute to Jy and the above discussion still holds.

10.3 Explanation based on topological invariant

We continue theoretica explanation for IQHE. In this section, we need to introduce several new concepts. Below we

continue along Ref. [4].

10.3.1 Bloch electrons in magnetic field

We expand the concept of Bloch electron to two-dimensional electrons in magnetic field. This way of treatment is close

to tight-binding model while that in Sec. 10.1 is based on two-dimensional free electron. In a two-dimensional square

lattice, we write the translational operator by lattice vector R as TR.

TRf(r) = f(r +R).

By expanding f(r) with plane wave eikr, from TRe
ikr = eik(r+R) = eikReikr, TR is written as

TR = exp

(
i

ℏ
R · p

)
. (10.19)

TR commutes with H0 (lattice Hamiltonian for zero magnetic field) and the Bloch states are defined as the eigenstates

that diagonalize the two operators simultaneously.

We then proceed to treat a system under a uniform magnetic field.

H =
1

2m
(p+ eA)2 + V (r). (10.20)

The lattice potential V (r) is invariant for the operation of TR though the vector potential A is not. Generally

A(r) = A(r +R) +∇g(r).
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The loss of translational symmetry due to the cyclotron motion, which does not conserve momentum. Now we consider

modification of the translation operator. We define magnetic translation operator by replacing p with p + eA in

Eq. (10.19). Under symmetric gage A = B × r/2, the magnetic translation operator TBR is given by

TBR ≡ exp

{
i

ℏ
R ·

[
p+

e

2
(r ×B)

]}
= TR exp

[
ie

ℏ
(B ×R) · r

2

]
. (10.21)

TBR commutes with H , and there exists a basis which diagonalizes the two operators simultaneously. Care should

be taken that the magnetic translational operators do not commute each other generally just like the guiding center

coordinates of Landau levels do not. The commutation relation can be represented as a phase factor in

TBRaTBRb = exp(2πiϕ)TBRbTBRa, ϕ =
eB

h
ab, (10.22)

where a and b are the lengths of unit vectors. Hence ϕ is the magnetic flux piercing a unit cell in the unit of flux quantum

h/e. When ϕ is a rational number p/q, commutable set of magnetic translational opertors can be prepared as a lattice

limits translational vectors into discrete lattice vectors. To have simpler view, we consider a magnetic unit cell, which

is defined from magnetic unit vectors qa, b corresponding to original unit vectors a, b. A magnetic lattice vector R′ is

expressed as
R′ = n(qa) +mb. (10.23)

Then the flux piercing the magnetic unit cell is p (integer) times a flux quantum and the magnetic translational operators

TBR′ commute each other.

Now we take ψ as a common eigenstate of H and TBR′ . Let Tqa and Tb (we do not write BR′ for simplicity) be

elements of the set of TBR′ , then the eigenvalues are written as

Tqaψ = eik1qaψ, (10.24a)

Tbψ = eik2bψ, (10.24b)

where k1, k2 are generalized crystal momenta. In reduced zone representation, k1, k2 can be limited in the first magnetic
Brillouin zone 0 ≤ k1 < 2π/qa, 0 ≤ k2 < 2π/b. The magnetic eigenstates is written in the Bloch form

ψnk(r) = eikrunk(r), (10.25)

where n is a band index, k is a generalized momentum. The conditions for unk(r) are as follows.

unk(x+ qa, y) = exp
(
i
πpy

b

)
unk(x, y), (10.26a)

unk(x, y + b) = exp

(
−iπpx

qa

)
unk(x, y). (10.26b)

Then if we write unk(r) in the amplitude-phase factor form as unk(r) = |unk(r)| exp[iθk(r)],

p (integer) = − 1

2π

∮
dl · ∂θk(r)

∂l
, (10.27)

where the integral route is taken counter clock direction along the edge of magnetic unit cell.

10.3.2 Hall conductivity from linear response theory

In the k·p perturbation for the band calculation, by renormalizing the plane wave part of wavefunction into the Hamil-

tonian we obtain the equation for the lattice periodic part unk(r). We can go the same way for the tight-binding model

in strong magnetic field. Operation of the Hamiltonian in (10.20) on the magnetic Bloch function in (10.25) can be

calculated from peikr = eikr(ℏk + p) as

(p+ eA)2eikrunk(r) = eikr(ℏk + p+ eA)2unk(r).
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We can rewrite the Schrödinger equation as

Hkunk(r) = Enkunk(r), Hk =
1

2m
(−iℏ∇+ ℏk + eA)2 + V (r). (10.28)

Now we utilize Kubo formula for Hall conductivity in (9B.3). We take the basis as magnetic Bloch funtions and state

indices are taken as (n,k). Velocity operator v can be written as v = (−iℏ∇ + eA)/m, and for the integration in the

numerator we write the matrix element of the operator by using braket representation unk(r)→ |n,k⟩ as

⟨n,k|v|m,k′⟩ = δkk′

∫ qa

0

dx

∫ b

0

dyu∗nkvumk′ ≡ δkk′⟨n|m⟩. (10.29)

From the periodicity in k space, the integration just on the magnetic unit cell is enough. The normalization should be∫ qa

0

dx

∫ b

0

dy|unk(r)|2 = 1.

By using k-dependent Hamiltonian in (10.28), we can write down the matrix elements as

⟨n|vx|m⟩ =
1

ℏ

⟨
n

∣∣∣∣∂Hk

∂kx

∣∣∣∣m⟩ , (10.30a)

⟨n|vy|m⟩ =
1

ℏ

⟨
n

∣∣∣∣∂Hk

∂ky

∣∣∣∣m⟩ , (10.30b)

where k = (kx, ky). These are further calculated as⟨
n

∣∣∣∣∂Hk

∂kj

∣∣∣∣m⟩ = (Em − En)

⟨
n

∣∣∣∣∂um∂kj

⟩
= −(Em − En)

⟨
∂un
∂kj

∣∣∣∣m⟩ , j = x, y. (10.31)

Substtuting the above to the Kubo formula (9B.3) to obtain

σxy = −ie
2

ℏ
∑
k

∑
n

f(Enk)
∑

m(̸=n)

[
⟨nk|∂Hk/∂kx|mk⟩⟨mk|∂Hk/∂ky|nk⟩

(Enk − Emk)2
− c.c.

]

= −ie
2

ℏ
∑
k

∑
n

f(Enk)
∑

m(̸=n)

[⟨
∂un
∂kx

∣∣∣∣m⟩⟨m ∣∣∣∣∂un∂ky

⟩
−
⟨
∂un
∂ky

∣∣∣∣m⟩⟨m ∣∣∣∣∂un∂kx

⟩]

=
e2

h

2π

i

∑
k

∑
n

f(Enk)

[⟨
∂un
∂kx

∣∣∣∣ ∂un∂ky

⟩
−
⟨
∂un
∂ky

∣∣∣∣ ∂un∂kx

⟩]
. (10.32)

Now we define a vector field Ank with

Ank =

∫
d2ru∗nk∇kunk = ⟨unk|∇k|unk⟩. (10.33)

We assume T = 0 and that EF is in the localized region. Writing the summation on k as the form of integration, σxy is

given by

σxy =
e2

h

1

2πi

∑
En<EF

∫
MBZ

d2k[∇k ×Ank]kz
=
e2

h

1

2πi

∑
En<EF

∫
MBZ

d2k[rotkAnk]kz
. (10.34)

The integration is over the magnetic Brillouin zone.

Because at the edges of a magnetic Brillouin zone, kx = 0 and kx = 2π/qa, ky = 0 and ky = 2π/b are the same

points, topologically the zone is two-dimensional torus T 2 = S1 × S1. When Ank is single-valued on this torus, σxy
calculated from (10.34) is zero as known from the Stokes theorem. That is, for σxy ̸= 0, Ank should have non-trivial

topology. Here it is important that the magnetic Brillouin zone is a torus, which cannot be squeezed continuously to

single point. If such squeezing is possible, Ank defined on the manifold cannot have non-trivial topology.

To see the topology of Ank, we consider local gauge transformation. A solution of Schrödinger equation (10.28)

uk(r) can be transformed with an arbitrary continuous function f(k) to another solution

u′k(r) = exp[if(k)]uk(r). (10.35)
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Fig. 10.7 Illustration of phase of wavefunction when it has zero in
the magnetic Brillouin zone.

u and u′ are physically the same. From the definition in Eq. (10.33), this transformation corresponds to

A′nk = Ank + i∇kf(k). (10.36)

To eliminate the above uncertainty originated from the gauge undertainty, we assume fixing the phase of unk(r) at one

point. With this, though, we cannot fix the entire phase over the whole magnetic Brillouin zone. We assume unk(r) is

zero at a point k0. As shown in Fig. 10.7, the magnetic Brillouin zone is devided into retion HI that contains k0 and

residual region HII. If HI contains a zero, the phase must “rotate” around the zero as in the figure. On the other hand

HII should be connected at the edges as a torus and the wavefunction should have different structure in phase. Hence we

need to take different gauges in the two regions.

For simplicity we consider the contribution of band n only and n can be omitted. The integrals in (10.34) are, by

applying Stokes’ theorem to the two regions, given by

I =
1

2πi

[∫
I

d2k[rotA]kz +

∫
II

d2k[rotA]kz

]
=

∮
∂H

(AII −AI) · dk
2πi

. (10.37)

The integral over circumference of region II cancels out due to the torus boundary condition (equivalent to “back and

forth” integration over a single line). On the boundary ∂H , with gauge transformation the relation of the wavefunction is

expressed as
uIk = uIIk e

iθ(k). (10.38)

From the definition (10.33), the integral should be

I =

∮
∂H

[
⟨uIIk |∇k|uIIk ⟩+ (i∇kθ)⟨uIIk |uIIk ⟩ − ⟨uIIk |∇k|uIIk ⟩

]
· dk
2πi

=
∆∂Hθ

2π
. (10.39)

The phase evolution over single circulation on the boundary ∆∂Hθ should be an integer times 2π and I is limited to an

integer. Let νC be that integer. And let nB be the number of bands lower or at the same level as EF, we find

σxy = nBνC
e2

h
, (10.40)

which tells that the Hall conductance should be an integer times e2/h. Equation (10.40) is called Thouless-Kohmoto-
Nightingale-Nijs (TKNN) formula[5]. νC is called Chern number and known to be 1 for the Landau bands. The above

gives the same result as Eq. (10.18).

Chern number is the number of anomalies in the phase of wavefunction, equivalently the number of zeros. It is a kind

of topological invariant. The origin of Chern number is in the topological property of energy bands. In order to turn a

torus into a sphere, we should once tear up the surface around the hole then sew the surfaces together and finally erase

the hole. Similarly to change the band structure into the one with different topology (Chern number), we need to crush

the band gap once. For this reason, the Hall conductance found in TKNN formula is stable and precise regardless of the

variety of sample properties.

Here Ak is a Berry connection, rotAk is a Berry curvature in Appendix 9A. We will revisit them in the section of

topological insulator.
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10.3.3 Laughlin’s gedankenexperiment

Robert Laughlin considered a sample in which a 2DEG is rolled into a cylinder with a radius of R and a circular

electrode is attached to the end of the cylinder (Fig. 10.8)[6]. The magnetic field is emitted outward from the core of the

cylinder and is applied perpendicularly to the 2DEG. x and y axes are taken as in the figure. There is no edge because

the current is applied along x and the sample is closed along y. Further, a thin, long solenoid is placed at the core and an

applied current creates a magnetic flux Φ through it. The flux does not touch the 2DEG directly but gives an AB phase

on orbits going around the cylinder. The vector potential for the perpendicular magnetic field and that for the field by the

solenoid are in Ladau gauge

A = (0, Bx), AΦ =

(
0,− Φ

2πR

)
. (10.41)

We write down the wavefunction in the form of Eq. (10.12). Because the system is circular in y-directoin, the wavefunc-

tion should go around the circle.

The current in y-direction is

jy =
1

Lx

∂Et

∂Φ
. (10.42)

Et is the total energy on the cylinder per the normalization length Lx
*3. The vector potential in Landau gauge is

a = (0, Bx − Φ/Ly, 0). We take the unperturbed Hamiltonian H0 as the one of 2DEG under magnetic field. Then the

effect of solenoid flux is taken into account by the transformation

ky → ky −
2π

Ly

Φ

ϕ0
,

(
ϕ0 ≡

h

e

)
(10.43)

in the Hamiltonian. This transformation corresponds to the variation in X-coordinate of the guiding center as

X → X +

(
Φ

ϕ0

)
Lx

Nϕ
. (10.44)

Then the variation in penetration magnetic flux Φ → Φ +∆Φ appears as that in X ∆X = (Lx/Nϕ)∆Φ/ϕ0. If ∆Φ is

an integer (q) times ϕ0, then ∆X = qLx/Nϕ = 2qπl2B/Ly , which is q times the distance in x between the eigenstates.

Namely the states shift to q-th next eigenstates and the variation in Φ is absorbed into the phase of wavefunction. When

x

yF F+DF

B

V V
(a) (b)

R

Fig. 10.8 (a) Rolled up two-dimensional system used in Laughlin’s gedankenexperiment. The magnetic field B is
emitted outward from the core of the cylinder and is applied perpendicularly to the 2DEG. A thin, long solenoid is
running at the core of the cylinder giving an AB phase. The electric field is applied in x-direction. (b) Schematic
drawing of the variation in wavefunction when the flux by the solenoid is increased from Φ to ∆Φ.

*3 Here we prove the equation simply as follows. Let L be the inductance of the cylinder. A state with current J has the magnetic energy
EH = L J2/2 = Φ2/2L , which means ∂EH/∂Φ = Φ/L = J . Let Lx be the normalization length. From J = Lxjy we reach the
equation.
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N Landau levels are completely occupied, that is ν = N , and there is an electric field ofE in x, the variation of∆Φ = ϕ0

causes a variation in the energy of ∆E = −eE∆XNe (Ne = νNϕ = NNϕ).

Here we assume as follows. In the quantum Hall state, the current does not depend on the boundary condition in

y-direction. In other words the current does not depend on the absolute value of Φ. Then we replace the derivative in

(10.42) with the finite differece to find

jy =
1

Lx

∂Et

∂Φ
=

1

Lx

∆Et

∆Φ
=

1

Lx

(
−eE Lx

Nϕ

)
Ne

ϕ0
= N

e2

h
E. (10.45)

That is the Hall conductance σxy = jy/Ex is quantized as an integer times e2/h. Because e2/h is the conductance for

single band, this is an indirect proof that the Chern number of single Landau level is one.

Appendix 9A: The Berry phase

A common classic example of the Berry phase is the parallel displacement of a vec-

tor on a sphere as shown on the left. When the vector is translated in three-dimensional

space on an appropriate trajectory and return to the original point, the vector does not

change. However if we apply a constraint that the vector should be in-plane during the

“parallel displacement” (or the vector should be in the tangent plane of the sphere),

then as in the left figure, the direction of the vector generally changes when the vector

origin comes back to the starting point. The angle between the starting vector and the

returning vector corresponds to the Berry phase.

Let α be the angle of variation in the direction of the vector, C be the tranjectory,

then α can be expressed as a line integral on C of a vector A. This A is called Berry
connection (Berry connection depends on the constraints on the vector movement). From Stokes’ theorem α can also be

written as the integration over an area S rimmed by C as

α =

∮
C

A · ds =

∫
S

rotA · dσ,

where rotA is called Berry curvature.

Let us go to quantum mechanics. We consider a time-dependent Hamiltonian H(t) and write the eigenvalue equation

as
H(t)|n(t)⟩ = En(t)|n(t)⟩. (9A.1)

Taking time-derivatibe and operating the eigenfunction ⟨k| from left we get

⟨k(t)|∂|n(t)⟩/∂t ≡ ⟨k(t)|ṅ(t)⟩ = 1

En(t)− Ek(t)

⟨
k(t)

∣∣∣∣∂H∂t
∣∣∣∣n(t)⟩ . (9A.2)

∴ ⟨ṅ|n⟩+ ⟨n|ṅ⟩ = 0 ∴ Re(⟨n|ṅ⟩) = 0. (9A.3)

Let ψ(t) be a solution of the Schrödinger equation composed of H(t). ψ(t) is expanded by |n(t)⟩ as

|ψ(t)⟩ =
∑
n

cn(t)|n(t)⟩ exp
(
− i
ℏ

∫ t

0

E′n(t
′)dt′

)
, (E′n(t) ≡ En(t)− ℏηn(t), ηn(t) = i⟨n|ṅ⟩). (9A.4)

Substituting this into the Schrödinger equation we find

∑
n

iℏ
(
ċn|n⟩+ cn|ṅ⟩ −

i

ℏ
E′ncn|n⟩

)
exp

[
− i
ℏ

∫ t

0

E′n(t
′)dt′

]
=
∑
n

cnH|n⟩ exp
[
− i
ℏ

∫ t

0

E′n(t
′)dt′

]
. (9A.5)
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Operating ⟨k| from the left, from Eq. (9A.2) we obtain

dck
dt

=
∑
n ̸=k

⟨k|∂H/∂t|n⟩
Ek − En

exp

[
i

ℏ

∫ t

0

(E′k(t
′)− E′n(t′))dt′

]
cn. (9A.6)

We consider variation of H(t) slow enough for the variation of the wavefunction to be adiabatic. We take the starting

point of the wavefunction ψ(0) = |m(0)⟩ and the adiabatic change means |ψ(t)⟩ = |m(t)⟩ with no mixing of other

eigenstates. Let us express the time evolution of H as that in a set of parameters {Ri(t)}, which can be written in the

vector form R(t). We consider a loop trajectory in R-space starting R(0) at t = 0 and coming back to R(0) at time T .

|ψ(t) = |m(R(t))⟩ exp
[
− i
ℏ

∫ t

0

E′m(t′)dt′
]
= |m(R(t))⟩ exp

[
− i
ℏ

∫ t

0

Em(t′)dt′
]
eiγm(t), (9A.7)

where γm(t) =

∫ t

0

ηm(t′)dt′ = i

∫ t

0

⟨m(R(t′))|ṁ(R(t′))⟩dt′. (9A.8)

As known from (9A.3), γm is a real number. For a loop trajectory, with variable transformation t→ R,

γm(T ) = i

∫ T

0

⟨m(R(t))|∇Rm(R(t))⟩ · Ṙ(t)dt = i

∮
C

⟨m(R(t))|∇Rm(R(t))⟩ · dR(t))⟩dR = γm(C). (9A.9)

∇R is the gradient operator in R-space. Below we omit the subscript R. The above equation means with a loop variation

of Hamiltonian associated with adiabatic transition of the state, Berry phase γm(C) is added to the wavefunction. Further

by using Stokes’ theorem,

γm(C) = −Im
∮
c

⟨m(R)|∇m(R)⟩ · dR = −Im
∫
S

[∇× ⟨m(R)|∇m(R)⟩] · dS (9A.10)

is obtained.

Appendix 9B: Kubo formula for Hall conductivity

The bf Kubo formula is the ultimate form of linear response theory developed from the first half to the middle of the

20th century. There are various mathematically equivalent expressions in the Kubo formula, but here we introduce what

is called Nakano-Kubo formula. We consider a two-dimensonal electrons under perturbation eEy of electric field E in

y-direction. First order perturbed states |α′⟩ are written by unperturbed eigenstates |α⟩ as

|α′⟩ = |α⟩+
∑
β ̸=α

⟨β|eEy|α⟩
Eα − Eβ

|β⟩. (9B.1)

To consider the Hall conductance we need to sum up the contributions from each |α′⟩ to the current along x-direction.

Then the current density in x-direction to the first order of perturbation is written as

jx =
1

L2

∑
α

f(Eα′)⟨α′|ĵx|α′⟩ =
1

L2

∑
α

f(Eα)
∑
β ̸=α

⟨α|(−evx)|β⟩⟨β|eEy|α⟩
Eα − Eβ

+ c.c., (9B.2)

where f(E) is the Fermi distribution function, L2 is the area of normalization. Because the perturbation term is odd

function, there is no first order energy correcltion, and Eα′ = Eα. From

⟨β|vy|α⟩ = ⟨β|ẏ|α⟩ = −
i

ℏ
⟨β|[y,H ]|α⟩ = − i

ℏ
(Eα − Eβ)⟨β|y|α⟩,

this ⟨β|y|α⟩ is substituted into Eq. 9B.2 to obtain

σxy =
jx
E

=
e2ℏ
iL2

∑
α

f(Eα)
∑
β

⟨α|vx|β⟩⟨β|vy|α⟩
(Eα − Eβ)2

+ c.c.. (9B.3)
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Appendix 9C: Fractional quantum Hall effects

In the quantum Hall effect, various novel phenomena and ideas have been found. Among them we have a very short

look at the fractional quantum Hall effect.

9C.1 Experiment on fractional quantum Hall effects

Fractional Quantum Hall Effect (FQHE) was found in transport experiment in a high-mobility 2DEG. In IQHE, the

Hall conductance plateaus appear at σxy = nGq (n is an integer) while in FQHE the conductance plateaus appear at

σxy = fGq, f =
m

n
(n : odd integer, m : integer). (9C.1)

Figure 9C.1 shows a representative mesurement of FQHE. The result contains IQHE though the widths of the plateaus

are not prominent and rather the behavior is on the classical line. And at the positions in (9C.1), narrow plateaus are

observed. On the other hand, the behavior of ρxx against the magnetic field is dramatic. Even for narrow plateaus at

positions (9C.1), ρxx goes to zero or becomes very small. Hence fine and steep oscillation is observed. Even in the high

magnetic field region where no IQHE is observed (filling factor ν < 1), fine oscillation is observed. In particular an

oscillation symmetric to ν = 1/2 is observed.

FQHE is very sensitive to the electron mobility, cannot be observed in low mobility samples. In comparison with IQHE,

FQHE is observed at lower temperatures with activation energy of a few K. Generally FQHE is easier to be observed at

higher magnetic field.

Before going into the physics, we have a short look at the mutual electron interaction and the localization. As we

saw in Sec. 10.2.2, when a 2DEG is under a strong magnetic field, the electrons at the Fermi level are in the edge mode

at the equipotential lines of impurity potential. The localized state are the states going around the closed equipotential

lines. The electron-electron interaction gives some fluctuation to the impurity potential and there is a possibility to lift

the localization.

Fig. 9C.1 Representative ex-
ample of FQHE measurement.
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9C.2 Laughlin state

It has been clarified by long-term researches that the electronic states causing FQHE is a kind of electron liquid, in

which the electron mutual interaction is dominating the many-body state. The Laughlin state, in spite of its simpleness,

has been proven to be a good approximation to such electron liquids. This is a big event in many-body physics since the

BCS theory.

We again consider a two-dimensional electron system on xy plane in the magnetic field of flux density B. Here for

convenience we take the symmetric gauge A = (−By/2, Bx/2). xy-plane can be expressed as a complex plane. The

spatial length is measured by the magnetic length. That is, a point on the 2DEG plane can be represented as a complex

number z = (x− iy)/l. The Hamiltonian with the electron-electron interaction is written as

H =
∑
j

[
1

2m
(−iℏ∇+ eA)2 + V (z)

]
+
∑
j<k

e2

|zj − zk|
. (9C.2)

First we make a many-body wavefunction from single-body wavefunctions at the lowest Landau level without potential

and the Coulomb interaction. Then the detail of the many-body wavefunction is determined to minimize the electron

interaction energy. The wavefunction which diagonalizes X2 + Y 2, thus the angualr momentum is written as

ϕ(z) = p(z) exp

(
−|z|

2

l2

)
, (9C.3)

where p(z) is a polynomial of z. Let Ne be the number of electrons and the many-body wavefunction can be written as

ψ(z1, · · · , zNe) = f(z1, · · · , zNe) exp

(
−
∑
i

|zi|2

4

)
, (9C.4)

where a polynomial f should be anti-symmetric for the exchange in (1, · · · , Ne) due to the Pauli principle.

The general form of the terms in f is (coefficient)×
∏

i z
mi
i . This mathematical form indicates that in the state this

term represents, the i-th electron is occupying the state with angular momentummiℏ. Hence the total angular momentum

M̂ in this term is
∑

imiℏ, and M̂ commutes with H . Because M̂ represents a conserved quantity, it is desirable to take

ψ as to diagonalize H and M̂ simultaneously. For that f should be a homogeneous polynomial.

Further, to make the interaction energy smaller, we consider two-body correlation. The distance between two electrons

i and j is |zi − zj |. Then we try a functional form that f is given by a product of functions g that only depend on zi − zj ,

that is
f(zi, · · · , zNe

) =
∏
i>j

g(zi − zj). (9C.5)

From the anti-symmetric property of f , g(z) = zq and q should be an odd number. The above consideration is summa-

rized into

ψq(z1, · · · , zNe
) =

∏
i>j

(zi − zj)q exp

(
−
∑
i

|zi|2

4

)
, (9C.6)

which is called Laughlin state.

It has been clarified that various ground states exist in a two-dimensional electron system under a strong magnetic field

due to strong electron-electron correlation. The Laughlin state is proposed to explain FQHE. As we can guess from the

functional form, it is composed to electron interaction energy. It is known that it is close to the exact solution in the finite

system obtained by using the exact diagonalization.
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9C.3 Filling factor of Laughlin states

In the Laughlin state (9C.6), let us consider the polynomial in front of the exponential. The electron coordinate zi has

a maximum power of M = (Ne − 1). This term of maximum power represents the state, in which the electron indexed

i has the maximum angular momentum Mℏ. The orbit of this state spreads by l on the circle with a radius
√
2Ml. The

area corresponding to Ne Landau levels is 2πl2Ne and the filling factor of the state represented by the term is

ν =
2πl2Ne

π × 2Ml2
=
Ne

M
=

Ne

(Ne − 1)q
≈ 1

q
. (9C.7)

Among many terms in the polynomial, the ones with largest orbital radius are that gives the largest angular momentum

to single electron. Hence the filling factor of this term becomes the filling factor of ψq itself. In other words, the filling

factor determines q of the corresponding Laughlin state.

9C.4 Excited states

Next we consider the excitation from Laughlin state (9C.6). For that we write the state with increased angular momen-

tum by one for each electron as
∏

i ziψq .

∏
i

ziψq =
∏
i

zi
∑

Am1,m2,···z
m1
1 zm2

2 · · · zmNe

Ne
exp

−∑
j

|zj |2

4

 (9C.8)

=
∑

Am1,m2,···z
m1+1
1 zm2+1

2 · · · zmNe+1
Ne

exp

−∑
j

|zj |2

4

 . (9C.9)

The operation of taking the product with
∏

i zi increases the angular momentum of each electron and at the same time

introduces a zero at the origin *4. Around the zero, the amplitude of the wavefunction is small with the scale of l and the

negative charge density decreases, which can be viewed as a positive charge around the zero. This can be treated as a

quasiparticle.

We first take the product with
∏

k(zk − z0)q , which introduces q quasiparticles at a point z0. Now we put an electron

with spatial size of l at z0. Then the wavefunction is

∏
k

(zk − z0)q
∏
i<j

(zi − zj)q exp

(
−
∑
l

|zl|2

4
− |z0|

2

4

)
. (9C.10)

This is nothing but a uniform Laughlin state with the electron number increased by one. The above operation means q

quasiparticles with a positive charge and an electron with the charge −e are canceled out. This indicates we can cosider

that the charge of a quasiparticle is e/q.

9C.5 Composite fermion picture

In a Laughlin state (ν = 1/q), the electrons avoid each other and if we keep our eyes on a single electron, it looks as

if a single electron is in a uniform magnetic field. In the ν = 1 Landau level, single a quantum flux Φ0 is going through

the area of a single electron. In the case of Laughlin state the number of quantum magnetic flux per an electron is q. Let

us consider such an electron as a “particle” with an even number (2k) of quantum flux. Such a particle obeys, if one goes

back to Laughlin wavefunction, the Fermi statistices, hence they are called composite fermion (CF)[8]. The magnetic

field such CFs feels is that of q − 2k times quantum flux.

*4 With
∏

i(zi − z0) zero can be introduced any point z0.
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That is, the field of q − 2k = 1 can be seen as IQHE state of n = 1 for CFs, where n is the filling factor of CFs.

Similarly in the case of 1/(q− 2k) = n > 1, IQHE of CFs appears for integer n. Because they express extended state of

CFs, the electron wavefunction is also extended. There, the filling factor ν of the electrons is

ν =
1

q
=

1

2k + 1/n
=

n

2kn+ 1
. (9C.11)

For k = 1, this gives an FQHE series of 2/5, 3/7, 4/9, · · · , which is comparatively easy to be observed. Taking these

states as the starting states, we can explain the next generation of FQH states. The above indicates that the FQHE of

electron can be interpreted as IQHE of CFs. ρxx looks symmetric to ν = 1/2 and the oscillation can be interpreted as

SdH oscillation of CFs.
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Lecture note on Physics of Semiconductors (14)
14th July (2021) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Chapter 10 Spintronics

This is the final lecture of “Semiconductors.” I would like to close the lecture with a talk on semiconductor spintronics.

Though the lecture time is limited, beginning with semi-classical spintronics, spin-orbit stpintronics then finally we would

like to consider the spin Hall effect and the topological insulators.

10.1 Classical treatment of spin transport

10.1.1 What is spintronics?

So far we have seen tranport phenomena in semiconductors from classical to quantum mechanical. An electron has

a charge and simultaneously a spin, associated magnetic moment and angular momentum. Hence motion of an electron

is associated not only with the charge but with the spin angular momentum. However, due to Kramers degeneracy, spin

angular momentums cancel out each other and the microscopic transport of spin angular momentum does not appear in

the net current. Since electrons are charge monopoles, electronics have made great progress by controlling their flow

and accumulation, and semiconductors, which make this possible, have played a central role. However, now that the

down-sizing, speeding up, and lowering of energy consumption are reaching their limits, spintronics is to use spin, which

is the internal degree of freedom of electrons, for information storage and manipulation[1]. For a long time, magnetic

disks and tapes, which are examples of spins frozen by the many-body effect, have been used for information storage.

Giant magnetoresistance (GMR) devices, which utilize magnetic multilayers or spin-valve structure have been used for

the readout of such information from 1990’s. Since then, the word “spintronics” has been gradually used.

The reason why semiconductors were the center of electronics is, paradoxically, because they are insulators. It is most

important that there are no electrons in an undisturbed crystalline state, and it is several times more difficult to cut off

current in a metal with good control than to introduce conduction in an insulator, and in metal electronics. The role of

metals in electronics is limited to wiring *1 ．On the other hand in spintronics, there is no net spin in normal metals in

equilibrium. They can be considered as “vacuum” for spins. In a sense, normal metals are semiconductors in spintronics,

substances to be treated in semiconductor physics.

The above is by no means a play of words. In electronics, there is almost no electric field, that is, a slope of chemical

potential in metals due to its short screening lengths. On the other hand, when an electric current is passed through an

interface between a normal metal and a ferromagnet, the chemical potential is separated by spin. This is similar to the

situation that in semiconductors under minority carrier injection in that different quasi Fermi levels are associated with

electrons and holes. Also, even inside metals, the spin current causes gradients in chemical potentials that can be detected

by external circuits. Therefore various physics we have seen in semiconductors may be observed as spintronics in normal

metals in modified forms.

*1 However, the establishment of the concept of electronic circuits itself depends on the existence of a substance called metal. For the detail, see
the lecture note of the present lecturer on electronics (in Japanese).
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10.1.2 Two-current model

In the two-current model proposed by Nevil Mott, the net electric current by electrons is devided into the portions

by up-spin (↑) and down-spin (↓) electrons. The model holds when the scattering time of spin flip is sufficiently longer

than those by various mechanisms (Sec. 5.1.5) dominating conduction. The difference in the resisitivities for ↑ and ↓ is

due to the difference in parameters like density of states, kF, etc. The total resistivity ρ is expressed by those for spin

subband channels ρ↑, ρ↓, as 1/ρ = 1/ρ↑ + 1/ρ↓. In diffusive conductors, regardless of magnetic or non-magnetic, the

spin diffusion length is generally longer than the mean free path (λF ≫ lF), hence the two current model is considered

to work well. On the other hand, in ballistic transport, particularly in the presence of strong spin-orbit interaction, the

two-current model meets difficulty. In this section we treat classical transport with no or weak spin-orbit interaction.

Hence the discussion is on the two-current model.

Assuming metallic conductors and the two-current model, we apply the Drude conductance to each spin-subband,

which is given by σs = e2nsτs/m
∗
s (s =↑, ↓). The net electric current density jc is given by j↑ + j↓ while the spin-

polarized portion is given by the difference jp↑ = j↑−j↓. The polarization of spin-polarized current density is definced

as

Pc =
|j↑ − j↓|
|j↑ + j↓|

=
jp↑(↓)

jc
. (10.1)

Each component of the current is further devided into the drift term and the diffusion term as

jps = σsE − eDs(−∇δns). (10.2)

10.1.3 Spin-dependent electrochemical potential

Even when there is nonequilibrium between spin subbands by spin injection(or emission), providing that intra-subband

scattering is sufficiently frequent and local equilibrium inside each spin band is kept, we can define local Fermi energy ϵs
and shift from the equilibrium δϵs for each spin-subband. For simplicity, a scaler σs is assumed for conductance tensor

σs. We write the electrostatic potential as ϕ (E = −∇ϕ). The Einstein relation σs = e2Ns(EF)Ds (this experssion is

low-temperature, metallic version of Eq. (5.13))，δns = Ns(EF)δϵs gives the following.

jps = −
σs
e

[
e∇ϕ− Ds∇δns

σs

]
=
σs
e
[−e∇ϕ+∇δϵs]. (10.3)

In the two-current model, the local electrochemical potential for each spin can be defined as

µs = −eϕ+ ϵs, (10.4)

which leads to the expression of current density in each spin-subband

jps = −
σs
−e
∇µs. (10.5)

Below we write electrochemical potential simply as “chemical potential.”

10.1.4 Spin current

There are several ways to defince spin current, namely flow of spin angular mometum. A representative one is

js(r, t) =
ℏ

2(−e)
(j↑ − j↓). (10.6)
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A spin current generally is a tensor formed by local spin density vector and flow vector. In the above for simplicity, we

consider a spin current as a flow of z(direction of magnetization)-component of spin angular momentum. Also more

generally, there is a type of spin current in which a flow of spin angular momentum is mediated by exchange interaction

(e.g. by spin-wave).

With writing local spin angular momentum density as s(r, t), and the z component as sz , spin angular momentum

conservation law is written by
∂sz
∂t

+ div js = 0. (10.7)

In the presence of spin relaxation, we need to consider the relaxation term in the right hand side of Eq. (10.7). Within the

relaxation time approximation, we can write

∂sz
∂t

+ div js =
∂sz
∂t

+
ℏ

2(−e)
∇ · (j↑ − j↓) =

ℏ
2

(
δn↑
τ↑
− δn↓

τ↓

)
. (10.8)

On the other hand, the charge (ρ) conservation law is given by

∂ρ

∂t
+ divj =

∂ρ

∂t
+∇ · (j↑ + j↓) = 0. (10.9)

In a steady state, ∂ρ/∂t = ∂sz/∂t = 0. From the constraint that there should be no total spin flip in the whole system

the relaxation times τ↑ and τ↓ should fulfill the detailed balance condition:

N↑τ↓ = N↓τ↑, (10.10)

where N↑,↓ are the spin-dependent density of states at the Fermi level. The above and Eqs. (10.8), (10.9) lead to

∇2(σ↑µ↑ + σ↓µ↓) = 0, (10.11a)

∇2(µ↑ − µ↓) =
1

(λFsf)
2
(µ↑ − µ↓). (10.11b)

Averaged spin diffusion length λFsf is defined from the Matthiessen’s law as (λFsf)
−2 = (λF↑ )

−2 + (λF↓ )
−2, where λF↑ ,

λF↓ are spin diffusion lengths for up and down spins respectively. Equation (10.11b) takes the form of diffusion equation,

thus called spin diffusion equation.

10.2 Spin injection and relaxation

There are various methods of injecting spins into a paramagnetic material, similar to injecting minority carriers into a

semiconductor by irradiating light or applying a forward bias to a pn junction. Here, in particular, spin injection from a

ferromagnet to a paramagnetic material is described. As with minority carriers, spin injection occurs at the interface and

spreads into the bulk and disappears (relaxes).

Let us consider an interface between a ferromagnet (FM) and a normal metal (NM) with a current jc perpendicular to

the interface. We write down the spin dependent local chemical potentials (Eq. (10.5)) for FM and NM regions in the

following form:

µM
s = aM + bMx± cM

σM
s

exp

(
x

λMsf

)
± dM

σM
s

exp

(
− x

λMsf

)
, (10.12)

where M is F(ferromagnet) or N(normal metal). x-axis is taken to be perpendicular to the interface in the direction to the

normal metal, and the origin is taken at the interface. In the double sign ±, + corresponds to ↑, − does ↓. The sum of the

first two terms in the r.h.s. is written as µ0, which does not depend on spin. The function form of the third and the fourth

terms comes from the fact that the spin-dependent parts should obey the diffusion equation (10.11). It is straightforward

to confirm that the expression in Eq. (10.12) satisfies Eq. (10.11).
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Fig. 10.1 Sketch of spatial variation of spin-dependent
chemical potential at an FM-NM interface, through which
electrons flow from the FM side.

Coefficient a ∼ d is determined as follows. Under the assumption of two-current model, the local chemical potential

µs for each spin subband must be continuous at the interface, i.e. µF
s (−0) = µN

s (+0). µ0 can be discontinuous at the

interface for non-equilibrium states while in |x| → ∞ both in FM and NM the difference between µ↑ and µ↓ approaches

zero. This means dF = 0 and cN = 0. Also the sum of current densities in spin-subband should be the total current

density jc.

From the above, the density of states and the spin polarization in F PF, µM
s is given by

µF
s =

(−e)jc
σF

x∓ (−e)jcPFλ
N
sf(1− P 2

F)σ
F

2σF
s σ

N

[
1 + (1− P 2

F)
σFλNsf
σNλFsf

] exp( x

λFsf

)
, (10.13a)

µN
s =

(−e)jc
σN

x+
(−e)jcPFλ

N
sf

σN

[
1 + (1− P 2

F)
σFλNsf
σNλFsf

] [1∓ exp

(
− x

λNsf

)]
. (10.13b)

In the comlex symbol +, − correspond to ↑, ↓ respectively. The origin of energy is taken to the chemical potential in

equilibrium (jc = 0). A schematic diagram is given in Fig. 10.1(a).

10.2.1 Spin injection and detection

Semiconductors are appropriate for the control of electric conduction because they are insulators in their intrisic states.

Similarly, non-magnetic materials are appropriate for the control and operation of spin current. For that, however, spin

injection into non-magnetic materials just like minority carrier injection in pn junctions, etc. In the configuration in

Py1

Py2

Cu

jc

jc
V

0 200-200 400-400 600-600

32

31

30

R
(m

)
W

H (Oe)

4.2K

(a) (b)

Fig. 10.2 (a) Configuration of probes and circuit for non-local detection of spin injection. The electric current jc
goes through the center of the cross made of Cu to the left terminal while the spin current injected from Py1 reaches
Py2, causes separation of µ↑ and µ↓ hence a step in µ0 at the N-F (Cu-Py2) interface, which is detected as a voltage
V . (b) Thus measured non-local resistance. The spin-valve like magnetoresistance comes from the difference in the
coercive force between Py1 and Py2 due to the difference in the shape. The data are from [2].
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Fig. 10.1, spin current and electric current are overlapped and the electric separation of the two effects is difficult. There-

fore in many of experiments on spin injection, non-local configuration of electrodes is adopted.

An example is shown in Fig. 10.2. Current jc through permalloy (alloy of Fe-Ni, Py)1 and the Cu sample causes

separation of µ↑ and µ↓, which means a spin accumulation at the interfaces. Though no electric current flows between

Py2 and Cu, the spin diffusion occurs independently. The spin current thus also flows to Py2 and there causes difference

in chemical potential, which is detected as a voltage. From Eq. (10.13) and the spin diffusion equation (10.11b), the

detected voltage is given by

V = ±1

2
ejcP

2
Py

ρPyρCu

ρPy + ρCu
exp

(
− L

λCu
sf

)
. (10.14)

Figure Fig. 10.2(b) shows the result of non-local measurement. Due to the difference in widths of Py1 and Py2,

the coercive forces for the magnetic field along the strips are different, which results in the spin-valve like non-local

magnetoresistance. The analysis of experimental results with various parameters by Eq. (10.14), material parameters like

PF and λsf can be obtained.

Figure Fig. 10.3(a) shows a schematic view of non-local four-terminal probe configuration, which is often adopted for

the detection of spin injection into semiconductors. An electric current is applied between the left two electrodes including

a ferromagnet, and the difference in the electrochemical potentials of the two electrodes also including a ferromagnet in

the right is measured as a voltage. In such needle-shaped thin film electrodes, due to magnetic anisotropy from shape, the

magnetic field is applied along the needles. On the other hand, a magnetic field perpendicular to the injected spins causes

precession of spin magnetic moment (Appendix 10A). If the electron spins rotates in perfect coherence and the starting

angle is also synchronized, the detected voltage oscillates reflecting the precession. In diffusion process, the distance of

migration largely distributes and in real samples the region of injection has a finite width and the oscillation decays with

the progress of precession. This is called Hanle effect.

If the problem is restricted to one dimensional spin diffusion along x-axis in a normal metal, spin dependence in σs,

Ds and τs can be dropped in Sec. 10.1. In Eq. (10.2), since only the diffusion term is effective for non-local effect, the

drift term is dropped. Applying the relaxation time approximation (10.8), we get the spin diffusion equation:

∂sz
∂t

= D
∂2sz
∂x2

− sz
τsf
. (10.15)
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Fig. 10.3 (a) Four terminal probe configuration for detection of spin injection into semiconductors (SCs) with non-local resistance.
Current jc between left pair of ferromagnet (FM) and normal metal (NM) causes spin current to the right, which is detected as the
chemical potential difference (voltage). MgO for the potential barrier is used for spin-injection with high efficiency. (b) Hanle signal
measured in a similar structure as in (a). The SC here is Si and the spin rotation is caused by the magnetic field perpendicular to the
current plane. From Ref. [3].
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This leads to the expression of Hanle signal:

∆V = ±
jcP

2
j

e2NSC

∫ ∞
0

dtφ(t) cosωt,

φ(t) =
1√
4πDt

exp

(
− d2

4Dt

)
exp

(
− t

τsf

)
,

(10.16)

where d is the distance between the injection and detection electrodes, Pj is the spin polarization just below the injection

electrode, ω = gµBB/ℏ is the Larmor frequency (Appendix 10A).

Figure Fig. 10.3(b) shows a Hanle signal measured in an experiment, in which spins were injected from an Fe electrode

into Si. The signal can be fitted by (10.16). The fitting provides the parameters λsf , etc.

10.3 Spin-orbit interaction

Henceforth we go into semiconductor spintronics. Here “Semiconductor” refers to materials defined by the charge

degrees of freedom that we have seen in the previous chapters. The spin-orbit interaction (SOI) has been already in-

troduced when we had a look on k·p perturbattion perticularly for fcc-type semiconductors. In spintronics, the SOI is

very important since it connects spin and orbital degree of freedoms. Below we see an example that the SOI becomes

important even in the conduction bands through the mixing with the valence bands, in which the SOI is strong in intrinsic

bulk states. More specifically, we consider two type of spin-orbit interactions in two-dimensional electron systems.

10.3.1 Spin-orbit splitting due to bulk and structural inversion assymetries

In crystals when the lattice has the spatial inversion symmetry, the states of k and −k are degenerate. For example

in the case of ↑-spin states, E(k, ↑) = E(−k, ↑). The time-inversion operation causes −k → k and simultaneously

inversion in spin. When the crystals have time-inversion symmetry not having magnetism and the spatial inversion

symmetry, E(k, ↑) = E(k, ↓). In other words, in order for a system to have finite spin-splitting at finite k, the system

should have some inversion asymmetry.

In the primitive cell of zinc-blende type crystals, it is apparent that there is spatial inversion asymmetry along [111],

which gives spin-splittings in energy dispersion due to the SOI. Such inversion asymmetries arising from crystal structures

is called bulk inversion asymmetry (BIA). SOIs caused by BIA is called Dresselhaus spin-orbit interaction. The

Dresselhaus SOI is obtained from k ·p perturbation that takes BIA into account[4, 5]. BIA is some variance for k→ −k,

and then the interaction term should be odd order in k. In the caes of Dresselhaus interaction in three-dimensional systems

is in 3rd order. The form of the Hamiltonian is

H 3d
DSO = γℏ2[kx(k2y − k2z)σx + ky(k

2
z − k2x)σy + kz(k

2
x − k2y)σz], (10.17)

where xyz is [100], [010], and [001]. When a two dimensional electron system (2DES) is formed on (001) surface, due

to the averaging of kinetic freedom in z-direction ([001]), a k-linear term appears.

H 2d
DSO = γℏ2[kx(k2y − ⟨k2z⟩)σx + ky(⟨k2z⟩ − k2x)σy]

= β(kyσy − kxσx) + γℏ2(kxk2yσx − kyk2xσy). (10.18)

While the BIA is from the crystal structure, the inversion symmetry is broken by introducing some structures that break

the periodicity like a hetro-interface. This is called structure inversion asymmetry (SIA). The SOI introcuded from the

SIA at an interface is called Rashba spin-orbit interaction [6, 7]. The Rashba-type interaction Hamiltonican is written

in the form:
HRSO = ασ · (k × ez) = α(kyσx − kxσy). (10.19)
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This comes from the expression Eq. (2.56). Here ∇V (in (2.56)) is an electric-field like term perpendicular to the 2DES

plane (z-direction) *2. We need to be careful for “electric-field like term ∇V .” Let us assume that this ∇V/e is really

an electric field for a while. Here, ∇V is the total (including the one from the band discontinuity) force, which confines

conduction electrons into the two-dimensional plane. The fact that the electrons are confined into the two-dimensional

plane means that the averaged expectation value of∇V is zero due to the Ehrenfest theorem on the motion in z-direction,

i.e. ⟨∇V ⟩ = 0[8]. Therefore, the Rashba interaction cannot be introduced from a real electric field∇V/e.
As ssen in the k·p approximation (Sec. 2.2.6-7), the SOI comes from the mixing of valence-band wavefunction into

the conduction-band wavefunction at finite k. There, we introduced a potential V (Eq. (2.56)) common for conduction

and valence bands. If there is a difference in their band discontinuities, we need to consider different V ’s for them, and

if ⟨(∇V )z⟩ = 0 in the conduction band, (∇V )z⟩ ̸= 0 in the valence band, then the Rashba interaction survives with

that. Along the above line, we write the potentials in conduction and valence bands as Vc and Vv respectively and derive

the expression for the SOI. Because ⟨(∇Vc)z⟩ = 0, ∇V term is replaced by ∇Vv . In experiments, many phenomena

characteristic to the Rashba SOI have been found, e.g. in a 2DES of a narrow gap semiconductor InGaAs. They are

considered to arise from the valence band.

We consider a 2DES which only has k-linear terms in the Rashba SOI (10.19) and the Dresselhaus SOI (10.18). We

take a plane wave with wavenumber k = (k cosφ, k sinφ) as the orbital part to write the SOI Hamiltonian as follows.

HSO = α

(
0 −ik̂x + k̂y

ik̂x + k̂y 0

)
+ β

(
0 −k̂x − ik̂y

−k̂x + ik̂y 0

)
= αk

(
0 ie−iφ

−ieiφ 0

)
− βk

(
0 eiφ

e−iφ 0

)
.
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k+ k+k- k-
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Fig. 10.4 (a) Upper: Energy dispersion relation (10.20) in the presence of the Rashba SOI. The spin at +π/2 is
taken as “up.” Lower: Three dimensional wireframe expression of the energy dispersion on kx − ky plane. (b)∼(e)
are cross sections at E = EF. (b) Two Fermi circles and the direction of effective field (spins) in the case of β = 0

(Rashba model). (c) The same as (b) in the case of α = 0 (Dresselhaus model). (d) α and β are finite, but α ̸= β. (e)
The case of α = β.

*2 From this expression, one often falls into the following incorrect explanation. – The existence of electric field means creation of charges both
upper and lower sides of 2DES. From an electron running in 2DES those charges cause a loop current enclosing the 2DES. The loop current
results in a magnetic field, which is nothing but the Rashba effective field. – For the reason why this is wrong, see the text.
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In the case of β = 0 (Rashba model), writing the spin part as t(1, eiϕ)/
√
2, we get ϕ = φ ± π/2 from the condition

of eigenfunction. Namely the wavevector and the spin are orthogonal. The eigenenergy E± corresponding to ±π/2 are

obtained in the effective mass approximation as

E± =
ℏ2k2

2m∗
∓ αk =

ℏ2

2m∗

(
k ∓ m∗α

ℏ2

)2

− m∗

2ℏ2
α2. (10.20)

Equation (10.20) indicates that the dispersion shifts in k-space depending on the direction of spin. The dispersion is

described as two spin-dependent parabolas as drawn in Fig. 10.4(a), and in Fig. 10.4(b) in a three-dimensional view. If

we cut the dispersion at E = EF, two cocentric Fermi circles appear. The direction of spin on the Fermi circles indicated

in Fig. 10.4(b) rotates inversely to each other. Similarly for α = 0, ϕ = −φ, −φ+ π and the energy dispertion is in the

same form as Eq. (10.20) but with replacing α with β. However, a rotation of k on the Fermi circles causes an inverse

rotation of spin as sketched in Fig. 10.4(c).

Under the coexistence of α and β, generally the spin and the dispersion show complicated forms as in Fig. 10.4(d). In

the special case of α = β, the plane wave and the spin are separated as HSO = α(k̂x + k̂y)(σx − σy). With rotating the

wave-vector part and the spin part as k± =
ky±kx√

2
, χ± = ±t(1/

√
2, (i− 1)/2), the Hamiltonian is expressed as

H =
ℏ2

2m∗
(k̂2+ + k̂2−)− 2αk̂+σ

′
z. (10.21)

σ′z is a Pauli matrix on the basis of χ±. Since the wave-vectors and the spins are separated, once the eigenfunction of the

spin part χ± is determined, the dispersion is ordinary parabola whoes center shifts by ±2m∗α/ℏ2 depending on χ+, χ−
Therefore, as in Fig. 10.4(e), the centers of the spin-dependent two parabolas shift to each other. The two center-shifted

Fermi circles have a partial overlap.

10.3.2 Spin-orbit interaction and SdH oscillation

In a 2DES where the Rashba interaction is strong and β can be ignored, two Fermi cirlcles with different kF exist as in

Fig. 10.4(b). This leads to spin-dependent 2DES sheet density nsσ = k2Fσ/(4π). The SdH oscillation in such a system

should have two different periods in 1/B plot as in Eq. (9.14) resulting in the beating among the two frequencies. The

difference in the size of the Fermi circles is proportional to α, thus to ⟨∇Vvz⟩. Therefore the frequency of beatng should

change with applying the external electric field to cause the change in ⟨Vv⟩.
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Fig. 10.5 SdH oscillation observed in a 2DES at a
quantum well of In0.53Ga0.47As. The parameter is the
gate voltage Vg applied onto the surface of 2DES. The
arrows indicate the position of nodes in the beats. From
[9].
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Figure 10.5(a) shows SdH oscillations measured in 2DES at a quantum well of (In,Ga)As grown on an InP substrate.

Although there is a large lattice mismatch between InAs (narrow gap) and GaAs (relatively large gap), lattice matching

is performed on the InP substrate by mixing crystals and setting the In composition to 0.53. In addition, heterojunctions

can be formed by adding Al to the mixed crystal. A clear beat appears in the SdH oscillation, and the position of the node

indicated by the arrow shifts due to the gate voltage, which is expected for the Rashba SOI.

10.4 Spin Hall effect and topological insulator

10.4.1 Spin Hall effect

When an electric field is applied to an electron system with SOI, a spin current is drived in the direction perpendicular

to the field. This phenomenon is called spin Hall effect. Let Jij be the spin current tensor with spin coordinate index i,

flow coordinate index j. For the external electric field E, Jij is written as

Jij = σs
∑
k

ϵijkEk, (10.22)

where ϵijk is the completely antisymmatric tensor indicating the mutual orthogonality of spin, flow vector of spin current

and electric field. σs is called spin Hall conductance. The spin Hall effect arises from impurity scattering, or SOI from

special orbital motion due to the band structure. The former is called extrinsic spin Hall effect while the latter is called

intrinsic spin Hall effect.

Due to space limitation here I just introduce an example of experiment. Figure 10.6 shows an experiment, in which a

spin accumulation at edges of an n-type GaAs sample is detected by the difference in chemical potentials of ferromagnetic

electrodes. A clear spin signal which reverts with current reversal is detected (no signal for anti-parallel magnetization

configuration). The signal is due to the spin Hall effect. From the temperature dependence, it is concluded that the origin

is the extrinsic effect.

10.4.2 Anomalous velocity and spin Hall effect

Let us consider the motion of a wavepacket in a crystal. The wavepacket is expanded by Bloch functions and the

effect of external force F = −eE from electric field E on each Bloch component is examined. We introduce “Bloch

−e

jcH
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a b c
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Fig. 10.6 (a) Probe configuration of an n-type GaAs sample. Spin accumulation at the sample edges is detected
by the Fe electrode pairs placed perpendicular to the current. (b) Spin Hall signal from electrodes at 2 µm from the
sample edges. The current density is 5.7 ×103A/cm2. The solid and open circles are the results for reversed currents
in parallel magnetization. The solid line is for anti-parallel magnetization. The inset shows the Hanle effect between
the electrodes. The temperature is 30 K.
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Hamiltonian” HB(k) = e−krH0e
ikr , where H0 is the crystal Hamiltonian, and the wave vector k is treated as a

parameter. And the eigenfunction is a lattice periodic function unk(r).

From the space of unk(r), a variation in k can be viewed as that in the Hamiltonian. We have considered such

situation in the introduction of Berry phase, in that the crystal wavenumber k is taken as the set of parameters R for

adiabatic transition. Then the Berry connection and the Berry curvature in this case are

An = i

⟨
unk

∣∣∣∣∂unk∂k

⟩
, Bn(k) = i

⟨
∂unk
∂k

∣∣∣∣× ∣∣∣∣∂unk∂k

⟩
, (10.23)

respectively.

Let |nk⟩ be a Bloch function, and we drop the band index n limiting the band to n (single band). We assume the

quantities in Eq. (10.23) are not zero, k-representation of the coordinate operator r̂ is

⟨k|r̂|k′⟩ = (i∇k +A) δ(k − k′),

where∇k = ∂/∂k. This corresponds to that the dynamic momentum in a magnetic field is written as −iℏ∇+ eA in the

coordinate representation. Then we obtain

⟨k|[x̂, ŷ]|k′⟩ = (i∇k ×A)z δ(k − k′) = iBzδ(k − k′).

From the Heisenberg equation dq̂/dt = [q̂,H0 − F · r̂]/iℏ, we write the time evolution of operators x̂, k̂x by F as⟨
k

∣∣∣∣dx̂dt
∣∣∣∣k′⟩ =

[
∂E

∂kx
− (F ×B)x

]
δ(k − k′)

ℏ
,

⟨
k

∣∣∣∣∣dk̂xdt
∣∣∣∣∣k
⟩

= Fx
δ(k − k′)

ℏ
.

Under the above conditions, a wavepacket f is expanded by Bloch functions as f =
∑

k ak|k⟩ (ak = ⟨k|f⟩). The

time evolution of the averaged values of f in real and wavenumber spaces r0, k0 are

dr0
dt

= v =

⟨
f

∣∣∣∣dr̂dt
∣∣∣∣f⟩ =

∑
k

⟨f |k⟩
ℏ

(∇kE − F ×B) ⟨k|f⟩ ≈ 1

ℏ
(∇kE − F ×B)|k=k0

, (10.24a)

dk0/dt = F /ℏ, (10.24b)

respectively. In (10.24a), the average over the wavepacket is replaced with the expectiation value on k. The second term

in (10.24a) is the difference from the effective mass approximation due to the Berry curvature. This is called anomalous
velocity.

When the Fermi level is within a band gap (i.e. the system is a band insulator) and the anomalous velocity exists,

the Hall conductance is quantized as σxy = νe2/h from the TKNN formula. However in ordinary situation with time-

reversal symmetry, the Berry curvature B is zero, no anomalous velocity exists, the Hall conductance disappears. As in

the two current model the system is devided into ↑, ↓ and we consider σ↑↓xy in each system. From the definition (10.6),

js = (ℏ/(−2e))(σ↑xy − σ↓xy)E. Therefore

σs
xy =

ℏ
−2e

(σ↑xy − σ↓xy) =
−e
4π

(ν↑ − ν↓) = −e
4π
νs. (10.25)

Here ν↑,↓ is the Chern number for each spin subband and the difference between the two νs is called spin Chern number.

For the spin Chern number to be finite, there should be an effect that gives the same action as the magnetic field and the

action should be reversed with spin reversal because in (10.25) the difference between the spin-subband is taken. Systems

with a k-linear SOI just like Rashba model apparently fulfill the condition, which results in the appearance of the spin

Hall effect.
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10.4.3 Quantum spin Hall effect

The above discussion is for an insulator and we need to be careful about “electric curren of each spin” [10]. Even

when the total net current is zero, current in each spin subband may be finite and in such a case, the Hall conductance

is quantized by e2/h in each subband. Let us consider the case the region y < 0 in xy-plane is occupied with such

a two-dimensional insulator. With Heaviside function Θ(x), the current components are jχx = Θ(y)σχ
xyEy , jχy =

−Θ(y)σχ
xyEx, where χ is ↑ or ↓. Then the charge conservation is written as

dρχ

dt
+∇ · jχ =

dρχ

dt
− δ(y)σxyχEx =

dρχ

dt
− δ(y)νχ e

2

h
Ex = 0.

Taking the difference between the two equations for χ =↑, ↓, and integrating on the entire space of the system, we get

dSz

dt
= L
−e
2π
νsEx,

where Sz is the z-component of total spin of the system, L is the length at the edge y = 0. The result tells that we need

some anomaly at the edge to conserve Sz .

This leads to the idea of the edge states as in the quantum Hall effect, but in the present case there should be no net

electric current. Then we consider two edge states (helical edge states) with opposite charge velocity and spin at the

bounday. We write their dispersions as E↑↓k = ±v(δkx − eExt) (↑: +, ↓: −，δkx = kx − kF). Because the variation in

the number of particles in the unit time is δN↑↓ = ±eExL/2π

dSz

dt
=

1

2
(δN↑ − δN↓) = L

e

2π
Ex.

With comparison of the two equations, from the condition dSz/dt = 0 in total, the number of helical edge states should

be the spin Chern number.

Such an insulator is called quantum spin Hall insulator or topological insulator. Since spin Chern number is an integer,

from Eq. (10.25), the spin Hall conductance of a topological insulator is quantized by e/4π.

10.4.4 Quantum well of a topological insulator

We will conclude this lecture by introducing an experiment that verified a topological insulator with quantum spin Hall

effect for the first time. After this experiment, many topological insulators were discovered in a dozen years, and not

only topological insulators but also Dilac semimetals and Weyl semimetals were found, and a wide range of topological

materials such as magnetic ones were found. The research is now widely going on. In addition, the reason why we named

ns=1

ns=0

EF

E

(a) (b)

ordinary insulator

topological insulator

valence band

conduction band

Fig. 10.7 Concept of the topological in-
sulator. (a) The region y < 0 is a 2-
dimensional topological insulator and the
rest is a vacuum, which is an ordinary in-
sulator. A pair of helical edge states exists
at the boundary. The spin Chern number in
the topological insulator is 1 corresponding
to the nubmer of edge states. (b) The en-
ergy dispersion diagram. The helical edge
states have a linear dispersion relation[10].
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Fig. 10.8 (a) Band structure around Γ-point of HgTe and CdTe. Γ6, Γ7, Γ8 are Koster symbols for space group
elements, which indicate the symmetries of the bands. (b) Schematic view of the positions of E1 and H1 subbands.
(c) Longitudinal resistances of CdTe/HgTe/CdTe quantum wells. The gate voltage is measured from the position at
which the Fermi level comes to the center of the gap. Well widths, I: 5.5 nm; II, III, IV: 7.3 nm. The distance between
the electrodes are 13 µm for I and II, 1 µm for III and IV.

the ”quantum spin Hall effect” is that quantum hole insulators, which have a long history, are also considered to be a type

of topological insulator, so the first topological insulator discovered by humans is called the quantum hall insulator. The

reason why I’ve added “quantum spin Hall effect” is that quantum Hall insulators, which have a long history, are also

considered to be a type of topological insulator, so the first topological insulator discovered by humans should be the

quantum Hall insulator and I think we need to mention that clearly.

Figure 10.8 shows the setup of the experiment and the results. HgTe is used as the topological insulator. A thin film of

HgTe is inserted between two CdTe films, which work as barrier layers and form a quantum well. Figure 10.8(a) shows

the band diagrams of HgTe and CdTe zinc blende crystals calculated by 8-band k·p model with SOI. In CdTe, just like

GaAs, the Γ6 (J = ±1/2) conduction band mainly comes from s-orbital while the Γ8 (J = ±1/2, ±3/2) valence band

plus the Γ7 spin-split-off band come from p-orbitals. On the other hand in HgTe, the strong SOI causes a band inversion,

that is the Γ8 band floats above the Γ6 band. In a HgTe quantum well, the quantum confinement modifies the band

structure. We name quantum-confined level from the electron-like dispersion band Γ6 as E1, and that from the hole-like

dispersion band Γ8 as H1.

A theoretical model named Bernevig-Hughes-Zhang(BHZ) model was proposed for the HgTe quantum well[11]. Ac-

cording to the model, as long as the order of E1 and H1 bands on the energy axis keeps the inversion (EH1 > EE1) the

Chern number (Z2 topological number) is 1 namely the HgTe quantum well is a two-dimensional topological insulator.

The quantum well potential is symmetric for the center of well and there is no SIA hence no Rashba SOI. Hence the well

structure does not give important change in the SOI. On the other hand, the quantum confinement enhances E1 level and

lowers H1 level. With decreasing the well width, then, the order in the level is transformed into the ordinary one at the

critical width and the system goes into an ordinary insulator.

In Fig. 10.8(c) the four-terminal resistance of quantum wells of CdTe/HgTe/CdTe, in which the E1-H1 crossing critical

width is dc=6.3 nm. The well widths is 5.5 nm (less than dc) for I and 7.3 nm for others. When the well width is less
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than dc, the resistance is very high around Vg = 0 indicating that the system is an ordinary insulator. On the other hand

when the width is wider than dc and H1 level places above E1, a topological insulator is realized and a helical edge state

appears at the sample edge. The electric conductance through the helical edge state should be 2e2/h from the Landauer

formula (??). Actually in the samples III (sample width 1 µm), IV (width 0.5 µm), the conductances are 2e2/h around

the gate voltage for the insulating phase, which fact indicates the realization of the topological insulating (quantum spin

Hall) phase.
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Appendix 10A: Motion of small magnetic moment

10A.1 Electron spin in a magnetic field

Let us consider a single electron spin s in static magnetic field B0 along z-direction. We consider only the Zeeman

energy:
H = (eℏ/2m0)gB0ŝz = gµBB0ŝz,

where µB is the Bohr magneton. From the commutatio relatoin of spin operators [ŝj , ŝk] = iŝl/2 ((j, k, l) are cyclic

replacement of (x, y, z)),

[H , ŝx] = igµBB0ŝy, [H , ŝy] = −igµBB0ŝx, [H , ŝz] = 0.

Hence the Heisenberg equation of motion tells.

∂⟨sx⟩
∂t

= −gµB

ℏ
B0⟨sy⟩,

∂⟨sy⟩
∂t

=
gµB

ℏ
B0⟨sx⟩,

∂⟨sz⟩
∂t

= 0. (10A.1)

∴ ⟨sx⟩ = A cosω0t, ⟨sy⟩ = A sinω0t, ⟨sz⟩ = C, ω0 =
eg

2m0
B0, (10A.2)

where A2 + C2 = s2. Equation (10A.2) is representing precession around z-axis with the Larmor frequency ω0.

Next we add a rotating magnetic field B1(ex cosωt + ey sinωt) in xy-plane. The time-dependent Hamiltonian with

that is written as
H (t) = gµB(B1 cosωtŝx +B1 sinωtŝy +B0ŝz).
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The time evolution of spin-wavefunction χ(t) = u(t)| ↑⟩+ d(t)| ↓⟩ is represented as

iℏ
∂

∂t

(
u
d

)
= −gµB

(
B0 B1e

−iωt

B1e
iωt −B0

)(
u
d

)
.

The solutions of the above simultaneous differential equations are expressed as

u(t) = C(Ω∓ ω0 ± ω)ei(±Ω−ω)t/2, (10A.3a)

v(t) = ±Cωce
i(±Ω+ω)t/2, (10A.3b)

whereC is an integration constant, ωc = eB1/m0, and Ω =
√
(ω − ω0)2 + ω2

c . Taking the initial condiction as u(t) = 1,

d(t) = 0, the solutions are

u(t) =

√
2− ω2

c

Ω2
sin

(
Ωt

2
+ α

)
e−iωt/2, v(t) =

ωc

Ω
sin

Ωt

2
eiωt/2,

where α = arctan(Ω/(ω − ω0)). Then we obtain

|d(t)|2 =
ω2
c

(ω − ω0)2 + ω2
c

sin2
Ωt

2
, (10A.4)

which indicates a Lorentz type resonance and the osicllation with the frequency Ω(= ωc) at ω = ω0.

B

M

-M B´

damping

j

q

10A.2 LLG equation

Appling the equation of motion (10A.1) to a general macroscopic magnetic

moment M , we obtain the Landau-Lifshitz equation

∂M

∂t
= −gµB

ℏ
M ×B. (10A.5)

The addition of the relaxation R of M gives

∂M

∂t
= −gµB

ℏ
M ×B +R. (10A.6)

What should be the mathematical form of R? Since M has the lowest energy

at the direction of B, the relaxation should be a force to this direction as shown

in the left. The force is perpendicular to −M ×B and M . It is natural to infer

that

RLL = −λ M

|M |
× (M ×B), (10A.7)

where λ is a constant. This is called the Landau-Lifshitz damping term.

Another idea is that the relaxation rate should be proportional to time-variation of ∂M/∂t, which has the same direction

as −M ×B. In this idea the damping term can be written with a constant α as

RG = α
M

|M |
× ∂M

∂t
, (10A.8)

which is called Gilbert damping term. If we substitute the equation of motion (10A.5) into this ∂M/∂t, the term is

the same as the Landau-Lifshitz term. Adopting RG for the damping, we reach the Landau-Lifshitz-Gilbert (LLG)

equation:
∂M

∂t
= −gµB

ℏ
M ×B + α

M

|M |
× ∂M

∂t
, (10A.9)

which is often used to describe motions of magnetization phenomenologically.
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