
Lecture note on Magnetism (1)
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Chapter 1
Basic Notions of Magnetism

Magnetic fields are well known as “fields” that generate remote (but actually proximity) forces as well as magnetic

fields or gravitational fields. Materials respond to magnetic fields on one hand, create magnetic fields on the other.

Such properties are called “magnetism.” Perhaps the most prominent “magnetism” for us is spontaneous magnetization

represented by permanent magnets. On the other hand, every material has some magnetic properties. Then what do we

call magnetism? What is the origin of magnetism? We will consider these problems in this half-year lecture. I do not

think I can give you sufficient answers though I would like to try to give you some usuful hints to consider the problems.

In this chapter, we will have a short look at very basic notions in magnetism. I may skip some of the contents in the

lecture notes in the real lectures due to the time limitations.

1.1 Electromagnetic fields in the vacuum and those with materials

We skip the very elementary electromagnetism, with which all of you are already familiar. First, we consider the

magnetic properties of matter phenomenologically.

1.1.1 The Maxwell equaitons and magnetic moment

In classical theory, the electromagnetic field in a vacuum is described by the Maxwell equations

∇ ·E =
ρ

ϵ0
, (1.1a)

∇×E = −∂B
∂t

, (1.1b)
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∇ ·B = 0, (1.1c)

∇×B = µ0

(
j + ϵ0

∂E

∂t

)
. (1.1d)

We adopt MKSA (SI) unit of system (Appendix 1A). The annotations of symbols may be skipped, but for confirmation,

B is the magnetic flux density with unit of [T] (Tesla) in SI. The unit [T] is the same as [Wb/m2], where we consider

the number of magnetic flux [Wb] (Weber). The unit of magnetic field intensity is [A/m], and we usually use symbol

H the quantity measured in this unit. In the vacuum, they are in a linear relation B = µ0H with the coefficient µ0

(permeability of vacuum). Because µ0 µ0 has a physical dimension in MKSA unit system, thus B is a different quantity

from H to be strict. However µ0 = 4π × 10−7 [H/m] is a universal scalar and we often call B as “magnetic field”, as

well asH in the vacuum. In materials, the situation changes.

In eq. (1.1c),E andB are not symmetrical even after tunings of coefficients. The origin is ρ (charge density) in the rhs

of eq. (1.1a), and j (current density) in the rhs of eq. (1.1d). These come from the fact that the electric monopole exsits.

Though the possibility of the existence of magnetic monopole is not completely eliminated, there has been no convincing

report on the finding of magnetic monopole. At present, as in eqs. (1.1), we do not consider the existence of magnetic

monopole. In eqs. (1.1), hence, magnetic fields are created by electric currents and time-derivatives of electric field as in

eq. (1.1d). However, as we see later, electrons and some of nuclei have spin angular monments and associated magnetic

dipole moments. These produce dipole magnetic fields around them.

Fig. 1.1 Pair of force moment on a magnetic dipole
in a magnetic field.

The concept of dipole magnetic field can be introduced as

the shrinkage limit of a circular current(1B.2). On the other

hand, in correspondence with the electric dipole, introduction

of fictitious magnetic charges which always appear as a pair

with the same amplitude and the opposite sign, and the limit

of shrinkage under the condition of keeping the product (mag-

netic charge)×(distance) constant. Then let us define mag-

netic moment as follows. We use [Wb] (weber) as the unit of

“magnetic charge” in MKSA system in parallel with the unit

of electric charge ([C]) = that of electric flux due to the Gauss

theorem. We consider a magnetic dipole (before taking the

shrinkage limit), which has magnetic charges ±qm with dis-

tance l. Let the dipole be placed in a uniform magnetic field

H and has an angle θ to the field (Fig. 1.1). The magnetic charges get the force qmH from the field and the dipole get the

pair of force
L = −qmlH sin θ = −(qml/µ0)B sin θ. (1.2)

The quantities that depend qm and l only in the form of their product qml, do not change with taking the limit. Hence we

write
µ ≡ qml/µ0, (1.3)

and call µ magentic moment.
Because the couple coment in eq. (1.2) drives a rotation of the magnetic moment to the direction of θ = 0, it can be

expressed by a static magnetic potential ϕm as follows.

ϕm = −µB cos θ. (1.4)

By generalizing the above to a vector representation, we get

L = µ×B, ϕm = −µ ·B. (1.5)

E01-2



Fig. 1.2 (a) Schematic view of polar coordinate (r, θ, φ). (b) Schematic diagram of magnetic power force lines from
magnetic dipole.

1.1.2 Dipole interaction

Let a magnetic moment along z-axis be at the origin. We use the polar coordinate (r, θ, φ) in Fig. 1.2(a).

From the spherical fields that the magnetic charges create, it is easy to see that the magnetic field has no component

along φ. It is well known that the magnetic flux density (Br, Bθ) along (r, θ) are

Br =
|µ|
4πµ0

2 cos θ

r3
,

Bθ =
|µ|
4πµ0

sin θ

r3
.

 (1.6)

We see they are inverse proportional to the cube of distance. The derivation can be fined in Appendix 1B1. We can draw

the magnetic force line by connecting tangent lines of magnetic field vectors and obtain, e.g., that in Fig. 1.2(b)*1 .

Next we consider two such magnetic moments µ1, µ2. As in Fig. 1.3, the vector going from µ1 to µ2 is written as r.

µ1 and µ2 form the potential in eq. (1.4) in the magnetic fields of eq. (1.6). Then the total potential of the two magnetic

moments is

U =
1

4πµ0r3

{
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

}
. (1.7)

The derivation is given in Appendix 1B2. The interaction between the moments expressed by eq. (1.7) is called dipole-
dipole interation. In the potential of eq. (1.7), the stable configuration can be obtained by maximizing the amplitude of

the second term because the sign is minus and the coefficient is larger than the first one. |r| is canceled by the denominator

Fig. 1.3 Classical interaction of two magnetic dipoles. (a) Stable configuration. (b) Unstable configuration.

*1 In this figure, it is not taken into consideration that the magnetic field line density is proportional to the magnetic field.
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and the numerator, hence the stable configuration is obtained as in Fig. 1.3(a). On the ohter hand the configuration in

Fig. 1.3(b) has a higher energy and is unstable. The effect of classical dipole-dipole interaction is generally much smaller

than the quantum mechanical exchange interaction. However, in some characteristic phenomena, it plays important roles.

A more fundamental problem of multiple magnetic moments is how we can view a set of magnetic moments from a

far distance. The problem of taking a limt of moment-moment approach with a constant moment-distance product, is the

problem of multipole. However, simply looking from a distance, the problem is the same as that a set of various charges

from a distance can be treated as a point charge with the sum of the charges. This from the linearity of the Maxwell

equations. Then let {µ0,µ1, · · · } be the magnetic moments under consideration and we see the set as a moment which

is the sum
µ =

∑
i

µi. (1.8)

1.1.3 Magnetization of materials

Generally a magnetic field induces a magnetic moment in materials. This phenomenon is called magnetization of a

material. Assuming a uniform distribution of induced magnetic moments, the moment per unit volume is called magne-
tization or magnetic polarization. Now, we write the magnetization as M . Then from definition (1.3), we express the

induced magnetic moment as the sum of equal descrete moment µ = qml/µ0 of concentration N (per unit cell) as

M =
∑

unitvol.

µ = Nqml/µ0 ≡ ρl/µ0. (1.9)

Here, ρ ≡ Nqm is like a density of magnetic charges. In the naive model described in Fig. 1.4, small bar magnets with

length l = |l| are aligned. The magnetic charges of neighboring magnets cancel each other due to the zero distance and

no magnetic charge exists inside the material naturally. The magnetic charges then appear just at the ends of the material.

When the end surfaces are taken perpendicular to the magnetic polarization, the surface magnetic charge density is qm
times s, the areal density of “rods” which are the serieses of bar magnets. We consider a slab with unit area and height

l, which should contain just one moment along the height, then the total number inside should be s. On the other hand

from the definition the number should be Nl, which means s = Nl. Therefore the areal density of magnetic charge σ at

the ends is given by
σ = qms = qmNl = µ0|M |, (1.10)

that is, the magnetic polarization is the same as the areal density of magnetic charges.

As considered above, the magnetic moment induced in the material (there is also spontaneous magnetization that occurs

without an external magnetic field), that is, the magnetization generates a magnetic field around the material. The field

is in a far distance, that of the magnetic moment of LS|I| = V |M |, where S is the area of ends of the material, L is

the length. Thereofre, measurement of outer magnetic field originated from the material can give M . In the discussion

Fig. 1.4 A naive model of magnetization of a material which is composed of many small magnets with length l and
magnetic charges ±qm.
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of magnetism, i.e., magnetic properties of materials, (apart from how far the above simple model can be used) what we

should consider in the first place is how magnetic moments are induced in the material ?

1.1.4 Electromagnetic field in the presence of materials

Since the magnetic moment is expressed as a circular current, the effect of the magnetic moment in a substance can

also be expressed as a current. As illustrated in Fig. 1.5, we take the coordinate r′ inside the material and sum up the

effect of local moments to give

A =
µ0

4π

∫
mat

dv′
M ′ × r
r3

= −µ0

4π

∫
mat

dv′
(
M ′ ×∇1

r

)
=
µ0

4π

∫
mat

dv′
(
M ′ ×∇′ 1

r

)
. (1.11)

Here the integration volume is taken inside the material. The symbols with prime as M ′ means they are expressed as a

function of the coordinate (x′, y′, z′). Further partial integration gives

A =
µ0

4π

∫
mat

dv′
∇′ ×M ′

r
. (1.12)

Fig. 1.5 Illustration of vector po-
tential formed by magnetic mo-
ments inside a material

Then if we write
jM ≡ ∇×M , (1.13)

from ∇ · jM = 0, we can view jM as a kind of electric current.

We add the true current of real charge j to the above “equivalent current” to

obtain the vector potentioal as

A =
µ0

4π

∫
dv′
j′ + j′M

r
. (1.14)

Then if we write

B = ∇×A =
µ0

4π

∫
dv′

(j′ + j′M )× r
r3

, (1.15)

we obtain the relation

∇×B = µ0(j + jM ) = µ0j + µ0∇×M . (1.16)

Defining magnetic field as
H ≡ B/µ0 −M , (1.17)

we find
∇×H = j, (1.18)

namelyH does not depend on the equivalent current of magnetic moment.

Now we consider the electromagnetic field in the presence of a material. Electric flux density D, and magnetic flux

densityB is given by

D = ϵ0E + P (1.19a)

B = µ0(H +M), (1.19b)

where P is electric polarization. In the case of electric charge, true charge ρt exists other than the polarization charge ρp.

From ρp = −∇ · P we can write
∇ ·D = ρt, (1.20)

which means the effect of polarization in taken intoD. Further, if we express ∇×H withD, we obtain the formula

∇×H = j +
∂D

∂t
, (1.21)

which is in the same form as (1.1d) and the effect of magnetization is included intoH .
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Fig. 1.6 (a) Schematic diagrams of M-H curves in paramagnetic ad diamagnetic materials. (b) Schematic diagram
of M-H curve in ferromagnetic material. Hc: coercive force, Mr: remanent magnetization, Ms: saturation magneti-
zation.

1.1.5 M(B)-H curve

As above, the response of materials to magnetc field H appears as magnetization M . When M is proportional to H ,

we write
M = χH, (1.22)

where the coefficient χ is called magnetic susceptibility. Then we write

B = (χ+ µ0)H ≡ µ∗H, (1.23)

and call µ∗ ≡ χ+ µ0 magnetic permeability. µ̄ ≡ µ∗/µ0 = χ̄+ 1 = χ/µ0 + 1 is called relative permiability.

Among such materials with linear response, we call paramagnetic material for those with χ > 0 and diamagnetic
material for those with χ < 0. And there are many materials such as ferromagnetic materials in which the linear relation

in eq. (1.22) does not hold. These materials are very important particularly in the field of magnetics – field of application.

In such cases, behavior of magnetization is often presented in the form of M-H curve, in which magnetization M is

plotted versus H . Figure 1.6 shows a schematic of M-H curve. In the case of linear response in eq. (1.22), the M-H curve

should be linear as shown in Fig. 1.6(a). On the other hand, Fig. 1.6(b) shows a schematic of ferromagnetic response.

With up-down sweeps of H , the response of M is strongly non-linear, and different behavior is observed for the direction

of the sweeps, which phenomenon is called hysteresis. B-H curves are also adopted for giving the same information.

1.2 Measurement of magnetization

Here we introduce some of experimental methods for the measurement of magnetization before going into the theories.

Also we touch on the problem of demagnetizing field, which is important for measurement.

1.2.1 Methods of magnetization measurement

Below we list some representative methods. There are two major ways for the measurement: (a) Measurement of

magnetic field caused by magnetization; (b) Variation in magnetization is detected as voltage caused by electromagnetic

induction. Examples of (a) are, vibrating sample magnetometer (VSM), superconducting quantum interference device

(SQUID) magnetometer. An example of (b) is a pick-up coil type magnetometer.
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(a) (b)

Fig. 1.7 (a) Principle of magnetization measurement in VSM. (b) Principle of magnetization measurement in AGM.
From https://www.toyo.co.jp/material/casestudy/detail/id=7003

(a1) Vibrating sample magnetometer: Figure 1.7(a) shows the principle of magnetization measurement by VSM. When

a magnetized substance is spatially vibrated, the magnetic field generated by the magnetization is not spatially uniform,

so it vibrates with time when viewed at a fixed point in space. Then in a detection coil placed at the point the vibrating

field procuces an alternating voltage though electromagnetic induction. In VSM the ditection of the AC voltage gives

measurement of magnetization.

In actual use of VSM, as annotated in the figure, the sample, in addition to the vibration, moves slowly through two

inversely-wound detection coils to produce a signal peak and dip, which are mirrored to each other. With this devicing,

the signal offset can be eliminated.

(a2) Alternating-gradient magnetometer: AGM[1] utilizes the fact that a magnetic moment gets force in magnetic field

gradient. As shown in Fig. 1.7(b), alternative current in coils attached to an external magnet provide a vibration in field

gradient. Then the vibration in the force on the suspender is detected to give the magnetization. Force detection has

become extremely sensitive by the method using a laser and a cantilever, which is familiar with atomic force microscopes

(AFM) (the piezo element is used in the figure), so extremely high sensitivity can be obtained.

(a3) SQUID magnetometer: Magnetic flux piercing a superconducting ring is quantized by the unit of quantum flux

Φ0 ≡ h/2e ≈ 2.07 × 10−15 Wb. A superconducting quantum interference device (SQUID) is a superconducting ring

Magnetic flux (Φ0)
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(a) (b)

Fig. 1.8 (a) Schematic diagram of critical current in a SQUID device as a function of magnetic field. (b) Supercon-
ducting circuit diagram of a SQUID magnetometer.
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with some (in the case of dc-SQUID, two) weak links. The superconducting critical current Jc through it largely oscillates

with magnetic flux with the period of Φ0 as illustrated in Fig. 1.8(a). The unit Φ0 itself is already very small and the

output of a SQUID is strongly non-linear as shown in Fig. 1.8(a), which fact enables us to measure orders of smaller

change in the magnetic flux.

Because SQUID sensors should be placed in weak magnetic fields, a closed loop of superconductor is used as shown

in Fig. 1.8(b). One end of the loop is magnetically coupled to a SQUID sensor through a coil. As in VSMs, a specimen

moves in counter-wound superconducting coil (in the figure the winding is − + +−), which form the closed loop. The

function fitting to the lineshape gives precise value of magnetization. To get high S/N, the specimen should be suspended

by a uniform substance with small magnetic susceptibility. The upper limit of the field is determined by superconducting

critical field of the pick-up coil. Because the SQUID magnetometers have very high sensitivity, they are applied for

measurement of environmental magnetic field or magnetic field leakage from brains (magnetoencephalograph).

(a4) NV center magnetometer: Lattice defects formed as complex of a nitrogen (N) impurity and a vacancy (V) in

diamonds have quantum states in the bandgap. Combination of optical excitation/detection and electron spin resonance

with microwave provides highly sensitive detection of very local magnetic field. S/N can be highly enhanced by, e.g.,

combination of spin-rotation pulse sequences. In some cases, the sensitivity is as high as the replacement of SQUID

magnetometers.

(b1) Pick-up coil method: It is used that the response of the coil changes depending on the magnetic permeability inside

the coil. A specimen is inserted into a coil. When an AC magnetic field is appled, a voltage is induced on the coil due to

the flux variation. Integration of the signal gives the variation of magnetic flux and thus the magnetization.

1.2.2 Effect of demagnetizing field

One thing to note when measuring magnetization is the effect of demagnetizing field. This appears as shape depen-

dence, especially when measuring the magnetization of ferromagnets. In the magnetic charge model, when a material

with a finite size is placed in a magnetic field and magnetized, magnetic charges (magnetic poles) appear at both ends of

the sample, which creates a magnetic field inside the sample in the opposite direction to the external field. This is the

demagnetizing field (Fig. 1.9(a)). The demagnetizing field Hd is proportional to the magnetization M as

Hd = N
M

µ0
, (1.24)

(a) (b)

Fig. 1.9 (a) Conceptual diagram of demagnetic field. (b) Calculation of demagnetic field coefficient of plate-shaped sample.
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where N is called demagnetizing factor. The demagnetizing factor depends on the shape of specimen. For needle-like

thin specimen, it is almost zero while large for thick and short ones.

As the simplest case, we consider the case of plate-like sample in Fig. 1.9(b). For magnetization M , the areal densities

of surface magnetic charge is ±M . From the symmetry, the magnetic force lines are perpendicular to the plane. Applying

the Gauss theorem to a cylinder containing both front and back of the plate, we know that no magnetic flux comes out

because the total magnetic charge in the cylinder is zero. Here we again apply the Gauss theorem to another cylinder

which contains just one of the surface with a bottom of unit area to obtain∫
surface

Hnds = Hd =
M

µ0
,

which gives the demagnetizing factor N = 1. Demagnetizing factors for various shapes have been calculated.

When there is large demagnetizing field, e.g., hysteretic M-H curve as in Fig. 1.6(b) is largely distorted. The following

example is introduced in ref. [2]. Permalloy (an alloy of Fe and Ni, symbol Py) has a very small coercive force 2 A/m (≈
0.025 Oe), and under usual condition, the magnetization saturates at very small external fields. However, if we make a

sphere with Py, becase the saturation field of Py is about 9.23×105 A/m and the demagnetizing factor of sphere is 1/3, the

demagnetizing field amounts to 3.08×105 A/m (=3860 Oe). That is, saturation magnetization cannot be obtained unless

a magnetic field of about 100,000 times that without a demagnetizing field is applied. Normally, when submitting data as

an M-H curve to a scientific paper, etc., it is necessary to correct the demagnetizing field or to state that it has not been

corrected.

1.3 Classical theory of magnetization

Let us go into the physical mechanism of magnetic properties. Though magnetism still has many unsolved problems

the present understandings have been obtained with quantum mechanics. Within the classical theory, even elementary

understanding is difficult. We see that in this section. Here we refer to “classical theory” that inside materials exists

a group of electrons which are classical particles with charge −e and mass m. And they create the equivalent current

(1.13).

1.3.1 Classical treatment of paramagnetic moment

Before digging into how to deal with magnetism in classical mechanics and statistics, let us assume that there is

already a magnetic moment in matter that has a degree of freedom to change direction, and see the consequence. Matter

is composed of atoms, and we will consider a model in which the electrons around the nucleus originally have a magnetic

moment due to orbital motion.

Let us consider a set of molecules in a magnetic field along z-axis with flux densityB. Each molecule has independent

magnetic moment µ. The magnetic energy of a moment is U = −µ ·B = −µB cos θ. In classical statistics, the average

of z-component in the moment over the is given by

⟨µz|µz⟩ =
∫

exp

(
− U

kBT

)
µzdΩ

/∫
exp

(
− U

kBT

)
dΩ

=

∫
exp

(
µB cos θ

kBT

)
µ cos θdΩ

/∫
exp

(
µB cos θ

kBT

)
dΩ

= kBT
∂

∂B
log

[
2π

∫ π

0

exp

(
µB cos θ

kBT

)
sin θdθ

]
= µ

[
coth

(
µB

kBT

)
− kBT

µB

]
, (1.25)
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where Ω is the solid angle. In high temperature approximation µB ≪ kBT , the average is

⟨µz|µz⟩
B

∼ µ2

3kB

1

T
. (1.26)

This indicates Curie law, that is the magnetic susceptibility is inversely proportional to temperature.

1.3.2 Classical theory of diamagnetism

We consider an electron moving along a circle with radius r in xy plane. We write the circle as Γ and the area as S,

and write down the integral form of the Maxwell equation (1.1b) as∮
Γ

E · dl = − ∂

∂t

∫
S

B · dσ. (1.27)

From this, the induced electromotive force for variation of magnetic flux B is given as

2πrE = − ∂

∂t

(
Bπr2

)
∴ E = −r

2

dB

dt
. (1.28)

The electron is accelerated by −eE to the tangential direction and the time derivative of angular momentum L is

dL

dt
= r × (−eE) = e

r2

2

dB

dt
. (1.29)

Then the shift 0 → B creates the angular momentum L = e r
2

2 B. The velocity of electron also increases from 0 to v then

v = L/mr. As describe in Appendix 1B.2, the magnetic moment of this circular current is (the area of circle)×(crrent).

Then it is

µ = SJ = πr2
ev

2πr
= πr2

L

mr

e

πr
=

e

2m
e
r2

2
B. (1.30)

If we replace r, the distance between nucleous and electron, with the average
〈
x2 + y2

∣∣x2 + y2
〉
av

,

µ = − e2

4m

〈
x2 + y2

∣∣x2 + y2
〉
av
B. (1.31)

1.3.3 Breakdown of classical theory of magnetism

In the above, seemingly reasonable results have been obtained even within classical mechanics. However, below, we

see the theory is actually broken down in a simple discussion. We introduce electromagnetic field to simple single-particle

hamiltonian H = p2/2m by changing energy E and momentu p as

E → E + eϕ, p→ p+ eA. (1.32)

That is the hamiltonian is written as
H =

1

2m
(p+ eA)2 − eϕ. (1.33)

This way of introduction is justified by the derivation of canonical equation

m
dv

dt
= −e[E + v ×B],

which reproduces the Lorentz force.

We take symmetric gaugeA = (B × r)/2. Then (1.33) is calculated as follows.

H =
p2

2m
+

e

2m
(r × p) ·B +

e2

8m
(B × r)2. (1.34)
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From this, the magnetic dipole moment µm originates from the motion of electrom is calculated as

µm = −∂H
∂B

= − e

2m
(r × p)− e2

4m
(r × (B × r)). (1.35)

Here, the first term in rhs is called paramagnetic term, which is proportional to the angular momentum r × p. On the

other hand, the second term is proportional to magnetic flux density |B|, which indicates that the inductive electric field

accelerates the electron and that this comes form the eddy current-like motion to cancel the external field. Hence this is

called diamagnetic term.

Let us move on to an N -particle electron system. The hamiltonian is written with writing electron-electron interaction

as V as

HN =

N∑
n=1

[
1

2m
(pn + eA(rn))

2 − eϕ(rn)

]
+ V (r1, r2, · · · , rN ). (1.36)

The partition function Z at temperature T is

Z =

N∏
n=1

∫
drndpn
h3

e−H/kBT . (1.37)

Though it is classical, it has the Planck constant h because we need to calculate the number of states and that should be

based on a unit space in the r-p phase space.

Here we write πn = pn + eA(r), then

Z =

N∏
n=1

∫
drndπn

h3
e−H′/kBT ,

H′ =

N∑
n=1

[
π2
n

2m
− eϕ(rn)

]
+ V (r1, r2, · · · , rN ),

(1.38)

which has noA in the expression. Hence the statistical average of the magnetic moment is naturally

⟨µm|µm⟩ = − 1

N

∂F

∂B
=

1

NkBT

∂ lnZ

∂B
= ⟨µpara|µpara⟩+ ⟨µdia|µdia⟩ = 0. (1.39)

That is, within the classical picture of electrons and classical statistics, the pramagnetic and diamagnetic terms cancel

each other and there shuold be no magnetism in this system. This is called Bohr-van Leeuwen theorem.

1.4 Spin and magnetic moment of electron

There are several factors that cause magnetism in quantum theory, one of which is that in quantum theory, an electron

has a spin and a spin magnetic moment. The question why a point charge like an electron can have an internal freedom

called spin and that also has a magnetic moment can be answered clearly by relativistic quantum mechanics. All of you

should have already learned about this in the undergraduate course. However we would like review here the beautiful

logics how this is derived[3].

1.4.1 Dirac equation

We consider quantum mechanics in the form of wavefunction and try to find out a form which stands with the special

relativity. Schrödinger equation is a non-relativistic approximation and for the above purpose, we need to find out the

form which is invariant for Lorentz transformations.

The one-dimensional Schrödinger equation is obtained by replacing the energy and the momentum as

E → iℏ
∂

∂t
, p→ −iℏ ∂

∂x
, (1.40)
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in the energy-momentum relation E = p2/2m in Newtonian mechanics. Furthermore, the wavefunction in the wave

mechanics should have the meaning of probability amplitude and hence the differential equation for the wavefunction

should be that of single-derivtive in time[4]．
First the relativistic energy-momentum relation is

E2 = (pc)2 + (mc2)2. (1.41)

If the transformation (1.40) is applied directly to the above we obtain Klein-Gordon equation but this is in the second

order in time and does not fulfil the condition for the wavefunction. If the differential equation is first order in time and

the orders for time and space should be the same, the derivative on the space also should be the first order. Then we write

E =
∑

k=1,2,3

αkpkc+ βmc2, (1.42)

and try to compromise the above with eq. (1.41). Taking the square of the lhs and the equation to be eq. (1.41), the

conditions are 
α2
k = 1, β2 = 1,

αkαj + αjαk = 0 (k ̸= j),

αkβ + βαk = 0.

(1.43a)

(1.43b)
(1.43c)

In order to satisfy the above, we consider matrices for αk, β and the dimension should be at least 4×4.

Then the wavefunction should have four components. The equation for the 4-component wavefunction

ψ = t(ψ1, ψ2, ψ3, ψ4) (t means transpose) should be

iℏ
∂ψ

∂t
=

−iℏc ∑
k=x,y,z

αk
∂

∂xk
+ βmc2

ψ (1.44a)

≡ HDψ, HD = cαp+mc2β. (1.44b)

To obtain a specific form of αk, β, we introduce the following Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
. (1.45)

These matrices have the following relations

σiσj = −σjσi = iσk, σ2
x = σ2

y = σ2
z = I. (1.46)

Here for (i, j, k), (x, y, z) are assigned with cyclic rotations. From the above we reach a specific representation (Pauli

representation) as follows.

αk =

(
0 σk
σk 0

)
, β =

(
I 0
0 −I

)
. (1.47)

Pauli representaion is one of the possible representations and we can find infinite numbers of representation with unitary

transformation. Calculated results for the observables should be the same for all the representations. The four dimensions

correspond to the spin degree of freedom and the freedom of particle-antiparticle (isospin). These four freedoms exist on

the spatially point charge of electron-positron. In conclustion, this is the equation for the particle with spin 1/2 and with

a finite mass.

1.4.2 Spin angular momentum

We consider a centeral force potential V (r) and write

H = HD + V (r). (1.48)
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The angular momentum
L = r × p (1.49)

does not commute with the hamiltonian (1.48) as

[L,H] = iα× p. (1.50)

α is a vector of components αk. We expand Pauli matrices to 4×4 dimension as

σ
(4)
k =

(
σk 0
0 σk

)
,

and write the vector of elements σ(4)
x,y,z as σ. Then from the relation

[σ,H] = −2iα× p/ℏ, (1.51)

we define the total angular momentum J as

Total angular momentum� �
J = L+

ℏ
2
σ ≡ L+ s, (1.52)� �

then we obtain
[J ,H] = 0, (1.53)

that means J is a constant of motion. Namely s ≡ (ℏ/2)σ is an observable which has characteristics of angular

momentum. This is the spin angular momentum. We reach the conclusion that though an electron is a point in the

space, it has an angular momentum as if it has a rotation.

1.4.3 Magnetic moment

We consider the Dirac equation in the presence of static electromagnetic fields. Just like eq. (1.32), we introduce a

scalar and a vector potential to obtain

iℏ
∂ψ

∂t
= [cα(p+ eA) + βm− eϕ]ψ. (1.54)

Now we rewrite it to (iℏ ∂
∂t

+ eϕ

)
− c

∑
j=x,y,z

αj

(
−iℏ ∂

∂rj
+ eAj

)
− βmc2

ψ = 0. (1.55)

Then operate

iℏ
∂

∂t
+ eϕ+ c

∑
j=x,y,z

αj

(
−iℏ ∂

∂rj
+ eAj

)
+ βmc2 (1.56)

from the left. After some algebra by using the commutation relations of αj , β, we reach[(
iℏ
∂

∂t
+ eϕ

)2

− c2(p+ eA)2 −m2c4 + icℏe(α ·E) + iℏc2e(αxαyBz + αyαzBx + αzαxBy)

]
ψ = 0. (1.57)

Here from
αxαy = iσ(4)

z , αyαz = iσ(4)
x , αzαx = iσ(4)

y (1.58)

we can write (1.57) as[(
iℏ
∂

∂t
+ eϕ

)2

− c2(p+ eA)2 −m2c4 + icℏe(α ·E)− ℏc2eσ ·B

]
ψ = 0. (1.59)
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To obtain steady state we write
ψ(r, t) = exp(−iϵt/ℏ)φ(r) (1.60)

and obtain [
(ϵ+ eϕ)

2 − c2(p+ eA)2 −m2c4 + icℏe(α ·E)− ℏc2eσ ·B
]
φ = 0. (1.61)

Here we put ϕ = 0, E = 0. In non-relativistic approximation p ≪ mc, i.e., ϵ ≈ mc2, hence we write ϵ = mc2 + δ and

ignore the power of δ/mc2 higher than the second order to obtain*2[
1

2m
(p+ eA)2 +

eℏ
2m
σ ·B

]
φ = δφ. (1.62)

Here we define the quantity called Bohr magneton as

Bohr magneton� �
µB ≡ eℏ

2m
≈ 9.274× 10−24 JT−1, (1.63)� �

then in eq. (1.62) the term related to the magnetic field is

eℏ
2m
σ ·B = µBσ ·B =

2

ℏ
µBs ·B. (1.64)

This means that an electron has, with the spin angular momentum s, a magnetic moment −2µBs/ℏ

Appendix 1A Unit systems of electromagnetism

The unit system, or metrology is extremely important for human life even beyond the boundaries of science or the

framework of scholarship. In usual systems, at first place a small number of basic units are determined by some way, and

then other units are determined through universal laws of physics. Naturally, there are many possible ways to constitute

unit systems. We should choose a unit system convenient for the problem that we need to tackle from many possible ones,

particularly in the case of electromagnetism. Many researchers, even among non-expert in unit, have their own opinions

for unit systems. Hence it is impossible to force everyone to choose one. In spite of such tendency, the SI (Système

International) unit system is defined as an international standard in consideration of practicality, logical consistency, and

historical continuity. I would like to adopt the SI unit system as far as I can, but here, I introduce major systems of unit in

electromagnetism in very short. If you are interested in the metrology, I would like to recommend Ref. [5]. Care should

be taken, though, that the committee meeing of the SI unit is held annually, and the unit may have big changes as did in

2019. It is necessary to refer to the web etc. for the latest definition. Here I summarize CGS-esu (electrostatic system of

unit) and MKSA (SI) system of unit very briefly.

1A.1 CGS-esu

The Coulomb’s law should be written in the form

F = kq
q1q2
r2

. (1A.1)

In CGS electrostaticunit, kq is just 1 and with no physical dimension. Then the electric charge can be expressed by [L],

[M], [T] as
[Q] = [M1/2L3/2T−1].

*2 This φ has four components and then we need to reduce the dimension to two with the non-relativistic approximation. But here we skip the
procedure for simplicity. The result here is the same for this but to derive spin-orbit interaction, this is indispensable.
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When the force between electric charges with the same amount at the distance of 1 cm is 1 dyn, the charge is 1 esu (CGS

esu). There are three basic quantities and there is no factor of (4π)−1 in the Coulomb’s law (this means 4π appears in the

Maxwell equation). Hence this unit system is classified to three components irrational unit system.

1A.2 MKSA unit system

Until a while ago, the current was introduced as the fourth basic quantity, the unit of the current was A (ampere), and

1 A was defined from the force acting between the parallel conductors separated by 1 m in a vacuum with a length of

1 m as to be 2×10−7 N. However in the redefinition in 2019, the fourth basic quantity becomes the charge, which is

introduced by determining the elementary charge e as 1.602176634×10−19 C (coulomb). Then the current is introduce

by the charge and the time (A·s =C). Because the number of basic quantities is four and kq has the factor (4π)−1, the unit

system is classified to four components rational unit system.

Appendix 1B: Dipole field and dipole inteaction

1B.1 Magnetic field created by magnetic dipole

Fig. 1B.1 Magnetic charge
model of magnetic dipole.

From eq. (1.1d), when there is no true current and no time-derivative of electric

field, the rotation of magnetic field ∇ × B is zero. In such a case, we can de-

fine magnetostatic potential ϕm as a scalar function of spatial coordinage r. The

magnetic field is given by
H = −∇ϕm. (1B.1)

We consider the magnetostatic potential ϕm for the situation that magnetic charges

of ±qm are placed at ±p = (0, 0,±l/2) respectively.

ϕm(r) =
1

4πµ0

(
qm

|r − p|
− qm

|r + p|

)
. (1B.2)

We assume that l is sufficiently smaller than |r| (|r| ≫ l), and expand ϕm with the

power of l and take the first order term to obtain

ϕm(r) =
qm

4πµ0

lz

r3
=

qml

4πµ0

cos θ

r2
. (1B.3)

The last expression is on the polar coordinate (r, θ, φ).

We write l = (0, 0, l), and the magnetic moment as µ = qml/µ0, the magnetic field originates from the magnetic

dipole is

B = − 1

4πµ0
∇
(µ · r
r3

)
. (1B.4)

We apply the polar coordinate representation of ∇

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

1

r sin θ

∂

∂φ
eφ (1B.5)

to eq. (1B.3), and we reach

Br =
|µ|
4πµ0

2 cos θ

r3
, Bθ =

|µ|
4πµ0

sin θ

r3
, (1B.6)

which is nothing but eq. (1.6).
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1B.2 Dipole field as shrink limit of circular current

In the text, we considered the fictitious “magnetic charge” to make the physical picture simpler. The experiments so far

have shown that there is no isolated magnetic monopole like electric monopole. Then there is an opinion that we should

not use the magnetic charge even as a mathematical concept. On the other hand, there are researchers who positively use

the magnetic charge as an established physical concept [2], because there are many such physically established concepts

like the vector potential which is not an observable but a mathematical method.

S
J

Fig. 1B.2 Definition of magnetic
dipole by circular current.

This problem also relates to the view of electric-magnetic symmetry in the

Maxwell equation (1.1). That is, so called the problem whether E-B formula-

tion or E-H formulation. In the former, the magnetic field is introduced along

the Viot-Savart law as formed by a current on a wire element while in the lat-

ter the field is formed by magnetic charges through the Coulomb law. In CGS

unit system, these two ways of introduction do not give significant difference.

However in MKSA unit system, this leads to the difference in the unit of magne-

tization. The same problem appears when we introduce magnetic dipole through

magnetic charges. When we consider a pair of moment (1.2), the selection of

E-H correspondence or E-B correspondence results in the difference whether

eq. (1.3) gets µ0 or not. In this lecture we do not go into the problem to con-

struct electromagnetic theory though we adopt E-B formulation for the unit of

magnetization.

Now we consider a circular current J surrounding the area S in xy-plane as in Fig. 1B.2. The vector potentialA is

A =
µ0

4π

∫∫∫
j

r
dv =

µ0J

4π

∮
ds

r
=
µ0J

4π

1

R

∮ {
1 +

1

R2
(R · s) + · · ·

}
≃ µ0J

4π

1

R3

∮
(R · s)ds. (1B.7)

S

sx component of the integration over ds is∮
(R · s)dsx =

∮ ∑
i=x,y,z

Risidsx =
∑
i=y,z

Ri

∮
sidsx,

and the term of Rxsx vanishes because sx goes back and forth over the integral

interval. On the other hand for sydsx, sxdsy , as in the right figure∮
sydsx = −

∮
sxdsy = −S.

This gives ∮
(R · s)ds = −

∮
(R · ds)s,

and from the identities of vector analysis we get∮
(R · s)ds = 1

2

∮
{(R · s)ds− (R · ds)s} =

1

2

∮
(s× ds)×R, (1B.8)

where
1

2

∮
s× ds

is the vector perpendicular to the current plane and with the size of the area (S) of the circular current. Then we define a

vector µ as

µ = J

(
1

2

∮
s× ds

)
, (1B.9)
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then we can write
A =

µ0

4π

µ×R
R3

. (1B.10)

By using this equation and after some algebra, we obtain, e.g., x-component ofB as

Bx =
∂Az

∂y
− ∂Ay

∂z
= −µ0

4π

(
∇µ · r

r3

)
x
. (1B.11)

Then the magnetic field created by the circular current is given by

B = −µ0

4π
∇µ · r

r3
. (1B.12)

This is in accordance with eq. (1B.4), and now we know that the circular current is working as a magnetic dipole.

1B.3 Dipole interaction

(Under construction)
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1.4.4 Spin-orbit interaction

Another important effect stems from the Dirac equation is spin-orbit interaction (SOI). We have already seen that the

four components in the solution of the Dirac equation correspond to (freedom of particle-antiparticle)×(spin freedom).

In the Pauli representation (1.44b), (1.47), within non-relativistic limit of p≪ mc, the upper two rows correspond to the

solution with positive energy, the lower two correspond to that with negative energy. However with growing p, the shifts

from the free particle become large and some mixing appears between the upper two and the lower. For example, we

consider a free dirac particle propagating along z-direction with up-spin for quantization axis of z-axis. Let tan 2θ be

tan 2θ =
p

mc
, (1.65)

then the four component wavefunction is

ψ↑ = ei(kz−ωt)


cos θ
0

sin θ
0

 , (1.66)

which indicates the increase of negative energy component with p. Inclusion of this leakage into the picture of particle

with two-component of spin creates the SOI as the correction.

The equation for stationary solution obtained from the treatment in (1.60) is given by

(cα · p+ βmc2 + V )φ = ϵφ, (1.67)

where σj are Pauli matrices defined in eq. (1.45), α is a vector of elements αk defined in eq. (1.47), β is defined in

eq. (1.47). We write φ as a two-component vector of φA and φB as φ = t(φA φB). Then eq. (1.67) is written in a

simultaneous equation as follows.

σ · pφB = c−1(δ − V )φA, (1.68a)

σ · pφA = c−1(δ − V + 2mc2)φB, (1.68b)

where δ = ϵ−mc2 and σ is a vector of Pauli matrices as elements. φB can be erased virtually as

c−2σ · p(δ − V + 2mc2)−1σ · pφA = (δ − V )φA. (1.69)

We apply low energy expansion, in which we assume the kinetic energy of electron is sufficiently smaller than the rest

energy mc2.

c2(δ − V + 2mc2)−1 ≈ 1

2m

[
1− δ − V

2mc2
+ · · ·

]
. (1.70)

The second term in rhs corresponds to (v/c)2, where v is the electron velocity and we take up to this term. Substituting

this to eq. (1.69) leads to the equation of ψA. However, the normalization condition is ⟨φ|φ⟩ = ⟨φA|φA⟩+⟨φB|φB⟩ = 1,

which should be considered in solving eq. (1.68) for φA. The first order perturbative mixing in wavefunction is on the

second order in the normalization and in eq. (1.70). Hence in eq. (1.70), we take the first term in rhs. We use the

commutation of σj and pi, σ
†
j = σj and the following identity

(σ · a)(σ · b) = (a · b) + i[σ · (a× b)],
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In the presence of magnetic fieldB = ∇×A, we replace p with p+ eA to get

⟨φB|φB⟩ = ⟨φA|
[
p2 + eℏσ ·B

4m2c2

]
|φA⟩ = O

(
v2

c2

)
.

Then as the wavefunction

φa =

(
1 +

p2 + eℏσ ·B
8m2c2

)
φA (1.71)

is enough for the approximation to order of (v/c)2. From eq. (1.69), we reach the Pauli equation (approximation to order

of (v/c)2) as[
p2

2m
+ V +

eℏ
2m
σ ·B − eℏσ · p×E

4m2c2
− eℏ2

8m2c2
∇ ·E − p4

8m3c2
− eℏp2

4m3c2
σ ·B − (eℏB)2

8m3c2

]
φa = δφa, (1.72)

where E = ∇V/e is the electric field. In the lhs of eq. (1.72), the third term is the Zeeman energy, the fourth is the

spin-orbit interaction.

If we write Bso ≡ p ×E/2mc2, the fourth SOI term looks like in the same form as the third term. Namely the spin

feels an effective magnetic field ofBso, which is sometimes called a spin-orbit effective field.

1.5 Magetism in quantum theory

In Sec. 1.3.3, we saw that the magnetism cannot be explained within the framework of classical theory. On the other

hand in Sec. 1.4, in the Dirac theory, which considers both quantum theory and relativity, an electron, though it is a point

charge, has a spin angular momentum and an associated magnetic moment. We will see, throughout this lecture for a

semester, how the difficulty in the classical theory is solved. But here we see quickly how this spin angular momentum

produces magnetism in a simple model of the classical framework plus spin.

A Hamiltonian with magnetic fieldB is given by

H =
∑
n

[
1

2m
(pn + eA(rn)

2 + U(rn) + gµBsn ·B
]
+ V (r1, r2, · · · ), (1.73)

where a nucleus potential is written as U(rn). In (1.52), we define s as to have the dimension of angular momentum and

then (ℏ/2)σ is s. But here we redefine s to fit the ordinary definition:

s :
ℏσ
2

→ σ

2
, (1.74)

which has the difference of a factor ℏ. The third term in the summation is the Zeeman term mentioned in Sec. 1.4. g is

called g-factor, which is just t within the approximation of eq. (1.72) In the quantum electrodynamics, this is a bit larger

than 2, due to the effect of electromagnetic field. As we will see later, in some cases we need to include orbital angular

momentum into the form of g-factor (Landé g-factor). Here we do not include the spin-orbit interaction.

Just as before, we take symmetric gaugeA(rn) = (B × rn)/2 to obtain

H =
∑
n

[
p2n
2m

+ U(rn)

]
+ V (r1, r2, · · · ) H0 (1.75a)

+ µB

∑
n

(ln + gsn) ·B H1 (1.75b)

+
e2

8m

∑
n

{r2nB2 − (B · rn)2} H2, (1.75c)

where we write the orbital angular momentum in unit of ℏ as

ℏln ≡ rn × pn. (1.76)
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And H0, H1, H2 are the terms of order zero-th, 1st, 2nd order of B respectively.

There are commutation relations between the coordinate and momentum operators:

[rnα, pnβ ] = rnαpnβ − pnβrnα = iℏδαβ (α, β = x, y, z). (1.77)

And from the redifinition of eq. (1.74),

[snα, snβ ] = isnγ (α, β, γ = x, y, z (cyclic)). (1.78)

The same for the orbital angular momentum as

[lnα, lnβ ] = ilnγ (α, β, γ = x, y, z (cyclic)). (1.79)

The magnetic moment is given as in eq. (1.35) by

µ = −∂H
∂B

= −µB

∑
n

(ln + gsn)−
e2

4m

∑
n

{r2nB − rn(rn ·B)}

= −µB

∑
n

(ln + gsn)−
e2

4m

∑
n

(rn × (B × rn)}. (1.80)

In comparison with (1.35), naturally the term sn is the difference in this mathematical form.

In a naive thought, the relativistic quantum mechanics brings in the spin-angular momentum and magnetic moment,

and that leads to the explanation of the magnetism. It is true that the spin magnetic moment plays an important role but

the above is too naive of course. In quantum theory, the quantization in orbital angular moments, spatial distribution of

particles, and also statistics of particles give big differences both in paramagnetic and diamagnetic terms, which lead to

the appearance of magnetic moment. What we have seen are the minimum knowledges to consider the magnetism. In the

next chapter let us first have a look on the magnetism of atoms and ions, in which the quantization gives crutial effects.

I have a little comment on the spin of particles, that is the nuclear magnetism. Representative nucleons are proton

and neutron, which both are known to have spin 1/2 (the histry of finding these facts is described in Ref. [1]). Though

the concept of spin was naturally introduced by the Dirac equation, proton and neutron belong to hadron and are not

described by the Dirac equation. Actually the g-factors are very different from 2 that is the value in the Dirac equation.

Proton has a charge of +e and the magnetic moment can be naturally understood. On the other hand, neutron does not

have total charge and still has a magnetic moment. This is due to the inner structure, that is the inner charge distribution.

The spins of neucleons have opened up a huge field of magnetic detection of various phenomena. A representative is

magnetic resonance imaging (MRI), which is now an important inspection device for the protection of lives. And the

neutron diffraction is widely used to explore magnetic structures taking advantage of electrical neutrality.
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Chapter 2
Magnetism of Localized Electrons

The goal of elementary quantum mechanics is the derivation of hydrogen atomic spectrum, that is the quantum confine-

ment by spherical Coulomb potential. But the goal is at the same as the starting point of atomic/molecular spectroscopy

as well as magnetism. The problem of localized electrons as the basics of magnetism is, in other words, the many-body

problem in localized potentials. The subject of this chapter is how the magnetic moments arise from many-body systems.

2.1 Localized many-body problem

Let us consider the magnetism in localized electron systems like atoms and ions. When they are placed inside crystals,

we need to consider the effect of surrounding lattices. Then we write the hamiltonian as

HL = HL0 +HC +HSOI +HCF, (2.1)

where HL0 is an ordinary spherical potential hamiltonian, HC is the Coulomb interaction among electrons, HSOI is

the SOI, and HCF is the crystal field caused by surrounding lattices. The amplitude of HCF greatly depends on the

situation. When it is large, sometimes we need to go back to the single-electron problem in the potential under the effect

of ligands[2]．There is no that term in the case of gases.

2.1.1 Problem of spherical potential

HL0 is the sum of kinetic energy and the spherical potential Vsp(r) created by nucleus as

HL0 =
∑
j

[
p2j
2m

+ Vsp(rj)

]
, (2.2)
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which has basically the same form as hydrogen atom problem. Then the energy eigenvalue is indexed with (main quantum

number, azimuthal quantum number, magnetic quantum number)=(n, l,m). A specific form of wavefunction in the polar

coordinate representation is
ψnlm(r) = Rnl(r)Ylm(θ, φ), (2.3)

where Rnl(r) is a radial wavefunction, Ylm(θ, φ) is the spherical harmonic function. In the case that Vsp(r) is the

Coulomb potential, which is proportional to r−1,

Rnl(r) = bnlρ
le−ρ/2L2l+1

n+1 (ρ), ρ ≡ 2

n

r

a0
, (2.4)

where bnl is the normalization constant, L2l+1
n+1 , an associated Laguerre polynomial, is a polynomial of n+ l− (2l+1) =

n−l−1-th order, a0 is a quantity of length dimension, the Bohr radius in the case of Hydrogen atom[3]. The eigenenergies

are degenerated for l, m and written as the function of main quantum number n as

ϵnl = −R∞

n2
, R∞ =

me4

8ϵ0h3c
. (2.5)

In the above, the spin-degree of freedom is dropped. Hence here, as in many non-relativistic approximation, we take the

spin degree of freedom σ into account by taking the direct product. HL0 can be written in the form of second quantization

as
HL0 =

∑
nl

ϵnl
∑
mσ

a†nlmσanlmσ. (2.6)

2.1.2 Larmor precession

To see the effect of quantization on the magnetic moment caused by the orbital angular moment, we consider the

Coulomb potential of atomic number Z,

Vsp(rj) = − Ze2

4πϵ0

1

rj
. (2.7)

The total orbital angular momentum ℏL is written as the sum of each orbital contributions:

ℏL = ℏ
∑
i

li. (2.8)

To concentrate ourselves on the effect of orbitals, we tentatively drop the spin (s) term and write the term in (1.75b) as

H1 = µBL ·B = µBLzB. (2.9)

B is taken to be parallel to z-axis. Lz is azimuthally quantized by

Lz =M : −L, −L+ 1, · · · , L− 1, L.

The electron energy in the magnetic field is

E = E0 + µBMB ≡ E0 + ℏωLM, ωL ≡ µBB

ℏ
=
eB

2m
(Larmor frequency), (2.10)

where E0 is the value for zero magnetic field.

We will have a look at a motion of angular momentum L in magnetic field B along z-axis. Heisenberg equation of

motion for L is given by
dL

dt
=

1

iℏ
[L,H0 +H1 +H2], (2.11)

with the hamiltonian in eq. (1.75). In the hamiltonian, the term H0 in zero-th order of B is HL0 in eq. (2.2) in this

problem. The terms of higher order in B than 2 are ignored here and we drop H2.
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L

B

Fig. 2.1 Schematics of Larmor precession. The electron angular mo-
mentum L precesses around the axis of magnetic field B with angular
frequency ωL.

From the axial symmetry of magnetic field B and the spherical symmetry of potential, Lz is a constant of motion,

which commutes with the hamiltonian. For the residual Lx, Ly , from

dLx

dt
= −ωLLy,

dLy

dt
= ωLLx (2.12)

we obtain
Lx(t) = L0 cos(ωLt+ θ0), Ly(t) = L0 sin(ωLt+ θ0), (2.13)

which means Lx, Ly undergo a circular motion with angular frequency ωL, and the total momentum precesses as illus-

trated in Fig. 2.1. This is called Larmor precession.

This is generalized into Larmor theorem[4], which tells that the motion of electronic systems in magnetic field B is

the same as that in the zero-magnetic field if we see that on the coordinate system rotating with angular frequency ωL

under the condition (i) the central force potential sits still, (ii) the axial symmetry around the magnetic field B, (iii) the

phenomenon up to the first order of magnetic field.

The above is for the orbital angular momentum. In the case of spin angular momentum, the expression of the magnetic

moment has g-factor, then the Larmor frequency has the g-factor as

ωL = g
eB

2m
≈ eB

m
. (2.14)

Further, the expression ωL is also used for nuclear magnetic moment etc. The coefficient of B for ωL is often written as

γ (that is ωL = γB), where γ is called gyromagnetic ratio. These are the basis of magnetic resonance experiment, and

we revisit the magnetic resonance experiments afterwords.

2.2 Magnetism of inert gas atoms and closed shell ion cores

At the beginning of chapter 1, I wrote that what we feel the magnetism is from the permanent magnet. In comparison

with that, it may be a bit hard to feel that the gases also have the magnetism. However, if the isolated atoms or molecules

have the magnetism, the gases of those particles naturally have magnetic moments. An example of important role played

by the gas magnetism, is the birth of stars, in which the interstellar magnetic field (∼ 10−10 T) is said to work for the

integration of gases as well as the gravitational force*1. Another example is the trapping and cooling of laser cooled gases

*1 However, according to recent observation by Alma telescope, it is deduced that the effect of magnetic field may be weaker than that of
gravitation[5]
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Z Element Susceptibility

2 He −1.9× 10−6

10 Ne −7.2× 10−6

18 Ar −19.4× 10−6

36 Kr −28× 10−6

54 Xe −43× 10−6

Tab. 2.1 Measured mole magnetic susceptibility of inert gases.

of neutral atoms. By adding a spatial distribution to the Zeeman split due to the magnetic moment by the magnetic field

gradient, atoms with the magnetic moment can be collected near one point in space (magnetic trap). Atoms with higher

kinetic energies tends to distribute positions far from the center of trap and the radio frequency wave rotates spins around

there and selectively expels out the high energy atoms, which leads to the cooling (evaporation cooling).

We consider the case, in which the orbitals (n, l) are important. The orbital angular momentum L, the spin angular

momentum S, and the total angular momentum J are written as

L =
∑
j

lj =
∑
σ

∑
mm′

⟨m|l|m′⟩nla†mσam′σ, (2.15a)

S =
∑
j

sj =
∑
m

∑
σσ′

(σ
2

)
σσ′

a†mσamσ′ , (2.15b)

J =
∑
j

jj = L+ S. (2.15c)

In inert gases like He, Ne, Ar, or in ion cores like Ag+, which have closed shell structures, the total orbital and spin

angular momentums are zero (L = S = 0) due to the cancelling between electrons. Then the paramagnetic term is zero

in these cases. This is, of course, an important information and this leads to the survival of the diamagnetic term (second

term) in eq. (1.80). The magnetic moment due to this term is

µdia = − e2

4m

∑
n

[rn × (B × rn)] = −e
2

∑
n

[rn × (ωL × rn)] = −µB

ℏ
∑
n

[rn × (mvn)], (2.16)

where ωL is a vector of the Larmor frequency produced with replacingB in eq. (2.10) with the vectorB. Equation (2.16)

indicates that the diamagnetism arises from the outer product of momentum and coordinate created by the Larmor pre-

cession, that is, the angular momentum of the Larmor precession. Hence we call the diamagnetism as Larmor diamag-
netism. We have calculated classically the magnetic moment induced by the magnetic field in zero-field and without

angular moment (L = 0) in Sec. 1.3.2. The quantum mechanical calculation of eq. (2.16) gives the same results as

µd = − e2

4m
⟨x2 + y2⟩B = − e2

6m
⟨r2⟩B, (2.17)

where we have used the fact that ⟨x2 + y2⟩ = (2/3) ⟨r2⟩ in the radial wavefunction in eq. (2.4). The molar susceptibility

of inert gases of atomic number Z is then

χ = −NAZe
2 ⟨r2⟩

6m
. (2.18)

This leads to the estimation of radius of atoms (ions) from the susceptibility measurement[6]. The experimental values

in Tab. 2.1 tells that
⟨r2⟩ ∼ a2B. (2.19)

2.3 Electronic state of magnetic ions

Next we proceed the most important example of the appearance of paramagnetic term, which is zero in inert gases.

That is, the magnetic ions, which have open shells and really big effects on the magnetism like ferromagnetism, etc.
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2.3.1 Ground multiplex – Hund’s rule –

The orbital with angular momentum l can take the eigenvalue m of z-component as m = −l,−l + 1, · · · , l and with

the spin degree of freedom, the number of possible states is 2(2l + 1). The many-body state accommodating multiple

electrons can be indexed with L and S in eq. (2.15), which can be written as (L, S).

These are degenerated for HL0 in eq. (2.1) though the Coulomb interaction HC causes splitting in (L, S) state. Each

of them is degenerated by (2L+ 1)(2S + 1) folds. These are called LS multiplex.

To consider which state is the ground state, we represent the Coulomb interaction as

HC =
1

2

∑
m1,··· ,m4

∑
σ1σ2

⟨
m1m2

∣∣∣∣ e2

4πϵ0r

∣∣∣∣m3m4

⟩
a†m1σ1

a†m2σ2
am3σ3am4σ4 , (2.20)

where l is not written. The bracket term in the coordinate representation is⟨
m1m2

∣∣∣∣ e2

4πϵ0r

∣∣∣∣m3m4

⟩
=

∫
dr1dr2u

∗
m1

(r1)u
∗
m2

(r2)
e2

4πϵ0|r1 − r2|
um3

(r2)um4
(r1). (2.21)

The number of this combination of (m1, · · · ,m4) is 54＝ 625 for d-orbital and much more for f -orbital. Then we need

to consider the contribution of dominant terms. From eq. (2.21), the term of m1 = m2 = m3 = m4 is the largest and⟨
m1m1

∣∣∣∣ e2

4πϵ0r

∣∣∣∣m1m1

⟩
a†m1↑a

†
m1↓am1↑am1↓ = U0

∑
m

n̂m↑n̂m↓ (n̂mσ = a†mσamσ). (2.22)

In the rhs, the spin state is (↑, ↓) due to the Fermi statistics (the Pauli principle) on the spin-term in eq. (2.20). In conse-

quence, the above represents the effect of the Coulomb repulsion between the electrons with spin (↑↓) accommodated in

the same orbital.

The next is the term of m1 = m4 ̸= m2 = m3, given as

1

2

∑
m1 ̸=m2

U(m1,m2)n̂m1n̂m2

(
n̂m =

∑
σ

nmσ

)
. (2.23)

This represents the Coulomb repulsion between the electrons in different orbitals.

And the next is the case of m1 = m3 ̸= m2 = m4. The contribution is written as

1

2

∑
m1 ̸=m2

∑
σ1σ2

J(m1,m2)a
†
m1σ1

a†m2σ2
am1σ2

am2σ1
= −1

2

∑
m1 ̸=m2

J(m1,m2)

(
1

2
n̂m1

n̂m2
+ 2sm1

· sm2

)
. (2.24)

Element Configuration Ion Configuration L S

Sc 3d14s2

Ti 3d24s2 Ti3+, V4+ 3d1 2 1/2

V 3d34s2 V3+ 3d2 3 1

Cr 3d54s1 Cr3+, V2+ 3d3 3 3/2

Mn 3d54s2 Mn3+, Cr2+ 3d4 2 2

Fe 3d64s2 Fe3+, Mn2+ 3d5 0 5/2

Co 3d74s2 Co3+, Fe2+ 3d6 2 2

Ni 3d84s2 Co2+ 3d7 3 3/2

Cu 3d104s1 Ni2+ 3d8 3 1

Zn 3d104s2 Cu2+ 3d9 2 1/2

Tab. 2.2 Electronic configura-
tions of 3dmetal ions, ground state
L and S derived from Hund’s rule.
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Here, sm is the spin operator of orbital m, which is already defined in eq. (2.15b). We here write down it again as

sm =
∑
σ1σ2

(σ
2

)
σ1σ2

a†mσ1
amσ2 . (2.25)

In eq. (2.24), the term 2sm1 · sm2 appears. At the first sight this is a bit strange. However, if we write the matrix

representation for two-electron spin space (2 × 2=4 dimensional), the lhs and the rhs are the same. Which means this

representation is possible.

The matrix element J(m1,m2) is called exchange integral. By using Fourier transformation of Coulomb potential,

we obtain

J(m1,m2) =

∫
dr1dr2u

∗
m1

(r1)um2

e2

4πϵ0|r1 − r2|
um1

(r2)u
∗
m2

(r2) (2.26a)

=

∫
dr1dr2u

∗
m1

(r1)um2

[∫
dq

e2

ϵ0q2
eiq·(r1−r2)

]
um1

(r2)u
∗
m2

(r2) (2.26b)

=

∫
dq

e2

ϵ0q2

∣∣∣∣∫ dr1u
∗
m1

(r1)um2
(r1)e

iq·r1

∣∣∣∣2 > 0. (2.26c)

That is J(m1,m2) is always positive. Hence the two spins in two orbitals tend to be parallel. Most naive explanation is

that the electrons in the same state try to avoid each other and as a result the Coulomb energy is lowered.

From the above, the ground multiplex can be determined from the following Hund’s rule.

Hund’s rule� �
1. Multiplex with maximum S

2. Multiplex with maximum L among those have maximum S� �
The LS multiplexes in Tab. 2.2 are determined from the Hund’s rule.

Appendix 2A: Second quantization method

We hve short review of second quantzation method, which will be frequently used. For the knowledges of the physical

meanings, the mathematical proofs, you are recommended to refer to famous textbooks like Ref. [7, 8]. The explanation

of the physical meaning in Ref. [1] also has good reputation.

2A.1 Creation and annihilation operators

In number representation of a homogeneous multi-particle system, a many-body state is represented by the numbers

of particles {nj}, where j = 1, 2, · · · are the indices of single particle states. Let n be the vector of elements {nj} and

we write the state in number representation as

|n⟩ = |n1, n2, · · · ⟩. (2A.1)

When every single-particle state is empty, we call the many-particle state “vacuum” and write it as |0⟩. We consider

an operator that add a particle to the j-th state and call it a creation operator. Writing a creation operator as a†j , the

definition is given by
a†j |0⟩ = |1j⟩. (2A.2)

aj , the hermitian conjugate of a†j , decreases the number of particles at j-th state by one. The operation of aj on the

vacuum produces zero. aj is called an annihilation operator.
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Henceforth we need to specify the statistics of homogeneous particles. In the case of fermions, a single state can

only be occupied with a single particle and the number cannot be increased with repetitive operation of a†j . Namely,

(a†j)
2 = (aj)

2 = 0. Similar thought gives aja
†
j |0⟩ = |0⟩, a†jaj |1j⟩ = |1j⟩. In consequence, the creation and annihilation

operators of fermionic particles satisfy the following anti-commutation relations.

[ai, aj ]+ = [a†i , a
†
i ]+ = 0, [ai, a

†
j ]+ = δij , (2A.3)

where [A,B]+ = AB +BA. Then applying the operator n̂j ≡ a†jaj on the state |n⟩ gives

n̂j |n⟩ = nj |n⟩. (2A.4)

This is understood by considering the cases of nj = 0, 1. This tells that n̂j is a number operator that has the eigenstates

of particle numbers in j-th state.

For bosons, creation and annihilation operators b†j , bj satisfy the following commutation relation

[bi, bj ] = [b†i , b
†
i ] = 0, [bi, b

†
j ] = δij . (2A.5)

bj |0⟩ = 0 is the same as fermions. Also the same for number operators.

n̂j |n⟩ = b†jbj |n⟩ = nj |n⟩. (2A.6)

We can obtain the expression of |nj⟩ by the creation operator and the vacuum as

|nj⟩ =
1√
nj !

(a†j)
nj |0⟩ (2A.7)

after some algebra to calculate the normalization constant.

2A.2 Expression of operators

In the expression of second quantization, the particle statistics can be represented by the (anti-)commutation relations

between creation and annihilation operators. Hence for human, the second quantization expression is generally simpler

than the direct treatment of many-body wavefunctions like the Slater determinant. Thus in the discussion of many-body

problem, the second quantization is mostly used.

We consider the simplest case, in which a many-body operator is actually written as a sum of single-particle operators.

That can be expressed in the coordinate representation as

F(r1, r2, · · · ) =
∑
i

f(ri). (2A.8)

For fermions, by letting the Slater determinant be |ψ1,2,···⟩, a matrix element is expressed as

⟨ψm1,m2,···|F|ψn1,n2,···⟩ =
∑
i

⟨ψm1,m2,···|f(ri)|ψn1,n2,···⟩, (2A.9)

which contains many complicated terms.

In second quantization, defining an operator

F =
∑
mn

⟨m|f |n⟩ a†man

⟨m|f |n⟩ =
∫
drϕ∗m(r)f(r)ψn(r), (2A.10)

we can write the matrix element as
⟨ψm1,m2,···|F|ψn1,n2,···⟩ = ⟨m|F |n⟩ , (2A.11)
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where |m⟩ are the number representation of corresponding states. The matrix elements and the operators representing

the statistics can be treated separately. This gives a better view of the calculation.

For multiparticle operators the same approach is possible. For example in the case of a two-particle operator g(r1, r2)

we can write
G =

1

2

∑
klmn

⟨kl|g|mn⟩ a†ka
†
l anam. (2A.12)
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2.4 LS coupling

We explained Hund’s rule through estimation of Coulomb mutual interaction. In addition to these two terms (H0, HC),

the hamiltonian (2.1) for localized electron system in solids, has HSOI and HCF. It is difficult to treat these simultaneously

and we need to treat the term with higher priority and to treat the other as perturbation. First, let us examine the case

the effect of HSOI is stronger than that of HCF. Within this framework, there are several approaches: (i) first the ground

state LS multiplex is picked and examine how that is split into sub-levels with HSOI (LS coupling approach); (ii) Single-

electron state with spin-orbit interaction is prepared firstly, then the Coulomb effect is taken into account via Hund’s

rule to find the ground state (j-j coupling). This and the next sections are devoted to these two approaches illustrated in

Fig. 2.2.

2.4.1 Effect of spin-orbit interaction on single-electron states

Here we revisit the single electron Hamiltonian for relativistic electron. The third term in eq. (1.72) is

− eℏσ · p×E
4m2c2

= − e2ℏ
4m2c2

σ · (p×∇V ) =
e2ℏ

2m2c2
ζ(r)s · l ≡ ξ(r)l · s, (2.27)

where V (r) is a potential with spherical symmetry. We first write it as V (r) taking the origin at the center of the potential,

then define ζ(r) as ∇V = (r/r)(dV (r)/dr) ≡ ζ(r)r, and apply l = r × p for the above. Assuming it as the Coulomb

potential V (r) = −Ze2/(4πϵ0r), ξ is given by

ξ(r) =
Ze2

2m2c2
1

(4πϵ0)r3
, (2.28)

which tells that the spin-orbit interaction is important for the atoms with large atomic number Z and for the atomic

orbitals with smaller r, namely the orbitals closer to the atomic core. As examples of representative atoms, ions that have

Fig. 2.2 Illustration of two representative approaches. In LS coupling (Russell-Saunders coupling) approach, the
ground state LS multiplex split by the Coulomb interaction is further split into the levels with J as the quantum
number by the spin-orbit interaction. In j-j coupling approach, spin-orbit interaction is considered at the single-
electronic states, then the Coulomb interaction in multi-electron states is taken into account through Hund’s rule.
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open shells, we have listed 3d transition metals and Lanthanoid with 4f open shells. The above thought suggests that the

approaches of “SOI-first” (both LS and j-j) are more appropriate for Lanthanoid than 3d transition metals.

j
l

s

Fig. 2.3 Illustrates precessions of
l and s around j.

The single-electron Hamiltonian with the SOI is then given by

H = H0 +Hso =
p2

2m
+ V (r) + ξ(r)l · s. (2.29)

The Hamiltonian (2.27) does not commute with l, s, which are no longer

constants of motion. This can easily be confirmed from (1.78) and (1.79). On

the other hand, commutation relations, e.g,

[l · s, l̂z] = iℏ(−lysx + lxsy), [l · s, ŝz] = iℏ(−lxsy + lysx) = −[l · s, l̂z],

tell that the total angular momentum

j = l+ s (2.30)

commutes with Hamiltonian (2.27), and is a constant of motion. j satisfies the

commutation relations in the same forms as (1.78) and (1.79). Hence it gets

directional quantization, and the eigenfunction is indexed by (j,m) as |j,m⟩
(m = −j,−j+1, · · · , j). |j,m⟩ can be obtained, e.g., in the form of expansion

with the eigenfunctions of H0.

On the other hand, l2, s2 commute with l · s, thus with H, making them as constants of motion. l · s is also written as

l · s = (l+ s) · s− s2 = j · s− s2.

This form tells that s and l have the Zeeman-like term with j (a constant of motion) as magnetic field in eq. (2.9). In

a classical picture, l and s precess around j satisfying eq. (2.30) as illustrated in Fig. 2.3. The angular velocity of the

precession is proportional to the spin-orbit coupling strength ξ.

The eigenvalues of l · s are obtained from

2l · s = (l+ s)2 − l2 − s2 = j2 − l2 − s2 (2.31)

as

[j(j + 1)− l(l + 1)− s(s+ 1)]/2 =
1

2

[
j(j + 1)− l(l + 1)− 3

4

]
. (2.32)

Then the energy eigenvalues are given by

ϵnlj = ϵnl +
ηnl
2

[
j(j + 1)− l(l + 1)− 3

4

]
, (2.33)

Fig. 2.4 Schematic diagram for splitting of l = 2 (i.e. 3d or-
bital) multiplet state with (2l+1)(2s+1) =10 fold degeneracy
by the SOI. η3d is the integrated value of eq. (2.34) for 3d-orbital.
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(a)

(b)

Fig. 2.5 Schematic diagrams of how electrons are
packed according to Hund’s rules into a degener-
ate state with the same angular momentum quantum
number. (a) The number of electrons is less than or
the same as the number of orbitals. (b) The num-
ber of electrons is more than that of orbitals. The
sum of the orbital contributions corresponding to the
spins represented by the arrows in the upper column
is zero.

where ηnl is the integral of the radial wavefunction and ξ(r), namely

ηnl =

∫ ∞

0

ξ(r)Rnl(r)
2r2dt. (2.34)

j can take values |l ± 1/2|, splitting the energy level indicated by (n, l) into two levels. Figure 2.4 shows the case of 3d

orbital.

2.4.2 Spin-orbit interaction in multi-electron states

The SOI Hamiltonian for a multi-electron system, then can be written as

HSOI =
∑
i

ξ(ri)li · si →
∑
i

ξili · si → ξ
∑
i

li · si. (2.35)

In the above we first replace ξ(ri) → ξi because the radial part will be integrated out as in eq. (2.34). Next ξi comes

out from the summation on i because in an LS-multiplet, the orbitals should have the same radial part. The Coulomb

repulsion splits the degenerated levels in the single-electron problem into LS-multiplets. In the previous section, Hund’s

rule has been derived as a way to find the state in which the effect of Coulomb repulsion is minimized. An LS-multiplet

(L, S) still has (2L+ 1)(2S + 1)-fold degeneracy due to the freedom of orbital and spin angular momenta.

In the presence of HSOI, just as in the single-electron problem, neither the total orbital angular momentum L nor the

total spin angular momentum S (defined in (2.15)) commutes with the Hamiltonian, that is, they are not constants of

motion. The total angular momentum defined as
J = L+ S (2.36)

is a constant of motion.

The whole energy level structure is importtant in the discusstion of localized electron systems. For the magnetism,

the ground state is particulary important. As noted, in the LS-coupling approach, we first consider the “ground state”

LS-multiplet, and examine how this is split by HSOI, find the ground state among them. When the number of electons n

is smaller than that of degenerated orbitals 2l + 1 for the orbital angular momentum l, in the ground state every orbital

accomodates 0 or 1 electron. Then according to Hund’s rule, in the ground state all electron spins are in parallel. Namely

a spin dose not depend on orbital index i:

si =
1

n
S =

1

2S
S (n ≤ 2l + 1). (2.37)

Substituting the above into eq. (2.35), we can write

HSOI = ξ
∑
i

li · si = ξ

(∑
i

li

)
· s = ξ

2S
L · S ≡ λL · S. (2.38)

In the case of n > 2l+1, as shown in Fig. 2.5(b), though the electron spins are still in parallel for 2l+1 electrons, the

corresponding orbitals take all possible values of ml, and the summation over li vanishes in (2.38). Hence the residual
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Electronic Electronic

Elements Configuration Configuration Ground state

(Lanthanoid) atom R ion R3+ L S J multiplet gJ

La 5d6s2 0 0 0 1S0 0

Ce 4f5d6s2 4f1 3 1/2 5/2 2F5/2 6/7

Pr 4f36s2 4f2 5 1 4 3H4 4/5

Nd 4f46s2 4f3 6 3/2 9/2 4I9/2 8/11

Pm 4f56s2 4f4 6 2 4 5I4 1/5

Sm 4f66s2 4f5 5 5/2 5/2 6H5/2 2/7

Eu 4f76s2 4f6 3 3 0 7F0 0

Gd 4f75d6s2 4f7 0 7/2 7/2 8S7/2 2

Tb 4f96s2 4f8 3 3 6 7F6 3/2

Dy 4f106s2 4f9 5 5/2 15/2 6H15/2 4/3

Ho 4f116s2 4f10 6 2 8 5I8 5/4

Er 4f126s2 4f11 6 3/2 15/2 4I15/2 6/5

Tm 4f136s2 4f12 5 1 6 3H6 7/6

Yb 4f146s2 4f13 3 1/2 7/2 2F7/2 8/7

Lu 4f145d6s2 4f14 0 0 0 1S0 0

Tab. 2.3 The electron configuration of the lanthanoid ion and the basis multiplex of the ion. Spectroscopic symbols

are also listed for the ground state. A spectroscopic symbol 2S+1LJ expresses a multielectron state indexed by
(L, S.J). 2S + 1 and J are given in Arabic numbers, and L is given from the correspondence 0, 1, 2, 3, · · · with
symbols S, P,D, F, · · · .

n− (2l+ 1) spins and orbitals actually contribute the SOI. Those effective spins are in anti-parallel states written as −s,

where s is defined in eq. (2.37). The above discussion is summarized in the following form *1.

HSOI = ξ

[(
2l+1∑
i=1

li

)
· s−

(
n∑

i=2l+2

li

)
· s

]
= − ξ

2S
L · S = −λL · S. (2.39)

In the above we have found that the SOI on the ground state LS-multiplet found from Hund’s rule can be expressed in

the same form as that on a single-electron state by using (L,S,J). Then as in the case of single electron problem, the

split states of the ground LS-multiplet with (2L+1)(2S +1)-fold degeneracy can be indexed by J , the eigenvalue of J .

Possible value of J are from the definition,

J = |L− S|, |L− S|+ 1, · · · , L+ S. (2.40)

The expectation value of L · S is obtained just as in (2.31) and (2.32). The result is

L · S =
1

2
(J2 −L2 − S2) =

1

2
[J(J + 1)− L(L+ 1)− S(S + 1)]. (2.41)

Then from eq. (2.38) and eq. (2.39), the ground state is the state for J = |L−S| in the case of n ≤ 2l+1, and that is the

state for J = |L− S| in the case of n > 2l + 1.

The above is applied to obtain the multiplet ground states thus obtained for lanthanoid are listed in Tab. 2.3. These

atoms often constitute (compound) ionic insulators. In many cases, 5d, 6s electrons on the outer shells and also a 4f

electron are emitted. In such ions, the outmost shell composed of 5s, 5p electrons is closed just as Xe while 4f electrons

on the open shell still exist inside the outmost shell. This situation is advantageous for localized electron system in

*1 Such simplification of operator form can be generalized into the method of “operator equivalent” by Stevens[1]．
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spherical potential because the effect of HCF is comparatively weak[2]. The SOI has strong effect and the LS-coupling

approach is a good approximation in most cases with some exceptions[3].

The eigenstates with quantum numbers J and M , composed of (L, S)-multiplet is formally written as

|J,M⟩ =
∑

MlMs

⟨L,Ml;S,Ms|J,M⟩ |L,Ml;S,Ms⟩, (2.42)

where ⟨L,Ml;S,Ms|J,M⟩ are Clebsch-Gordan or Wigner coefficients.

So far we have assumed the second quantization formalism and estimated the matrix elements on the assumption of

“independent calculation of matrix elements and particle statistics.” We can write, e.g., the second quantization represen-

tation of HSOI on the orbital (n, l), as

HSOI =
∑

mm′σσ′

λnl(mσ,m
′σ′)a†mσam′σ′ , (2.43a)

λnl(mσ,m
′σ′) ≡ Zeffe

2ℏ2 ⟨r3⟩
2m2c2(4πϵ0)

⟨m|l|m′⟩nl ·
(σ
2

)
σσ′

. (2.43b)

Here for the spherical potential, we take the effect of screening by core electrons into account by changing Z into an

effective atomic number Zeff to get V (r) = −Zeffe
2/(4πϵ0r).

2.5 j-j coupling

As mentioned in the beginning of the previous section, the j-j coupling approach starts from the single-electron states

in which the SOI is already included as in Fig. 2.2. In the thought similar to the derivation of Hund’s rule in Sec. 2.3.1, the

ground state in which the effect of Coulomb interaction is taken into account, is obtained for the electron configuration

that maximizes the quantum number J .

Let us see the case of Pr3+ ((4f)2) as an example. f -electron has l = 3, then j = 3 ± 1/2 = 5/2, 7/2. The single

electron ground state is thus j = 5/2. The electron configuration with the maximum J is j = 5/2, 3/2 then Jmax = 4.

This value of J agrees with that in the LS-coupling approach (Tab. 2.3). This state in number representation is obtained

as
|J,M⟩ = |4,+4⟩ = a†+5/2a

†
+3/2|0⟩. (2.44)

From eq. (2.42), the creation operator of j = 5/2 and jz = m state, a†jz can be represented by the creation operator a†ms

of states (l = 3,m, s) as

a†jz =
∑
m,s

⟨3,m; 1/2, s|5/2, jz⟩ a†ms =

√
7 + 2jz

14
a†jz+1/2↓ −

√
7− 2jz

14
a†jz−↑. (2.45)

The way of approximation is different for j-j coupling and LS-coupling. Hence they give different ground states.

Although according to the report ref. [4], they have large overlaps to each other. Care should be taken for the following.

As will be seen in the next section, in LS-coupling paramagnetic moment expressed as µ = µB(L+ gS) is not parallel

to J = L+S due to the g-factor. Hence µ precesses around J and the coefficient is given as the average. In j-j coupling

µ is given as the sum of electronic magnetic moments. Therefore the g-factor is the same as that of single electron.

Namely l in the discussion of LS-coupling is replaced with j, thus (2j + 1)/2(j + 1) for n ≤ 2j + 1 and (2j + 1)/2J

for n > 2j + 1.
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2.6 Paramagnetism generated by magnetic ions

As mentioned, HCF is important for magnetic ions with an open-shell structure of 3d electrons, but before proceeding

to the theoretical examination, we will apply the LS-coupling approach to paramagnetism and examine to what extent it

can explain the experiements.

2.6.1 Free local moment and Curie law

The LS-coupling approach is a tool to find the ground state of magnetic ions in crystals. Hence we examine the behavior

of magnetization in a simple model of magnetic moments free to each other.

The Hamiltonian in the first order of mgnetic field is from eq. (1.75b)

H1 = µB(L+ gS) ·B. (2.46)

On the other hand, in the ground multiplet state in the LS-coupling, J is the angular momentum quantum number. The

main term thus should be in the form of
H1 = gjµBJ ·B, (2.47)

where the coefficient gJ includes various effects. Comparison of these two, gJJ = L+ gS, J = L+ S, we reach

Landé g-factor� �
gJ =

1 + g

2
− g − 1

2

L(L+ 1)− S(S + 1)

J(J + 1)
. (2.48)� �

i This gJ is called Landé g-factor. gJ is listed in Tab. 2.3 for lanthanoid. As already noted, this expression is obtained

within the narrow space of ground state in LS-coupling.

The expectation value of magnetic moment −gjµBJ is

M = ⟨−gjµBJz⟩ = −Tr[gjµBJz exp(−gjµBJzB/kBT )]

Tr[exp(−gjµBJzB/kBT )]
= kBT

∂

∂B
log

[
Tr

(
exp

−gjµBJzB

kBT

)]
, (2.49)

with taking the field along z-axis. The partition function is calculated as

Tr

(
exp

−gjµBJzB

kBT

)
=

sinh

[
1

2kBT
gJµB

(
J +

1

2

)
B

]
sinh(gJµBB/2kBT )

. (2.50)

From the above, the magnetization per a single ion M is obtained as

M = gJµBJBJ

(
gJµBJB

kBT

)
, (2.51)

where BJ(x) is called Brillouin function given by

Brillouin function� �
BJ(x) =

2J + 1

2J
coth

2J + 1

2J
x− 1

2J
coth

x

2J
. (2.52)� �

The functional behavior is drawn in Fig. 2.6.

In the case of x ≪ 1 (weak field, high temperature), the Brillouin function can be approximated as BJ(x) ∼ (J +

1)x/3J , then we reach the Curie law:

χ =
dM

dB
= (gJµB)

2 J(J + 1)

3kBT
, (2.53)

which is also obtained in the classical theory.
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Fig. 2.6 Brillouin function(2.52) for
J = 1/2, 3/2,∞.

2.6.2 Comparison with experiments: magnetization curve

Figure 2.7 shows well-known experimental results, in which the magnetizations of alums (sulfate) with various mag-

netic ions are successfully fit to the Brillouin function. A systematic response to expected values of J is observed.

Fig. 2.7 Fittings of the Brillouin function to the magnetic field and temperature dependencies of magnetization of
various paramagnetic salt (sulfates (alum) with various magnetic ions). Left: Cr (J = 3/2). Annotation of ”Langevin”
means the Langevin function corresponding to J = ∞ in the Brillouin function. Right: The same experiments for Cr
(J = 3/2), Fe (J = 5/2), Gd (J = 7/2). From [5].
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Configuration ion p (exp.) gJ [J(J + 1)]1/2 2[S(S + 1)]1/2

3d1 2D3/2 V4+ 1.8 1.55 1.73

3d2 3F2 V3+ 2.8 1.63 2.83

3d3 4F3/2 V2+ 3.8 0.77 3.87

Cr3+ 3.7 0.77 3.87

Mn4+ 4.0 0.77 3.87

3d4 5D0 Cr2+ 4.8 0 4.90

Mn3+ 5.0 0 4.90

3d5 6S5/2 Mn2+ 5.9 5.92 5.92

Fe3+ 5.9 5.92 5.92

3d6 5D4 Fe2+ 5.4 6.7 4.90

3d7 4F9/2 Co2+ 4.8 6.63 3.87

3d8 3F4 Ni2+ 3.2 5.59 2.83

3d9 2D5/2 Cu2+ 1.9 3.55 1.73

Tab. 2.4 Comparison of effective Bohr
magneton number p (eq. (2.55)) obtained
in experiments, that given by the LS-
coupling approach (2.54), and that by
“spin-only” model for 3d transition metal
ions. The data are taken from [6], [7].

Configuration ion p (exp.) gJ [J(J + 1)]1/2 2[S(S + 1)]1/2

4f1 2F5/2 Ce3+ 2.5 2.54 2.56

4f2 3H4 Pr3+ 3.6 3.58 3.62

4f3 4I9/2 Nd3+ 3.8 3.62 3.68

4f5 6H5/2 Sm3+ 1.5 0.84 1.53

4f6 7F0 Eu3+ 3.6 0.00 3.40

4f7 8S7/2 Gd3+ 7.9 7.94 7.94

4f8 7F0 Tb3+ 9.7 9.72 9.7

4f9 6H15/2 Dy3+ 10.5 10.65 10.6

4f10 5I8 Ho3+ 10.5 10.61 10.6

4f11 4I15/2 Er3+ 9.4 9.58 9.6

4f12 3H6 Tm3+ 7.2 7.56 7.6

4f13 2F7/2 Yb3+ 4.5 4.54 4.5

Tab. 2.5 Comparison of effective
Bohr magneton number p (eq. (2.55)) ob-
tained in experiments, that given by the
LS-coupling approach (2.54), and that
by “spin-only” model for 4f lanthanoid.
The data are taken from [6], [7].

2.6.3 Effective Bohr magneton number

Another check of the theory is the effective Bohr magneton number p defined from the inverse proportionality constant

C to temperature from the Curie law. In eq. (2.53) we write

p = gj
√
J(J + 1), (2.54)

then p in the theory is
p =

√
3kBC/µB. (2.55)

In Tab. 2.4 and in Tab. 2.5, we compare effective Bohr magneton number p (eq. (2.55)) obtained in experiments, that

given by the LS-coupling approach (2.54), and that by “spin-only” model for 3d transition metal ions and 4f lanthanoid

respectively.

In the case of lanthanoid in Tab. 2.5, the experimental values of p is well explained by gJ
√
J(J + 1) obtained from

the LS-coupling other than Eu3+, Sm3+. On the other hand, in the case of 3d transition metals, the experiments differ so

much from gJ
√
J(J + 1), rather they are close to “spin-only” 2

√
S(S + 1). That looks as if L = 0 and the phenomenon
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Fig. 2.8 (a) Crystal structure of K2NiF4, in which Ni ion has an octahedron coordination. (b) Crystal structure
of Cs2CuCl4, in which Cu ion has a tetrahedron coordination. (c) Schematic view of octahedron coordination. (d)
Schematic view of tetrahedron coordination.

is called “quenching of orbital angular moment.” In 3d electron systems, the difference from the LS-coupling is so large

that it is also difficult to explain with j-j coupling.

As mentioned above, the 4f electron system is relatively inside the atomic structure even though the shell is open, the

influence of the surroundings is small, and the approximation of the lone electron system is relatively small. Accordingly,

it is indicated that the breakdown of LS-coupling approach in 3d electron systems is considered to be due to the effect of

HCF. Therefore, next, let us consider incorporating the influence of the crystal field from the beginning.

2.7 Magnetic ions in crystal fields

Magnetic atoms (atoms of open electron shells) exist as positive ions in many insulators with strong paramagnetism.

Such ions are surrounded by negative ions. An example in Fig. 2.8(a) is K2NiF4, in which structure Ni ion is surrounded

by F ions in octahedron coordination. Figure 2.8(c) shows a schematic view. As annotated, the surrounding ions or

molecules are called ligand. Another example in (b) is Cs2CuCl4, in which structure Cu ion is surrounded in tetrahedron

coordination. These two are the representative coordination.

2.7.1 Level splitting by octahedron coordination

Let us consider the octahedron coordination in Fig. 2.8(c) in a simplest way. We take the coordinate origin at the ion,

and ligand ions are at (±R, 0, 0), (0,±R, 0), (0, 0,±R). The vectors pointing them are written as Ri = (R, θi, φi) and

the potential generated by the ligands is written as

vc(r) =
∑
i

Zie
2

|r −Ri|
=
∑
i

Ze2√
r2 +R2 − 2Rr cosωi

. (2.56)
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Here we take CGSesu for the simpler form of Coulomb potential. In the polar coordinate, (θi, φi) are

(π/2, 0), (π/2, π/2), (0, 0), (π/2, π), (π/2, 3π/2), (π, 0) (2.57)

for i = 1 ∼ 6.

We assume that the averaged distance of 3d electrons from the nucleus is sufficiently shorter than R. Then vc can be

expanded with r/R as

vc(r) =
∑
i

Ze2

R

∞∑
k=0

( r
R

)k
Pk(cosωi), (2.58)

where Pk(cosωi) are Legendre functions defined as

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)]. (2.59)

Apparently these are the expansion coefficients of

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)t
n. (2.60)

From an identity of spherical harmonic function Ykm(θ, φ),

Pk(cosωi) =
4π

2k + 1

k∑
m=−k

Ykm(θ, φ)Y ∗
km(θi, φi). (2.61)

Note ωi is a function of r. This results in dropping of i from the argument in the first Ykm. Here we define two functions:

Tkm ≡
√

4π

2k + 1

Ze2

Rk+1

∑
i

Ykm(θi, φi), Ckm ≡
√

4π

2k + 1
Ykm(θ, φ), (2.62)

with which vc(r) is written as

vc(r)

∞∑
k=0

k∑
m=−k

rkTkmCkm(θ, φ). (2.63)

From the symmetry of positions (2.57), Tkm = 0 for odd m. Others are

Tk0 =

√
2

2k + 1

Ze2

Rk+1

[
Θk0(0) + 4Θk0

(π
2

)
+Θk0(π)

]
, (2.64a)

Tkm =

√
8

2k + 1

Ze2

Rk+1
Θkm

(π
2

)(
1 + cos

mπ

2

)
(m: even), (2.64b)

where Θ(θ)km are defined as
Ykm(θ, φ) = Θkm(θ)eimφ. (2.65)

From the form of Θ(θ)km, Tkm’s are also zero for odd k.

From above, we reach the expression to the fourth order of k:

vc(r) =
6Ze2

R
+

2

5
Der4

[
C40(θ, φ) +

√
5

14
(C44(θ, φ) + C4−4(θ, φ))

]
, (2.66)

where
D =

35Ze

4R5
. (2.67)

Let vcb(r) be the potential without the energy shift term (the first term in eq. (2.66)). We also restore vcb(r) into the

expression in cartesian coordinate, then obtain

vcb(r) = eD

(
x4 + y4 + z4 − 3

5
r4
)
. (2.68)
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Appendix 3A: Isolated electron systems and point group

3A.1 Definition of group

When the operation ∗ is defined between any elements of a set A and the following conditions are satisfied, we call A

a “group” with respect to ∗.

1. ∀a1, a2 ∈ A {a1 ∗ a2 ∈ A} (closed for the operation *)

2. ∀a1. a2, a3 ∈ A {(a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3)} (associative law).

3. ∃E ∈ A {∀a1 ∈ A {a1E = Ea1 = a1}} (existence of unit element).

4. ∃a−1
1 ∈ A {∀a1 ∈ A {a1a−1

1 = a−1
1 a1 = E}} (existence of the inverse element)．

When elements ai, aj of a group A are written as ai = aaja
−1, where a is also an element of A, we say ai and aj are

conjugate to each other. Generally a group is classified into classes, which are sets of conjugate elements.

An element of a group ai has a corresponding square matrix D(ai) and the operation a ∗ b = c is projected to

D(a)D(b) = D(c). We call D(ai) as a representation of group A. There are infinite number of representations. When

a square matrix S transfers as D′(ai) = S−1D(ai)S, we call D′(ai) an equivalent representation to D(ai). The direct

sum of D(1) and D(2) is defined as

∀ai : D(ai) =

(
D(1)(ai) 0

0 D(2)(ai)

)
,

which is expressed as D = D(1) ⊕ D(2). The above is summarized as “D is reduced to D(1) and D(2) by equivalent

conversion with S.” Expressions that cannot be further reduced are called irreducible expressions. Expression of an

element a can be written as Dij(a) = ⟨χi|a|χj⟩ by using a basis |χi⟩ of expression. Equivalent conversion matrix S is a

basis transformation matrix. When a is an operator, the matrix representation with basis |χi⟩ is χ-expression of a.

3A.2 Symmetry operations of point group

A set of symmetry operations around a point in space is called a point group.
E : Identical operation

Cn : Rotation of 2π/n

C ′
2 : π rotation around two-fold axis perpendicular to the principal axis. Written as C ′

2 or U2 and called

Umklappung.
I : Space inversion (r → −r)

σ : Mirroring

ICn : Circumference. Space inversion after rotation of 2π/n.

Sn : Improper rotation. Mirroring after rotation of 2π/n.

(Continue to next time)

Appendix 3B: Clebsch-Gordan coefficient

Students must have learned about coupling of angular momentum in elementary quantum mechanics. But here we

have a short review. Even in classical mechanics, additive quantities should be summed up in the coupled system. In the

case of angular momentum, they should be summed up as vectors. In quantum mechanics, the operator of total angular
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momentum is written as the sum of angular momentum operators. However in quantum mechanics, due to the directional

quantization, eigenfunctions and eigenvalues are not the sums of each eigenfunction and eigenvalue.

3B.1 General treatment

Let ĵ1, ĵ2 be independent angular momentums, and consider simultaneous eigenstates |j2i ,mi of operators ĵ21 , ĵiz
(i = 1, 2). We write a wavefunction of the coupled system as

ψ = |j21 ,m1⟩|j22 ,m2⟩. (3B.1)

The total angular momentum Ĵ of the coupled system is

Ĵ = ĵ1 + ĵ2. (3B.2)

However, ψ in eq. (3B.1) is not an eigenstate of, e.g., Ĵ2 apparently. From the independence of ĵ1, ĵ2 (thus they

commute each other), and from the general properties of angular momentum, [Ĵ2, Ĵz], [ĵ21 , ĵ
2
2 ] are apparently zero, and

the following commutation relation can be proven.

[Ĵ2, ĵ2α] = [Ĵz, ĵ
2
α] = 0. (3B.3)

Simultaneous eigenstates of Ĵ2, Ĵz , ĵ21 , ĵ22 can be obtained from basis transformation from eq. (3B.1) as

|J2,M, j21 , j
2
2⟩ =

j1∑
m1=−j1

j2∑
m2=−j2

CJM
j1m1j2m2

|j21 ,m1⟩|j22 ,m2⟩, (3B.4)

where CJM
j1m1j2m2

are called Clebsch–Gordan coefficients.

3B.2 Coupling of two spins

For general way to find CJM
j1m1j2m2

, refer to textbooks. Instead we obtain them for the simplest case of j1 = j2 = 1/2,

namely two spins. We take ŝi (i = 1, 2) for the two spin operators and write the total spin operator as

Ŝ = ŝ1 + ŝ2. (3B.5)

Because ŝ1 commutes with ŝ2,
Ŝ2 = ŝ21 + 2ŝ1 · ŝ2 + ŝ22, Ŝz = ŝ1z + ŝ2z. (3B.6)

First, for Ŝz we see

Ŝz

(
| ↑1⟩| ↑2⟩ | ↑1⟩| ↓2⟩
| ↓2⟩| ↑2⟩ | ↓1⟩ ↓2⟩

)
=

(
| ↑1⟩| ↑2⟩ 0

0 −| ↓1⟩| ↓2⟩

)
. (3B.7)

Therefore the eigenvalues of Ŝz are ±1, 0 with two-fold degeneracy. The “size” of S, S is then 0 or 1. Next, generally

for the operator ŝ of spin 1/2

ŝ2 = ŝ2x + ŝ2y + ŝ20 =
3

4

(
1 0
0 1

)
(3B.8)

holds. In Ŝ2 ŝ21 + ŝ
2
2 are 3/2

ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2, Residual ŝ1 · ŝ2 are calculated as follows. For simplicity we use expression

| ↑1⟩| ↓2⟩ = | ↑↓⟩.

ŝ1 · ŝ2
(
| ↑↑⟩ | ↑↓⟩
| ↓↑⟩ | ↓↓⟩

)
=

1

4

(
.| ↑↑⟩ −| ↑↓⟩+ 2| ↓↑⟩

2| ↑↓⟩ − | ↓↑⟩ | ↓↓⟩

)
.
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Because neither| ↑↓⟩ nor | ↓⟩| ↑⟩ is not eigenstates, this part should be diagonalized by transformation. The results are

simply

χ± ≡ | ↑↓⟩ ± | ↓↑⟩. (3B.9)

This is easily confirmed as

ŝ1 · ŝ2χ+ = (1/4)χ+, ŝ1 · ŝ2χ− = (3/4)χ−. (3B.10)

From the above, the eigenvalues of Ŝ2 are 0, 2, the eigenfunctions are

|1,−1⟩ = | ↓↓⟩, |1, 0⟩ = 1√
2
(| ↑↓⟩+ | ↓↑⟩), |1, 1⟩ = | ↑↑⟩,

|0, 0⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩)

. (3B.11)

Here we use S as index, not S(S + 1). The state of S = 1 is called spin triplet state, S = 0 is called spin singlet state.

Then we obtain follows as Clebsch-Gordan coefficient in eq. (3B.4),

C11
1/2,1/2,1/2,1/2 = C1−1

1/2,−1/2,1/2,−1/2 = 1,

C10
1/2,1/2,1/2,−1/2 = C10

1/2,−1/2,1/2,1/2 = C00
1/2,1/2,1/2,−1/2 = 1/

√
2,

C00
1/2,−1/2,1/2,1/2 = −1/

√
2.
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Lecture note Magnetism (4)
27th April (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Let us continue the discussion of octahedral ligand filed. We begin with the cartesian coordinate expression of the

potential.

vcb(r) = eD

(
x4 + y4 + z4 − 3

5
r4.

)
(2.68)

In eq. (2.1), the above potential should be HCF, which now has more priority than HSOI for present. First we consider

the single-electron problem in the central force plus octahedral potential. Since our problem is on the 3d electrons in an

open shell, we restrict ourselves to the space generated on the basis of d-orbital wavefunctions. Also it can be known

from the group theory, that will be introduced afterwards, the potential in (2.68) does not split s and p orbitals, as can be

easily guessed by considering the symmetry of px,y,z .

In order to diagonalize this potential within d-orbitals (l = 2) ϕnlm: (n, l,m) = (n, 2,m = 2, 1, 0,−1,−2), in an

orthodox way, we write down the secular equation and then obtain the eigenvalues and the eigenvectors[1]. But here, we

deduce the functional forms of diagonalization basis functions from a simpler thought[2]. The radial part is common for

d-orbitals (rather for principal quantum number n). The parts of spherical harmonic functions are

Y20(θ, φ) =

√
5

16π
(3 cos2 θ − 1), (2.69a)

Y2±1(θ, φ) = ∓
√

15

8π
cos θ sin θe±iφ, (2.69b)

Y2±2(θ, φ) =

√
15

32π
sin2 θe±2iφ. (2.69c)

This directional dependences in cartesian coordinate are quadratic in (x, y, z) as r cos θ = z, r sin θ cosφ = x,

r sin θ sinφ = y. Since the non-spherical part in the potential (2.68) is given as an even function of (x, y, z), off-

diagonal elements of the matrix representation on the (partial) basis of the quadratic functions yz, zx, xy are zero by

integrating out the odd functions. Residual quadratics are x2, y2, z2. For vanishing off-diagonal terms in the matrix

representation for x4 + y4 + z4, we need to take differences between (x2, y2, z2). Possible independent candidates are

x2 − z2, y2 − z2 though they are not orthogonal. Hence with orthogonalization we reach 3z2 − r2, x2 − y2.

These directional dependencies can be obtained in the linear combination of eq. (2.69) as

ϕξ =
i√
2
(ϕn21 + ϕn2−1) =

√
15

4π

yz

r2
Rn2(r), (2.70a)

Fig. 2.9 Eigenstates of d-electron in an octahedral ligand field (eq. (2.70)). The surfaces of (absolute value of
wavefunction)=(constant) are drawn with shading.
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Fig. 2.10 Level splitting of d-orbital by an octahedral lig-
and potential. D, q are defined in eq. (2.67) and eq. (2.71)
respectively. The uniform increase of levels by the constant
term is also drawn.

ϕη = − 1√
2
(ϕn21 − ϕn2−1) =

√
15

4π

zx

r2
Rn2(r), (2.70b)

ϕζ = − i√
2
(ϕn22 − ϕn2−2) =

√
15

4π

xy

r2
Rn2(r). (2.70c)

And

ϕu = ϕ320 =

√
5

16π

3z2 − r2

r2
Rn2(r), (2.70d)

ϕv = − 1√
2
(ϕ322 + ϕ32−2) =

√
5

16π

x2 − y2

r2
Rn2(r). (2.70e)

The “shapes” of these wavefunctions are expressed in Fig. 2.9 as shaded surfaces of (absolute value of direction-dependent

part in the wavefunction)=(a constant).

We restrict ourselves to 3d electrons. Let q be

q =
2e

105
⟨r4⟩ = 2e

105

∫
|R32(r)|2r4(r2dr), (2.71)

and the group of three wavefunctions ϕξ, ϕη , ϕζ and the group of two wavefunctions ϕu, ϕv have the eigen energies

ϵ1 = −4Dq, ϵ2 = 6Dq (2.72)

respectively. The states corresponding to ϵ1 and ϵ2 are called T2g , Eg respectively named after the point groups. The

single-electron orbitals belonging to those are called t2g (or dϵ) orbital and eg (or dγ) orbital. The level splitting of

d-orbital is illustrated in Fig. 2.10. The shift between t2g and eg is roughly explained from the shapes of wavefunctions

drawn in Fig. 2.9 as follows. The three orbitals of t2g have zero amplitude when one of (x, y, z) is zero, avoiding the

positions of ligands, hence decrease the Coulomb energy. On the other hand, eg orbitals elongate to the directions of

ligand, enhancing the Coulomb energy.

The angular moments of these orbitals are zero. For example, ⟨ϕζ |lz|ϕζ⟩ gets +2 from ϕ322, −2 from ϕ32−2, and

the total is zero. Similarly ⟨l2⟩ = 0. This is the result of linear combination, in which the sum of the orbital angular

momentum vanishes. In other words, the eigenstates are the standing waves for the octahedral potential, naturally have

zero angular momentum. Very important conclusion of this analysis is that the result explains the experimental results in

Tab. 2.4, in which the effective number of Bohr magneton appears to be as if the orbital angular moment vanishes.

2.7.2 Ground states of multiple electrons

Next we should consider the electron configuration in these t2g , eg orbitals along with the Hund’s rule. Here we need to

compare the crystal (ligand) field splitting 10Dq and the energy gain of the exchange integral (eq. (2.20c)) by following
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Fig. 2.11 Two possible electron accommodations of t2g and eg orbitals. There are high-spin states and low-spin
states for electron numbers more than n = 4.

the Hund’s rule. When the former surpasses the latter, the configuration of more accommodation in t2g orbital with lower

total spin is favored. Such a multiple-electron state is called low-spin state.

Figure 2.11 shows possible spin configurations (high- and low-spin states) for n = 4 ∼ 7. For n = 8, 9, t2g orbitals

are fully occupied, and there is a single possible configuration. In the example of an iron ion Fe2+ in a hemoglobin,

the existence of two possible (high, low) spin states brings about a dramatic effect. Four nitrogen atoms of porphyrin

and imidazole nitrogen at the end of the globin protein polypeptide chain are coordinated to this iron ion, which is not a

regular octahedron coordination. However we still take t2g , eg orbitals as the basis since the splitting due to the further

lowering in the symmetry is not very large. When the complex structure does not have an oxygen atom, namely a five

coordination state, the electrons are in a high-spin state (t42ge
2
g) while under the coordination of an oxygen atom (one of

two in a molecule), the splitting 10Dq between t2g-eg becomes larger and the state transits to the low-spin state t62g . The

transition can be detected by, e.g., the electron spin resonance.

The ground state of t2g or eg still has 3-fold or 2-fold degen-

eracy. When the octahedral structure gets a distortion along

z-axis, the degeneracy is lifted and generally the energy of

ground state lowered. Hence when the energy lowering of the

ground state surpasses the energy increase due to the lattice

distortion, the lattice-distorted state is favored and the sym-

metry lowered. This phenomenon is called the Jahn-Teller
effect and observed, e.g., in CuSiF66H2O salt. Or in some

cases, the crystal field effect is coupled to the lattice vibra-

tion yielding the effect called dynamic or vibronic Jahn-Teller

effect.

2.7.3 Van Vleck paramagnetism

In the above, on the paramagnetism of 3d transition metals and 4f lanthanoid, we have seen that, the former can be

understood by considering the effect of ligand field while the latter can be fairly understood by considering the SOI via

LS coupling (or j-j coupling) approach. However we still have a problem in the latter. As we see in Tab. 2.5, there are

big discrepancies between the theory and the experiment for Eu3+, Sm3+. The problem was theoretically solved by Van

Vleck, and the phenomenon is called Van Vleck paramagnetism. The above figure is from the Nobel lecture[3] given by
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Van Vleck, which demonstrates that his theory quantitatively explains the discrepancies in the simple theory.

Let us see how the theory works in the case of Eu3+. The electron configuration is 4f6, the electron number is less

than 2l+ 1 = 7, then we see the coefficient of L ·S is positive from eq. (2.38). Namely L and S couple as anti-parallel.

The ground state is 7F0, which means J = 0. In the excited states, possible total angular momenta are J = 1, 2, · · · , 6.

From eqs. (2.38),(2.41),

HSOI = λL · S =
λ

2
[J(J + 1)− S(S + 1)− L(L+ 1)]. (2.73)

The splitting width of LS-multiplet (L, S are fixed, J is the index of split states) is

∆ELS = ELS(J)− ELS(J − 1) = λJ. (2.74)

The energy difference between the ground state with J = 0 and the first excited state with J −1 is λ, which is as small as

200∼300 K. Hence even at low temperatures, when there is a finite external magnetic field, the term HSOI causes mixing

of the state J = 1 with the J = 0 ground state, which gives rise to a finite magnetic moment.

2.8 Symmetry and degeneracy of quantum states

In the above we have solved a specific problem of d-electrons in an octahedral potential. In more general treatment,

we should apply regular perturbation theory. However, the thoughts from the symmetry of the system is very helpful

in the calculation since we can largely decrease the amount of calculation[4]. The symmetry of a system is defined by

symmetry operations. A symmetry operation is a transformation in a space of some degrees of freedom. Examples

are rotations, parallel transformations, mirror reflections, etc. in the coordinate space. When a system is invariant under

a symmetry operation, the system has the symmetry for the operation. The total symmetry of a system is defined as a

set of symmetries possessed by the system. In the following we will have a short look at a general method to know the

degeneracy of quantum states from the symmetry of the system.

2.8.1 Symmetry operations in point groups

We use group theory for such discussions. In Appendix 3A, we have seen that symmetry operations constitute a group,

an element of which has a corresponding matrix of representation. Thus the symmetry of a system can be specified by

the corresponding group. The symmetry groups that have correspondence to spatially localized systems are called point
groups. Particularly in crystals, the constraint of discrete translational symmetry restricts the number of possible point

groups called “crystal point groups” to 32 listed in Tab. 2.6.

We won’t go deep into mathematics though the group theoretical knowledges of symmetry operation are indispensable

for the researchers of crystallography, symmetry-sensitive properties like multi-ferroics. Embarrassing in symmetry

group theories is that similar symbols are

The problem with handling a group of symmetric operations is that they are all confusing with similar symbols to

various concepts, and the symbols are different and more confusing depending on the style of the mathematicians. In

physics, Schönflies and Mulliken symbols have been used, and we also follow that here but recently “international

standard” symbols are also frequently used. At present I cannot find the way to describe the expressions in a beautifully

organized manner.

When a set of functions Aφ = {φ1, φ2, · · · } is transformed back to itself by a symmetry operation R, that is, A
R−→

A ′
φ = {φ′

1, φ
′
2, · · · } = A , A can be a representation basis of R and the corresponding matrix is given as

Dij(R) = ⟨φi|R|φj⟩ . (2.75)
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system Schönflies Hermann-Mauguin symbol examples

symbol full abbreviated

triclinic C1 1 1

Ci, (S2) 1̄ 1̄ Al2SiO5

monoclinic C1h, (S1) m m KNO2

C2 2 2

C2h 2/m 2/m

orthorhombic C2v 2mm mm

D2, (V ) 222 222

D2h, (Vh) 2/m2/m2/m mmm I, Ga

tetragonal C4 4 4

S4 4 4

C4h 4/m 4/m CaWO4

D2d, (Vd) 4̄2m 4̄2m

C4v 4mm 4mm

D4 422 42

D4h 4/m2/m2/m 4/mmm TiO2, In, β-Sn

rhombohedral C3 3 3 AsI3

C3, (S6) 3 3 FeTiO3

C3v 3m 3m

D3 32 32 Se

D3d 32/m 3m Bi, As, Sb, Al2O3

hexagonal C3h, (S3) 6 6

C6 6 6

C6h 6/m 6/m

D3h 62m 62m

C6v 6mm 6mm ZnO, NiAs

D6 622 62 CeF3

D6h 6/m2/m2/m 6/mmm Mg, Zn, graphite

cubic T 23 23 NaClO3

Th 2/m3 m3 FeS2

Td 43m 43m ZnS

O 432 43 β-Mn

Oh 4/m32/m m3m NaCl, diamond, Cu

icosahedral C5 5 5

C5i, (S10) 10 10

C5v 5m 5m

C5h, S5 5 5

D5 52 52

D5d 52/m 5/m C80

D5h 10̄2/m 10̄2/m C70

I 532 532

Ih C60

Tab. 2.6 Crystal sys-
tems, Schönflies symbols,
Hermann-Mauguin symbols
and examples of materials
of 32 crystal point groups.
From Ref. [4].
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Symmetry operation Rotation axis Number of operation

E Identical transformation 1

C4 π/2 rotation around 4-fold axis x, y, z 3

C2 = C2
4 π rotation around 4-fold axis x, y, z 3

C3
4 3π/2 rotation around 4-fold axis x, y, z 3

C2 π rotation around 2-fold axis (0,1,1), (1,0,1), (1,1,0) 6

(0,1,−1), (−1,0,1), (1,−1,0)

C3 2π/3 rotation around 3-fold axis (1,1,1), (1,1,−1), (1,−1,1), (−1,1,1) 4

C2
3 4π/3 rotation around 3-fold axis (1,1,1), (1,1,−1), (1,−1,1), (−1,1,1) 4

Tab. 2.7 Symmetry operations octahedral group (O group).

Here, if D(R) can get further block diagonalization by unitary matrix S (i.e., replacement of basis) as

SD(R)S−1 =

D1(R) 0
D2(R)

0
. . .

 , (2.76)

D(R) is reducible and can be expressed as a direct summation of D1(R), D2(R), · · · as

D(R) = D1(R)⊕D2(R)⊕ · · · . (2.77)

On the other hand, if such block diagonalization is impossible, the representation is irreducible. Expression of a reducible

representation as a direct summation of irreducible representations, is called reduction.

Irreducible or reducible namely the possibility of block diagonalization cannot be judged from the simple diagonaliz-

ability of matrix. Often adopted is the use of character table. Character of representation is the trace of representation

matrix, which is invariant for the changing of basis. Hence a character for reducible representation is the sum of charac-

ters for irreducible representations in the direct summation. From this the reduced form in the direct summation can be

deduced.

Table 2.7 lists the symmetry operations that keep an octahedral system invariant. Those operations constitute a group

called octahedral group, of which the symbol is O. As in Tab. 2.6, it belongs to the cubic symmetry. The octahedral

complex systems with magnetic ions also have the space-inversion symmetry in addition to O. Hence to be strict, we

need to consider Oh group. Although here for simplicity we consider O group and it is known that the level-splitting

behavior is the same for Oh. Group O has 24 symmetry operations as the elements as listed in this table.

O E 8C3 3C2 = 3C2
4 6C ′

2 6C4

Γl=0 A1 1 1 1 1 1

Γl=1 T1 3 0 −1 −1 1

Γl=2 E + T2 5 −1 1 1 −1

Γl=3 A2 + T1 + T2 7 1 −1 −1 −1

Γl=4 A1 + E + T1 + T2 9 0 1 1 1

Γl=5 E + 2T1 + T2 11 −1 −1 −1 1

Γ1 A1 1 1 1 1 1

Γ2 A2 1 1 1 −1 −1

Γ12 E 2 −1 2 0 0

Γ ′
15 T1 3 0 −1 −1 1

Γ ′
25 T2 3 0 −1 1 −1

Tab. 2.8 Symmetry operations in
group O (topmost low), and characters.
The representations in the upper low are
on bases of eigenfunctions of orbital an-
gular momentum. Those in the lower low
display irreducible representations.
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Next we consider the representations of these symmetry operations. A simple choice of representation basis is the

eigenfunctions in a system of a spherical potential. They can have the orbital angular momentum as the quantum number,

namely s, p, d, f, · · · . The representations based on them are listed in the upper band in Tab. 2.8. The symbols Γl=0 ∼
Γl=5 are the representations on the orbital angular momentum l. However they are not generally irreducible. The symbols

of irreducible representations are named in the following way. A, E, T are for 1, 2, and 3-dimensional representations.

The suffices do not have strict rule, being numbered starting from O group. In the table, the irreducible representations

A1, A2, E, T1, T2 of group O and the characters are listed in the lower band. From the comparison of these characters,

we know that Γl=0, Γl=1 are irreducible. This fact indicates that s and p orbitals do not split in an octahedral potential.

For l ≥ 2, Γl are reduced as indicated in the table. When we consider the split of d-orbital, we added suffix g as T2g and

Eg . Actually we need to consider group Oh including the space-inversion operation i. The symmetry operations are the

direct product with i and the number of i operations brings the difference between even number (gerade, g in Germany)

and odd number (ungerade, u). The irreducible representation also needs the suffix of g (even).

2.8.2 Symmetry operation and degeneracy

Let R be one of such symmetry operation and a function φ transform as

φ′ = Rφ. (2.78)

Assume an operator O is transformed by R to O ′, then the operation of O ′ on the transformed function Rφ should be the

result of operation R on the O-operated original φ. Therefore

O ′Rφ = ROφ = ROR−1Rφ.

That is, O is transformed to ROR−1. Now assume H is invariant for the symmetry operation R.

RH R−1 = H , ∴ [R,H ] = 0. (2.79)

Let ϕ an eigenfunction of H with an eigenvalue of E, that is H ϕ = Eϕ. Then

H Rϕ = RH R−1Rϕ = REϕ = ERϕ, (2.80)

which indicates that ϕ′ = Rϕ is an eigenstate of H with the same eigenvalue E. If ϕ and ϕ′ are independent to each

other, they are degenerate eigenfunctions. This degeneracy is based on the symmetry of the system. Other kinds of

degeneracy is called “accidental” and usually lifted by some factors in real systems.

Fig. 2.12 Level splitting of 5-fold l = 2 states in various symmetries expressed by crystal point groups. The numbers
attached to the levels indicate the degree of degeneracy. From Ref. [4].
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Let {ϕi} be eigenfunctions with degree of degeneracy d with eigenvalue E of H . The representation matrix of R in

this space is given by
Dij(R) = ⟨ϕi|R|ϕj⟩ . (2.81)

That is,

Rϕν =

d∑
µ=1

Dµν(R)ϕµ. (2.82)

Here D(R) must be irreducible. Otherwise, e.g., assume D(R) is block diagonalized as

D(R) = D1(R)⊕D2(R) =

(
D1(R) 0

0 D2(R)

)
.

Then the basis is transformed by the transformation matrix for the reduction as {ϕi} → {χi}. We can thus divide the

basis {ϕi} into {ϕ(1)i } and {ϕ(2)i } which belong to D1(R) and D2(R) respectively. They are not transformed to each

other by symmetry operation, hence the degeneracy is accidental.

From the above discussion and by the character tables of irreducible representation, we can deduce how the degenerate

states under consideration split when the symmetry of the system changes. Further we can know the shape of wavefunc-

tion from the basis of representation, hence infer the order of energy levels. Thus obtained level splitting of d-orbitals in

various ligand field potentials is illustrated in Fig. 2.12.

2.9 Experiments and applications of localized spins

We have studied magnetic atoms or ions, which have large localized magnetic moments based on the measurement of

magnetic susceptibility and the crystal structures. Here we have a look at fundamentals of magnetic resonance – a very

important experimental method for magnetism. As an application of paramagnetic salt, we have short visit to magnetic

refrigeration.

2.9.1 Magnetic resonance

In Sec. 2.1.2, we have mentioned that the magnetic moment tilted in a static magnetic field causes Larmor precession.

In the method of magnetic resonance (MR), by applying an oscillating magnetic field at the Larmor frequency and

by observing the resonance, we obtain not only the information of the magnetic moment itself, but also that of the

environment surrounding the moment. It is needless to say the academic and social importance.

Let J be the total angular momentum of an isolated electron system. The Zeeman term in a static magnetic field B0

along z axis is given by
H1 = gJµBJ ·B0, (2.47)

which is just the same as eq. (2.47). Heisenberg equation of motion is written as

dJ

dt
=
i

ℏ
[gJµBJ ·B0,J ], (2.83)

to which the commutation relation

JyJz − JzJy = iJx, JzJx − JxJz = iJy, JxJy − JyJx = iJz (2.84)

is applied to obtain
dJ

dt
=
gJµB

ℏ
B0 × J . (2.85)
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Fig. 2.13 Left: Precession of angular momentum J around the in-plane magnetic field B1/2 on the rotating coor-
dinate. Right: Illustration of the total motion tracing the end-point of J from the static coordinate. Under realistic
conditions, the rotation around z-axis is much faster.

This expresses the precession with Larmor frequency

ωL = gJ
eB0

2m
. (2.86)

Now if we observe this precession from the coordinate rotating around z-axis with frequency ωL, the precession is

canceled out and the momentum looks as if it sits still. Namely in this coordinate, the effect of static field along z axis

vanishes and virtually zero-field state is realized.

An oscillation magnetic field B(t) = B1 cos(ωt) (on the non-rotating coordinate) perpendicular to the static field B0

can be written as the sum of rotating field as

B(t) =
B1

2
[exp(iωt) + exp(−iωt)]. (2.87)

When ω ≈ ωL, from the rotating coordinate the ω-component almost sits still while the −ω-component is rotating with

2ω. We take rotating wave approximation, in which the latter is ignored. Now on the rotating coordinate, a static field

of B1/2 is applied in xy-plane and the angular momentum starts precession around this field with frequency

ω1 = gJ
eB1

4m
. (2.88)

This is the basic process of magnetic resonance.

Figure 2.13 illustrates the motion of angular momentum under a magnetic resonance, in which the end-point draws a

spiral. Note that under realistic conditions, the rotation around z-axis is much faster.
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Lecture note Magnetism (5)
11th May (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

In the last lecture, for magnetic resonance, we introduced the concept of ”observation from rotating coordinates” . The

time evolution of the angular momentum was treated in the Heisenberg picture, and the results were the same as that

obtained in the classical picture as in eq. (2.83). Then in the following, for simplicity, we consider classical equations of

motion for macroscopic magnetic momentM and introduce energy and phase relaxations phenomenologically[1].

dMz

dt
= γ[M ×H]z +

M0 −Mz

T1
, (2.89a)

dMx,y

dt
= γ[M ×H]x,y −

Mx,y

T2
. (2.89b)

T1, T2 are longitudinal and transverse relaxation times respectively, or energy and phase relaxation times. We here useH

instead of B to avoid confusion due to the existence of M though the use of B is not the problem at all. The definition

of gyromagnetic ratio should be changed from eq. (2.14) so as to have consistent dimension. We consider a static field

H0 along z and a rotating fieldH1/2 in xy-plane with an angular frequency (−)ω. The total field is

H = (
H1

2
cosωt,−H1

2
sinωt,H0). (2.90)

The magnetic moment derived from the angular momentum gets minus sign due to the sign of electric charge (eq. (1.80)).

Hence the rotation is clockwise for positive magnetic momentM . The equations of motion are thus,

dMx

dt
= γ[MyH0 +Mz

H1

2
sinωt]− Mx

T2
, (2.91a)

dMy

dt
= γ[Mz

H1

2
cosωt−MxH0]−

My

T2
, (2.91b)

dMz

dt
= γ[−MxH1 sinωt−My

H1

2
cosωt] +

M0 −Mz

T1
. (2.91c)

Fig. 2.14 The plot of eq. (2.96). The
real part (χ′(ω), blue line) and the imag-
inary part (χ′′(ω), red line) of the com-
plex susceptibility around a magnetic
resonance in the presence of relaxations.
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Fig. 2.15 Typical setup of electron
paramagnetic resonance (electron spin
resonance) experiment.The circle mark
with numbering indicates a circulator of
microwave. A microwave enters via ter-
minal 1 through 2 to the cavity with a
sample and the reflected wave propagates
through 3 to a diode. The detected sig-
nal is sent to a phase sensitive detector
(PSD). From [2].

We introduce the coordinate system (x′, y′, z′) (z′ = z) rotating around z-axis clockwise with angular frequency ω to

obtain

Mx′ =Mx cosωt−My sinωt, (2.92a)
My′ =Mx sinωt+My cosωt. (2.92b)

By using eq. (2.92), we rewrite eq. (2.91) into the kinetic equations of (Mx′ ,My′ ,Mz). Under the conditions:

dMx′

dt
=
dMy′

dt
= 0 (stationary state),

Mz ≃M0 = χ0H0 (oblique angle is small),
(2.93)

we obtain the following solutions.

Mx′ = χ0ω0T2
(ω0 − ω)T2H1/2

1 + (ω0 − ω)2T 2
2 + γ2(H1/2)2T1T2

(2.94a)

My′ = χ0ω0T2
H1/2

1 + (ω0 − ω)2T 2
2 + γ2(H1/2)2T1T2

. (2.94b)

ω0 is Larmor frequency ωL in eq. (2.86) with B = µ0H0.

The solution expresses a state with a comparatively large relaxation, thus the moment gets large friction in rotation

aroundH1. Hence the stationary state has a small angle to z-axis. From the rest system,

Mx = χ′(ω)H1 cosωt+ χ′′(ω)H1 sinωt, (2.95a)

My = −χ′(ω)H1 sinωt+ χ′′(ω)H1 cosωt. (2.95b)

In case γ2H2
1T1T2 ≪ 1 (large relaxation), the real and imaginary parts of the susceptibility are given by

χ′(ω) =
χ0ω0

2
T2

(ω0 − ω)T2
1 + (ω0 − ω)2T 2

2

, (2.96a)

χ′′(ω) =
χ0ω0

2
T2

1

1 + (ω0 − ω)2T 2
2

, (2.96b)

respectively, that is χ = χ′ − iχ′′. They are plotted against ω0 − ω in Fig. 2.14.

In the experiments, the specimens are placed in coils or cavities of resonators and the variations of resonance charac-

teristics are detected. An increase in energy dissipation in a resonator results in a widening and lowering of the resonance

peak *1. Figure 2.15 illustrates a typical setup of experiments. A microwave enters via terminal 1 through 2 to the cavity

with a sample and the reflected wave propagates through 3 to a three port connection for interference and then to a de-

tector (diode). The signal is then sent to a phase sensitive detector (PSD). Variation of resonant frequency in microwave

cavity is not so easy in most cases, so usually it is fixed. The frequency of input microwave is tuned to the resonance.

*1 This can be understood, e.g, by inserting a resistor into an LC resonator circuit in a model for calculation.
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Instead, the Larmor frequency ωL in eq. (2.86) of the sample is swept by the external magnetic field. In eq. (2.96), this

corresponds to the variation of ω0, and anyway the resonance curve is obtained. ω0 in the coefficients of eq. (2.96) gives

the first order slow variation while the resonance generally has a sharp lineshape and the distortion due to the coefficient

is ignorable. The imaginary part in eq. (2.96), χ′(ω) (eq. (2.96b)) represents the energy dissipation, which shows a peak

structure as the red line in Fig. 2.14.

Coils for the field modulation is drawn in Fig. 2.15. In many experiments, field modulation with frequencies around

100 kHz is applied for improvement of signal to noise ratio by taking PSD signal. Such signals appear as frequency-

derivative of eq. (2.96b).

2.9.2 Hyperfine structures in electron paramagnetic resonance

Owing to the large magnetic moment of electrons, electron spin resonance (ESR)or electron paramagnetic resonance

(EPR)has high sensitivities among various magnetic resonance. Atomic wavefunctions of electron have finite amplitudes

in the neighbors of nucleuses. When a nucleus has a finite spin, the exchange interaction (which will be introduced later)

between the nuclear spin I and the electron total angular momentum J brings about hyperfine interaction, which can

be expressed as
HHF = AI · J . (2.97)

A is a parameter of the strength in the interaction. Since the Hamiltonian in eq. (2.97) has the same form as the spin-orbit

interaction eqs. (2.38), (2.39), we consider the total angular momentum F = I+J , and write the simultaneous eigenstate

of H, F 2, Fz as |F,MF ⟩. Then just as eq. (2.41), the eigenvalue of HHF is given by

HHF|F,MF ⟩ = A
F 2 − I2 − J2

2
|F,MF ⟩ = A

F (F + 1)− I(I + 1)− J(J + 1)

2
|F,MF ⟩. (2.98)

The naming of “hyperfine” interaction comes from the further splitting of absorption levels, that already split by HSOI.

We do not have enough time to go into very important field and I recommend the readers who have strong interest in this

field to refer to the journal “Hyperfine Interactions” *2 .

2.9.3 Electron paramagnetic resonance in paramagnetic salts

EPRs are flourishing in the paramagnetic salts that have 3d transition metals or 4f lanthanoids as sources of magnetic

moments. They have comparatively high moment densities (depending on the impurity concentrations), and importantly

they are insulating that allows high frequency electromagnetic wave to go into the bulk in the absence of the skin effect.

Here we introduce an example of analyzing EPR data. Because EPR not only is sensitive but also has high resolution

bringing rich information on the localized electronic states. For the actual analysis, we thus need a higher order approx-

imation. In the case of 3d transition metals, we have discussed that the effect of orbital angular moment disappears due

to the strong effect of ligand fields. Conversely, in 4f lanthanoid, we have given the priority to the spin-orbit interaction.

However, these are the first order approximation and in the next step, we need to consider the SOI in the former, and the

crystal field splitting in the latter. We skip the hyperfine interaction, which is not important for nucleus without spin, but

consideration of the SOI on crystal field split levels is indispensable. For that we introduce the concept of effective spin

Hamiltonian, which is common in this field. The effective spin Hamiltonian has no orbital operator but gives the same

answer as the original one, if we restrict the problem to the effect of the SOI on the orbital levels that diagonalize the

crystal field Hamiltonian[3].

*2 https://www.springer.com/journal/10751

E05-3



Let {φ0, φ1, · · · , } be an orbital basis that diagonalizes Horb = H0 + HCF, and in ket format |n⟩o. We write

the energy eigenvalues as o⟨n|Horb|n′⟩o = Enδnn′ , the total spin of the basis as S, the spin wavefunction as

{ϕ−2S , ϕ−2S+1, · · · , ϕ2S}, ket-expression |m⟩s.
The perturbation Hamiltonian of the SOI and the Zeeman effect is

H′ = λL · S + µB(L+ geS) ·H, (2.99)

where ge is g-factor of electron. We write a wavefunction in an expanded form as

Ψ =
∑
nm

anmφnϕm =
∑
nm

anm|n⟩o|m⟩s. (2.100)

Then the eigenvalue equation of the total Hamiltonian is

HΨ = (Horb +H′)Ψ = EΨ. (2.101)

Here e.g., the orbital part is integrated out in o⟨l|H′|n⟩o but this still has the spin part as operator(s). Then we define a

spin Hamiltonian as a second-order perturbation formula, in which the orbital part is integrated out. If the unperturbed

ground state has degeneracy, we change the basis according to the perturbation theory, but there should be no confusion

in using the symbols like |n⟩o. We also restrict the transition matrix elements to the ones with the ground state |0⟩o. Thus

we obtain *3

H̃ = o⟨0|H′|0⟩o +
∑
n ̸=0

o⟨0|H′|n⟩o o⟨n|H′|0⟩o
E0 − En

. (2.102)

The introduction of ligand field quenches the orbital angular momentum. Namely the diagonal terms vanish

o|0|L|0⟩o = 0 to give
o⟨0|H′|0⟩o = geµBS ·H. (2.103)

In the same way, from
o⟨0|H′|n⟩o = o|0|L|n⟩o · (λS + µBH), (2.104)

we obtain
H̃ = geµBS ·H − (λS + µBH)Λ(λS + µBH), (2.105)

where Λ is a tensor given by

Λij =
∑
n ̸=0

o ⟨0|Li|n⟩o o ⟨n|Lj |0⟩o
En − E0

(i, j = x, y, z). (2.106)

These elements are not necessarily zero and the effect of spin-orbit interaction appears in the second order perturbation.

The same view is given by considering that the vanishing expectation value of orbital angular momentum comes from the

way of superposition and the cancellation does not work for off-diagonal elements. Equation (2.105) is expanded as

H̃ = µBSge(1− λΛ)H − λ2SΛS − µ2
BHΛH. (2.107)

The first term is written in the Zeeman form as

g̃ = ge(1− λΛ). (2.108)

This is an expansion of g-factor to a tensor form. Taking the principal axes of the tensor to x, y, z, we can write the

second term in the following form.

−λ2SΛS = D

[
S2
z − S(S + 1)

3

]
+ E(S2

x − S2
y), (2.109)

*3 You may not be satisfied with this treatment. In that case refer to a tutorial review [4]. A textbook in Japanese [5] gives rigorous treatment based
on the projection operator method.
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Fig. 2.16 Level splitting of
Cr3+(3d3, S=3/2) in weak crys-
tal field approximation and Zeeman
splitting by external field. E=0 is
assumed. Expected three ESR peak
signals for microwave frequency ν

corresponding to the red arrows are
illustrated.

where Λ determines coefficients D and E in proportion to λ2, called axial and orthorhombic coefficients respectively *4．
The third term does not cause level-splitting being a small effect of orbital magnetic moment induced by external field.

With dropping this term we reach

H̃ = µBSg̃H +D

[
S2
z − S(S + 1)

3

]
+ E(S2

x − S2
y). (2.110)

As a simple example, let g̃ be isotropic, E = 0, and S = 3/2. The spin states active for EPR are four states of

Sz = ±1/2, ±3/2. At H = 0 they degenerate into two with the distance of 2|D| from eq. (2.110). Figure 2.16 illustrates

such situation. The LS multiplet (3d)3 is split as in the figure in weak field approximation given in App. 5A. The ground

Fig. 2.17 EPR spectra of BaTiO3 doped with
1% Cr3+ and Fe3+. Blue and red lines are data
for magnetic field parallel and perpendicular to c-
axis respectively. The data are offset for clarity.
Peaks (look like dissipation because of derivative
taking in experiment) assigned as a, b, and c cor-
respond to a, b, and c in Fig. 2.16. The microwave
is in X-band (9-10 GHz), for which the value is
not given. The annotations in blue letters indicate
absorptions of S =3/2 state in Cr3+, and S=1
state in Cr dimers. Those in black letters indicate
absorptions of S = 5/2 in Fe3+. From [6].

*4 Repeated usage of D or E for different quantities inevitably causes confusion. These jargons are commonly used in many research papers
and sometimes we find such symbols appear in a single diagram or table with different meanings. In this field we are often forced to express
complicated concepts with simple and clear symbols, and at present we find no other better way. The readers are requested to judge from the
context.
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Ion Crystal g |D| (cm−1) |E| (cm−1)

Fe3+ BaTiO3 2.000 0.022 0.0079

another report 2.003 0.0987

Cr3+ BaTiO3 1.975 0.046 0.0055

h-BaTiO3 H1 gz= 1.9797 0.105

H1 gx,y= 1.9857

H2 gz= 1.9736 0.3220

H2 gx,y= 1.9756

Tab. 2.9 Values of g, |D|, |E| for Fe3+

and Cr3+ in BaTiO3 obtained from EPR
lines in Fig. 2.17.

state is A2 (S = 3/2). The external field split the two into four as in the figure. With microwave of frequency ν

corresponding to the red arrows in the figure, absorptions at positions a, b, and c assuming equal populations of levels at

high-enough temperatures.

Cr3+ (d3, 4F ) often takes the states close to the above ideality. Figure 2.17 shows an EPR experiment on Cr3+, in

which they doped 1% Fe3+ and Cr3+ into cubic state of BaTiO3. Three main peaks corresponding to a, b, and c in

Fig. 2.16 are observed[6]. The lineshape did not change with the direction of magnetic field indicating that g̃ is isotropic

though finite E is deduced from the relative peak positions. The data indicate doped Cr3+ is in tetragonal state. The

absorption peaks for S = 1 are from Cr dimers. The parameters are shown in Tab. 2.9.

BaTiO3 also has hexiagonal phase h-BaTiO3. Cr3+ impurities in h-BaTiO3 show very different EPR absorption lines.

Even this spectrum can be explained by the spin Hamiltonian of eq. (2.110) with an anisotropic g̃ and parameters shown

in the table[7].

2.9.4 Magnetic refrigeration

Magnetic refrigeration (MR) is a cooling method that can exert cooling ability in a wide temperature range by selecting

a magnetic moment system (working substance) from room temperature to ultra-low temperature. The MR with para-

magnetic salt was once main player in creating very low temperature till 1960’s, then in the range from 0.01 to 1 K the

position was replaced by the dilution refrigerators[8]. On the other hand, below few mK, once Pomeranchuk cooling

was used, but then the main shifted to nuclear demagnetization.Even in regions other than low temperatures, the MR

are now used for various purposes. Exploration of cooling substances spans not only paramagnetic materials but also

Fig. 2.18 Concept of magnetic refrigeration. Left: Illustration of temperature variation of entropy in a magnetic
system in zero and finite magnetic fields. The green arrow indicates first isothermal application of magnetic field.
The brown arrow shows adiabatic demagnetization. The right figure illustrates evolution of spin distribution in the
sequence of isothermal field application and adiabatic demagnetization in a simple two-level spin system.
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Fig. 2.19 Entropy in eq. (2.113) is expressed as a
function of α for J = 1/2, 3/2, 5/2.

those have phase transitions caused by interactions between spins and magnetic field. In recent years, regardless of its

pros and cons, the possibility of liquefying and transporting hydrogen has been explored, and development research using

magnetic refrigeration for cooling is also being conducted[9].

The principle of MR is simple as follows. A free spin system has random directions in spin and the maximum entropy

at zero field. With the isothermal magnetization, the spins are aligned along the magnetic field by the Zeeman effect. The

process reduces the entropy. Hence a heat is discharged to the environment. Then during the adiabatic demagnetization,

the entropy is kept constant. In the spin distribution, there is no increase in the population to excited states in spite of

decrease in the distance between the ground and the excited states. This is a low temperature state. With connecting this

coolant to a material to be cooled, a heat is transferred from this material to the coolant. The process is summarized in

Fig. 2.18.

Let S be the entropy of system composed of paramagnetic ions with total angular momentum J . At zero field, S =

kBNA ln(2J + 1) for 1 mol. Let us write the variation in S with isothermal magnetization up to B as ∆S(B, Ti). Then

with the final temperature Tf after the adiabatic demagnetization, ∆S(B, Ti) is given by

∆S(B, Ti) = S(0, Ti)− S(B, Ti) =

∫ Ti

Tf

Cm

T
dT, Cm = T

(
∂S

∂T

)
B=0

. (2.111)

Cm is the specific heat at zero field.

The magnetization M and the entropy S are calculated just as eq. (1.25) as

M = NAgµB

[
2J + 1

2
coth

(
2J + 1

2
α

)
− 1

2
coth

α

2

]
, α ≡ gµBB

kBT
, (2.112)

S

NAkB
=
α

2
coth

α

2
− 2J + 1

2
α coth

[
2J + 1

2
α

]
+ ln

[
sinh[(2J + 1)α/2]

sinhα/2

]
. (2.113)

Figure 2.19 shows the results for J =1/2, 3/2, 5/2. Since α ≈ 1.344B (B in T) for g = 2, T =1 K, the most of entropy

in a free spin system at T=1 K can be removed by cycling of B =2 T.

The spins in paramagnetic salts maintain a relatively large entropy even at low temperatures where other degrees of

freedom are quenched, such as lattice vibration, so they are used to obtain extremely low temperatures based on low

temperatures. However, e.g., if we choose a material with a phase transition induced by magnetic field, a large decrease

in entropy is expected even at high temperatures. This can be understood by a Maxwell relation(
∂S

∂B

)
T

=

(
∂M

∂T

)
B

, (2.114)
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Fig. 2.20 Schematic diagram
of active magnetic refrigera-
tion (AMR). From Akiko Saito,
Toshiba Review Vol.62, 78 (2007)
(in Japanese).

in which magnetic field variation of entropy is proportional to temperature derivative of magnetization.

Gd (Curie temperature 289 K) is frequently used as a cooling material, which can have a cooling power at around

room temperature.Further research and development of working materials and methods are underway with the aim of

putting them into practical use near room temperature. For the use of MR under continuous inflow of heat, a continuous

cooling method is active magnetic refrigeration (AMR) illustrated in Fig. 2.20. Magnetization/demagnetization is done

by rotation of tables, to which permanent magnets are fixed. The turn table scheme realizes successive on/off of magnetic

field and continuous flow of refrigerant realizes continuous cooling.

There are many proposals and exploration of cooling substance, e.g., nano-particles of ferromagnet that have giant

magnetic moments, materials with meta magnetic transitions (first order transition from Pauli paramagnet to intinerant

electron ferromagnet). If time permits we will revisit such transitions. They are already beginning to be used and some

commercial machines are appearing.
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Chapter 3
Magnetism of conduction electrons

Magnetic levitation of graphite

https://sci-toys.com/scitoys/scitoys/magnets/pyrolytic graphite.html

In the previous chapter, the focus has been on the paramagnetism of insulators including magnetic ions. The magnetism

that appears due to the phase transition caused by the interaction between electron spins will be investigated in the

following chapters. Here we have a short look on the magnetism of conduction electrons other than such cooperative

phenomena.

3.1 Pauli paramagnetism

3.1.1 Conduction electrons

Electronic states in crystals are described by energy bands separated by energy gaps on the energy axis due to discrete

spatial translational symmetry. In a system of free electrons, due to the fermionic constraint, there exists the Fermi level

determined by the number of particles and the band structure. The orbital states described by Bloch functions have

up-down spin degeneracy at zero field. In metals, the Fermi levels place inside energy bands (conduction bands), and

we measure the Fermi energy EF from the bottom of conduction band. At room temperatures EF ≫ kBT , and the

distribution is Fermi degenerated.

In many actual metals, the electronic structures are complicated due to, e.g., multiple bands in k-space, etc. However,

here, to explore the essential properties, we assume a single band with single band in the center of k-space with a

single effective mass. Further we ignore the mutual electron interactions, which must exist in real systems. Such a non-

interacting model well describes behavior of electrons in actual metals in most cases. This gets theoretical support from

Landau’s Fermi liquid theory[10, 11].

3.1.2 Magnetic response by electron spins

To see the response of electron spins, we write the Hamiltonian in second-quantized form as

H =
∑
kσ

Ekc
†
kσckσ +

1

2
gµBB

∑
kσ

σc†kσckσ. (3.1)
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E+dE

2 /p L

(a) (b)

Fig. 3.1 (a) Red points represent eq. (3.2)
in k-space. (b) To calculate the density of
states, we count the numbe of possible points
in the shell between E and E + dE.

c†kσ is a creation operator of an electron with wavenumber k, spin σ (σ = ±1 for ↑↓). The first term is the kinetic energy,

the second is the Zeeman energy.

We take periodic boundary condition in a cube with a side of L. kL = 2nπ (n: integer) along a side gives

k =
2π

L
(nx, ny, nz) (nx, ny, nz : integers). (3.2)

The discrete points in k-space are displayed in Fig. 3.1(a). The point density is (L/2π)3. Let ρ(E) the energy density

of states per volume and per spin. ρ depends on the spin direction in ferromagnets but is common in paramagnets with

time-reversal symmetry. In three dimensional free electron systems, Ek = ℏ2k2/2m with the effective mass m. The

wavenumbers which give a constant E for Ek are, in k-space, the points expressed in (3.2) and on the sphere with radius

kE =
√
2mE/ℏ. To obtain ρ(E), we count such points within the shell between E and E + dE and divide by dE as in

Fig. 3.1(b). Thus we obtain

ρ(E) =
1

L3

(
L

2π

)3

4πk2E
dkE
dE

=
1

π2ℏ3

√
mE

2
. (3.3)

The expectation value of the magnetic moment is given by

−gµB

2

∑
kσ

σ ⟨c†kσckσ⟩ =
gµB

2

∑
k

[
f

(
Ek − gµBB

2

)
− f

(
Ek +

gµBB

2

)]
, (3.4)

where
f(E) =

1

exp[(E − µ)/kBT ] + 1
(3.5)

is the Fermi distribution function with µ as the chemical potential. Then the magnetization M is given by

M =
gµB

2

∫ ∞

0

dEρ(E)

[
f

(
Ek − gµBB

2

)
− f

(
Ek +

gµBB

2

)]
. (3.6)

To determine µ, we write the electron concentration as Ne and use

Ne =

∫ ∞

0

dEρ(E)

[
f

(
Ek − gµBB

2

)
+ f

(
Ek +

gµBB

2

)]
. (3.7)

Thus determined µ is the Fermi energy EF described in Sec. 3.1.1.

We then obtain the spin magnetic susceptibility of conduction electrons at T = 0 as

Pauli paramagnetic susceptibility� �
χPauli =

(gµB

2

)2
[2ρ(EF)]. (3.8)� �

The spin susceptibility of Fermi-degenerated free electrons is constant and proportional to the density of states at the

Fermi level. This is called Pauli paramagnetism. This result holds for general complicated band structures as long as

the system can be treated as a Fermi liquid.
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3.2 Landau diamagnetism

As we have seen as the Bohr-van Leeuwen theorem, that a classical system of charged particles cannot have magnetism.

In real systems of charged particles, even without orbital quantization by local potentials or spins, the quantization causes

magnetism. Let us have a look on that.

3.2.1 Landau quantization

Landau quantization is universally observed in the systems of free charged particles under magnetic field. Particularly

in two-dimensional systems, it results in an extraordinary phenomenon called quantum Hall effect. Here we study its

effect on orbital magnetism. We directly treat the orbital motions and write the Hamiltonian as

H =
1

2m

∑
i

(pi + eA)2. (3.9)

We take Landau gauge A = (0, Bx, 0) to express the magnetic field B along z-axis. m is the electron rest mass.

Schrödinger equation for a single electron is

− ℏ2

2m

[
∂2

∂x2
+

∂2

∂z2
+

(
∂

∂y
− i

eB

ℏ
x

)2
]
ψ = Eψ. (3.10)

The coordinate operator in the lhs of (3.10) is only x. Thus we assume plane wave along y and z, namely ψ =

exp[i(kyy + kzz)]u(x). By substituting this to (3.10), we obtaine

− ℏ2

2m

[
d2u

dx2
+

(
ky −

eB

ℏ
x

)2

u

]
=

(
E − ℏ2k2z

2m

)
u. (3.11)

This is in the form of one-dimensional harmonic oscillator with the center coordinate

xc = ℏky/eB. (3.12)

The frequency of oscillator ωc is
mω2

c

2
=

(eB)2

2m
∴ ωc =

eB

m
. (3.13)

This is called cyclotron frequency. The energy eigenvalues are

E(n, kz) =
ℏ2k2z
2m

+

(
n+

1

2

)
ℏωc =

ℏ2k2z
2m

+ (2n+ 1)µBB (n = 0, 1, 2, · · · ). (3.14)

The motion along z-axis is free-electron like but in xy-plane the kinetic energy is discretely quantized. This is called

Landau quantization. The energy levels of harmonic oscillator indexed by n in (3.14) are called Landau levels.

It seems a bit strange that the solutions are strongly anisotropic although the system is uniform in xy-plane. This is

the result of selection of Landau gauge to solve the equation. The symmetrically localized solutions can be obtained, e.g.

by taking the symmetric gauge. These are degenerated for the same n, and with superpositions we can have eigenstates

with various distributions in xy-plane. In semi-classical approach, the Landau quantization can be viewed as the quanti-

zation of cyclotron motion through the spatial localization. However there still exists the freedom in taking the center of

cyclotron motion, that gives large degree of degeneracy and results in the eigenstates with various outlook.
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3.2.2 Orbital diamagnetism

We consider the normalization of eigenstates in the form of exp[i(kyy + kzz)]u(x) in the cube with side length L.

z-direction is the same as free electrons. From kz = (2π/L)nz (nz = 0,±1, · · · ), Ez = ℏ2k2z/2m, possible number of

kz for kinetic energy along z-direction less than Ez is 2L
√
2mEz/h. Also for y, because the form is plane wave, from

the periodic boundary condition

ky =
2π

L
ny (ny = 0,±1,±2, · · · ). (3.15)

On the other hand, ky relates with the center xc of harmonic oscillator along x-direction as (3.12), then when xc is in the

region [−L/2, L/2],

−L
2
≤ ℏ
eB

ky =
ℏ
eB

2π

L
ny ≤ L

2
∴ |ny| ≤

eBL2

4πℏ
.

This means the degree of degeneracy of a single Landau level in xy-plane is eBL2/h.

From the above, Ω(E), the number of states below the total energy E is

Ω(E) =
L3

h2

√
8meB

nmax∑
n=0

√
E − (2n+ 1)µBB, (3.16)

where

nmax = int

(
E − µBB

2

)
. (3.17)

Because the density of states is given by dΩ/dE, the Free energy of the system is

F = Nµ− 2kBT

∫
dΩ

dE
ln{1 + exp[−(E − µ)/kBT ]}dE, (3.18)

where we consider the spin degree of freedom 2. The integral part is partially integrated as follows.∫
dΩ

dE
ln{1 + exp[−(E − µ)/kBT ]}dE = −

∫
Ω(E)

(
− 1

kBT

)
exp[−(E − µ)/kBT ]

1 + exp[−(E − µ)/kBT ]
dE

=
1

kBT

∫ [∫
Ω(E)dE

]
d

dE

1

1 + exp[(E − µ)/kBT ]
dE

=
1

kBT

2
√
8m

3

eBL3

h2

∫ nmax∑
n=0

[E − (2n+ 1)µBB]3/2
d

dE

1

1 + exp[(E − µ)/kBT ]
dE.

From µB = eℏ/2m we can rewrite F as

F = Neµ−A

∫
ϕ(E)

d

dE

1

1 + exp[(E − µ)/kBT ]
dE, (3.19a)

where

A =
16L3

3π2ℏ3
m3/2(µBB)5/2, (3.19b)

ϕ(E) =

nmax∑
n=0

[
E

2µBB
−
(
n+

1

2

)]3/2
. (3.19c)

Taking the limit B → 0, it becomes
F = NeEF −Aϕ(EF). (3.20)

Here we use the asymptotic form for x≫ 1

nmax∑
n=0

[
x−

(
n+

1

2

)]3/2
≈ 2

5
x5/2 − 1

16
x1/2 + · · · . (3.21)
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This is obtained by applying the Euler–Maclaurin formula to F (y) = (x− y)3/2 as follows.

n0∑
n=0

F (n+ 1/2) ≈
∫ n0+1

0

dyF (y)− 1

24
[F ′(n0 + 1)− F ′(0)]

≈ 2

5
x5/2 − 1

16
x1/2.

Hence we obtain the asymptotic expansion

ϕ(E) =
2

5

(
E

2µBB

)5/2

+
1

16

(
E

2µBB

)1/2

+ · · · , (3.22)

which gives the free energy as

F = const. − L3

3
ρ(EF)(µBB)2 + · · · . (3.23)

Then we obtain the orbital diamagnetic susceptibility of free electrons as

Landau diamagnetic susceptibility� �
χLandau = −2

3
ρ(EF)µ

2
B. (3.24)� �

This is called Landau diamagnetism.

Taking the effective mass to the free electron rest mas, χLandau has the opposite sign to χPauli and the magnitude is

1/3. The total susceptibility is then

χ = χPauli + χLandau =
4

3
ρ(EF)µ

2
B. (3.25)

Appendix 5A: Weak crystal field approximation

In the lecture on 3d transition metal ions, we consider the approximation of a strong crystal field (ligand field), that

is, the one-electron states of 3d electron in the crystal field are considered first, and fill them with electrons to consider

multi-electron states. On the other hand, there is also a method that first assumes the LS multiplex term as we did in the

case of 4f lanthanoid ion, and then considers how this multi-electronic state splits in the crystal field using point group

theory. This is called weak crystal field approximation. In Fig. 5A.1, we show how the state dn splits in an octahedral

potential.

Fig. 5A.1 Split of dn state in an octahedral crystal potential in weak crystal field approximation.
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Lecture note Magnetism (6)
18th May (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

3.2.3 de Haas-van Alphen effect

When we derived Landau orbital diamagnetic susceptibility, we took the small field limit, in that the Landau level

splitting ℏωc is much smaller than EF and applied an asymptotic formula. When the magnetic field goes up to a com-

paratively large region *1, the Landau quantization gives a dramatic effect on the magnetization. That is the oscillation

of magnetization called the de Haas-van Alphen effect. In solids, the orbital diamagnetism strongly depends on the band

structure particularly around the Fermi surface. This is in strong contrast to the spin paramagnetism. Hence the relation

between the Pauli paramagnetism and the Landau diamagnetism shown in the previous subsection generally does not

hold in solids. This sensitivity of diamagnetism to the band structure is applied for exploration of band structures.

We rewrite eq. (3.19) as

F

ne
= µ− ℏωc

E
3/2
F

∫ ∞

0

dE
∑
n=0

[
E −

(
n+

1

2

)
ℏωc

]3/2(
− ∂f

∂E

)
, (3.26)

where ne = Ne/L
3. Also, the relation 2µBB = ℏωc is used to restore ℏωc in preparation for the change in the effective

mass. The summation over n should be taken for positive arguments in the paretheses (· · · ). On the other hand, the energy

derivative of Fermi function −∂f∂E approaches a delta function for T → 0. We guess, therefore, the magnetization

varies largely for the magnetic field where the Landau levels (n+1/2)ℏωc coincideEF. This oscillation of magnetization

against the magnetic field is called de Haas-van Alphen effect, dHvA effect.

Fig. 3.2 Density of states is plotted against energy
measured by Landau level spacing ℏωc.

The density of states of a one-dimensional system is given

by

Ek =
ℏ2k2

2m
, ρ1d(E) =

1

L

L

2π

(
ℏ2k
m

)−1

=
1

2πℏ

√
m

2E
.

By counting all these states, we get the total density of states

per spin as

ρ(E) =
1

2πℏ

√
m

2

∑
n=0

1√
(E − (n+ 1/2)ℏωc

. (3.27)

The summation over n should be taken forE > (n+1/2)ℏωc.

The density of states in (3.27) is divergent at E/ℏωc as shown

in Fig. 3.2. With increasing magnetic field, the position of

EF decreases due to the increase in ℏωc. When EF passes a

position of divergence, a rapid rearrangement in electron pop-

ulation occurs and the thermodynamic functions including the magnetization get rapid changes.

To see how one can get the information of the Fermi surface, refer to Appendix 6B. In the lecture, I will introduce an

example of experiment on Thallium-based high-Tc cuprate[1].

*1 In usual metals, ℏωc of “strong magnetic field” at an ordinary level does not go up to the level of Fermi energy. Hence even in this treatment,
we still use the condition ℏωc ≪ EF
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3.3 Orbital diamagnetism in graphene, graphite

What we have seen above is the magnetic response of the free electron system. The Pauli paramagnetism comes from

a small shift of the spin bands on the energy axis. Hence we can guess that the same formula is applicable for band

electrons in metals as long as the band has no anomaly at the Fermi level.

On the other hand, the orbital diamagnetism largely gets the effect of the band structure. Even in the low field limit,

which is the constraint for the Landau diamagnetism, the magnetic response of Bloch electrons is a difficult problem. The

theoretical frameworks from the viewpoint of linear response (Kubo formula)[2] and so forth have long been tried. The

field is still active and there have been reports on theoretical developments aiming at application to graphene from this

department[3, 4, 5]. Here I would like to introduce shortly a characteristic example of graphene and multilayer graphene

(thin graphite). In the beginning of the present chapter, I have introduced the fact that a graphite has a very large negative

orbital susceptibility. This is due to its characteristic band structure.

3.3.1 Orbital diamagnetism in graphene

We are familiar with graphite, e.g., as a material used in cores of pencils. It is said to be the most stable thermodynam-

ically as elementally crystal of carbon. It’s crystal structure is a stack of honeycomb planes as shown in Fig. 3.3. A single

atomic layer of the graphite is called graphene, which can be extracted by exfoliation, grown by CVD, or thermalization

of SiC.

Carbon atoms in a plane of graphene are strongly connected to the neighbors by covalent bonds with no buckling.

Hence graphene conduction electrons in pz orbitals can be treated as a complete two-dimensional orbital system. And

just at EF in pure graphenes, the linear dispersions form crossing points called Dirac points as shown in Appendix 6C.

Hence the band is massless and gapless. The orbital susceptibility of graphene has long been calculated. In the simplest

model[6], it is given by (in cgs unit)

χ(EF) = −gvgse
2

6π

(e
c

)2
δ(EF), (3.28)

where gv = 2 is the orbital degeneracy represented as K and K’ points in k-space, gs = 2 is the spin degeneracy, c is the

speed of light. Here EF is measured from the Dirac points, and the susceptibility in (3.28) is infinite when EF is at the

Dirac points, and is zero elsewhere.

This can be roughly interpreted as follows. Let an electron be in a cyclotron motion (thus not at Dirac points) under a

magnetic field B. When B changes, an electric field E is created as in eq. (1.28). In sec. 1.3.2, E accelerates the electron

resulting in the diamagnetism. In the present case, E gives an increase in the kinetic energy of the electron though that

does not enhance the velocity due to the linear dispersion. Hence the diamagnetic susceptibility is zero. However, when

Fig. 3.3 Illustration of graphite crystal structure. Hon-
eycomb sheets made of carbon covalent bonds are stacked
with an in-plane half lattice constant shift by layer. That is,
the same 2-dimensional lattice appears alternatively, which
structure is called AB-stacking. The sheet-to-sheet is con-
nected by the van der Waals coupling.
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the increase in the energy goes over a Dirac point, the velocity jumps, e.g., from −ve to +ve. The acceleration is infinite

giving the divergence of the susceptibility at the Dirac point.

In the lecture I would like to introduce an experiment, in which the authors claim they have observed such peculiar

orbital diamagnetic susceptibility of graphene.

3.3.2 Diamagnetic susceptibility of multi-layer graphene

The extraordinary diamagnetism that causes magnetic levitation, and the strong magneto-optical response have long

been known, but clear interpretations have not been given yet. It has been said that we need to consider a more practical

model, in which experimental details like inhomogeneity in the field[7].

In order to treat the space distribution of magnetic field, we consider the Fourier expansion in x: B(r) = B(q) cos qx,

of the field along z-axis onto 2-dimensional system in xy-plane. The current distribution in response to B(r) generally

has the form of jy(r) = jy(q) sin qx[9]. The q-component of magnetization m(r) is obtained from the two-dimensional

current asこの２次元電流から，磁化m(r)の q 成分は

jy = −c∂m
∂x

→ m(r) = m(q) cos qx m(q) = −jy(q)
cq

.

The susceptibility χ(q) is defined as m(q)/B(q). Then the response current of graphene to B(r) = B(q) cos qx is

jy(r) = −gvgse
2v

16ℏc
B(q) sin qx. (3.29)

The diamagnetic inductive current by this responding current is from Amperé’s law

Bind(r) = −αgB(r), αg =
2πgvgse

2v

16ℏc2
≈ 4× 10−5, (3.30)

which does not depend on the space distribution wavenumber q. Therefore any spatial distribution of magnetic field

causes the inductive magnetic field of −αg times the original field and the theorem of superposition leads to the total

inductive field of −αg times the total original field.

As an example, let us place a magnetic charge qm in the region z > 0. The graphene at z = 0 partially screens the field

to create the mirror charge −αqqm seen from z < 0, namely the field caused by the mirror charge is superposed to the

original field. The same for z > 0 and the field created by the mirror charge of αqqm in z < 0 region is overlapped to the

original field. The force, which the original magnetic charge in Fig. 3.4(a) gets from the graphene, is calculated from the

mirror charge in Fig. 3.4(c).

Let us consider the case a permanent magnet approaches a graphene. The magnet is a half-infinite cylinder with a

radius a having the edge magnetic charge density σm. When the edge reaches the graphene, d = 0, the force given to

the magnet per area is 2παgσ
2
m. In the case of Neodymium magnet, σm can be around 1 T. The force is then 0.16 dyne,

which is surprisingly large for a single atomic layer.

Fig. 3.4 Mirror magnetic charge
caused by a graphene. The
graphene is illustrated as the black
line at z = 0. (a) Magnetic field
by a magnetic charge. (b) In-
ducted field in z < 0, (c) and in
z > 0. From [8].
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Fig. 3.5 (a) Band structures and (b) orbital diamagnetic susceptibilities χ(EF) for single to four layer graphenes. Γ
is the width of energy fluctuation caused by impurities. From [8, 10].

In an ordinary 2-dimensional metal with an effective mass m∗, the susceptibility is a constant χ0 = −e2/(24πm∗c2)

in the long wavelength limit. Let us take an example of GaAs 2-dimensional electrons with m∗ = 0.067m0. Then the

ratio of repulsive force fc to that of graphene fg is fg/fc ≈ a/(0.01 nm). The radius is in cm order then the ratio goes

up to 9-digits.

Next we go to multi-layer graphenes, which can be seen as thin films of graphite[10]. They have the AB stacking as

in Fig. 3.3 with a weak interlayer coupling with the coupling energy of 0.4 eV. The structure with more layers than two,

can be treated as a repetition of the AB stack and the calculation can be reduced to the case of the bilayer graphene. A

single-layer graphene has gapless linear dispersion both at K and K’. Also in a bilayer graphene, a pair of bands has a

zero-gap with finite effective masses, the other pair has a gap due to the inter-layer coupling. AnN = 2M layer graphene

has M sets of bilayer-type bands. When N = 2M + 1, a set of single-layer bands is added.

Figure 3.5 shows such calculation of the band structures and the orbital diamagnetic susceptibilities for single to

four layer graphenes. The band with a Dirac point appears for an odd number of N giving a large contribution to the

diamagnetic susceptibility. For an even N , that contribution disappears. However the further increase in the number of

layers results in the increase in the diamagnetic susceptibility. This increase is thought to lead to the large diamagnetism

in graphite.
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Chapter 4
Interaction between Spins

Fighting tops

https://www.youtube.com/watch?v=2WaU7NDOHLQ

We have looked for “entities” which work as magnetic dipoles in materials and found in the quantum theory, that

the spins and the orbitals are working as magnetic dipoles namely magnetic moments in various forms. However the

macroscopic moments never appear without applying external magnetic field due to the randomness in the direction of

microscopic moments. In ferromagnetic materials the microscopic moments – let us call them spins – are aligned in the

same direction at zero magnetic field and at finite temperatures. This fact indicates that, as we have seen in the magnetic

refrigeration, the entropy is largely reduced and there should be a large decrease in the internal energy to compensate

that. In other words, there should be some interaction that decreases the total energy. Let us examine such possibilities.

4.1 Exchange interaction

In chapter 1, we introduced the classical interaction between two magnetic dipoles (spins) µ1, µ2, namely the moments

feel their magnetic field each other. Let r12 be the vector connecting the two moments, then the potential is given by *2

U(µ1,µ2, r12) =
µ0

4π

[
µ1 · µ2

r312
− 3

(r1 · r12)(r2 · r12)
r512

]
. (4.1)

It is easy to guess from the analogy of bar magnets that the stable configuration is that the two spins are in-line. However

this has the quantitative problem. Let µ1,2 be 5µB, r12 be 200 pm (typical lattice constant), then U is about 2 K. Hence

this interaction cannot explain real ferromagnets, which keep alignments of spins above room temperature quantitatively.

Based on the quantum theory, Heisenberg showed the possibility of far-stronger mutual interaction between spins, that

comes from a characteristic quantum effect[11]. It is now known through various researches that the direct exchange

interaction, which Heisenberg claimed to be the source of ferromagnetism, cannot explain real ferromagnetism in mate-

rials. However, the concept of exchange interaction is still used in the present understandings. Here let us introduce the

naive direct exchange interaction.

*2 In eq. (1.7), we used E-H formulation. Here we restore it to E-B formulation (i.e., SI unit system).
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4.1.1 Heitler-London approximation

In the ground state of Hydrogen molecule, two electrons with ↑ and ↓ are accommodated in the bonding orbital. Hence

the spin is zero and the orbital diamagnetism appears (molecular orbital approximation, MO). However, here we consider

the case that the inter-atom distance is larger and instead of considering bonding and anti-bonding orbitals, we consider

atomic orbitals φa, φb and the two-body wavefunction is composed with keeping the Fermi statistics (Heitler-London
approximation). In this approximation, the wavefunction of two electrons is written in the form of Slater determinant:

Ψ =
1√
N

∣∣∣∣φa(r1)χa(s1) φb(r1)χb(s1)
φa(r2)χa(s2) φb(r2)χb(s2)

∣∣∣∣ , (4.2)

where N is a normalization constant, (ri, si) are space and spin coordinates of i-th electron. si corresponds to z-

component of spin and can take one of two values ±1/2. We write the state of the spin pointing +z as α(s), in which

χ(s) is
χ(1/2) = 1, χ(−1/2) = 0. (4.3)

On the other hand, the −z pointing state β(s) is given as

χ(1/2) = 0, χ(−1/2) = 1. (4.4)

Pauli’s exclusion principle is fulfilled as

Ψ(r1, s1; r1, s1) = 0, Ψ(r1, s1; r2, s2) = −Ψ(r2, s2; r1, s1). (4.5)

Ψ takes argument of spin functions (χa, χb), and we can classify Ψ by the spin states (α, β) as {Ψαα,Ψαβ ,Ψβα,Ψββ}.

We take this as a basis and consider the expression of the interaction Hamiltonian Hint. As an example of the matrix

elements, ⟨αα|Hint|αα⟩ has two terms:

⟨αα|Hint|αα⟩ =
∑
s1,s2

∫
dr1dr2Ψ

∗
ααHintΨαα

=

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)Hintφa(r1)φb(r2)−

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)Hintφb(r1)φa(r2), (4.6)

where we take N = 2, ⟨φa|φb⟩ = 0. The second term in rhs of (4.6) is a matrix element between the states in which the

electrons are exchanged, and called exchange integral. This is essentially the same as J(m1,m2) in eq. (2.26). In Ch.2,

we derived Hund’s rule from this integral. The direct exchange interaction is essentially the same. We write the first and

the second term in rhs of eq. (4.6) as Kab and Jab. The 4×4 matrix elements are as follows.

αα αβ βα ββ

αα Kab − Jab 0 0 0

αβ 0 Kab −Jab 0

βα 0 −Jab Kab 0

ββ 0 0 0 Kab − Jab

(4.7)

This can be easily diagonalized and the eigenfunctions are

Ψαα

1√
2
(Ψαβ +Ψβα)

Ψββ

 (s1 + s2 = 1),
1√
2
(Ψαβ −Ψβα) (s1 + s2 = 0). (4.8)

The three states for s1 + s2 = 1 are spin triplet and the one for s1 + s2 = 0 is spin singlet. The eigenenergy of the

former is Kab − Jab and that of the latter is Kab − Jab. The spin states thus give the difference in the energy. When
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Jab is positive, the spin parallel state has a lower energy giving ferromagnetic interaction while the interaction is anti-

ferromagnetic when Jab is negative. The situation can be viewed as the exchange integral creates the interaction between

the spins and we call the interaction exchange interaction. Though Jab appears from the integration of orbital states, the

symmetry of the electronic states requires the interaction between spins.

Then we look for an effective Hamiltonian composed of spin operators just like the spin Hamiltonian introduced in

Ch.2 to analyze EPR experiments. First we introduce spin operators sa and sb, which operate on the states a and b

respectively (don’t get confused with s1, s2). Because they commute each other,

2sa · sb = (sa + sb)
2 − s2a − s2b = S2 − s2a − s2b . (4.9)

Here we use

⟨↑↑ |S2| ↑↑⟩ = S(S + 1) = 2, S2 |↑↓⟩ = 0, (4.10)

s2a = s2b =
1

2

(
1

2
+ 1

)
=

3

4
, (4.11)

and calculate the elements of operator (1 + 4sa · sb)/2 to obtain

(↑↑) → 2sa · sb = 2− 2× 3

4
=

1

2
=⇒ 1

2
(1 + 4sa · sb) = +1,

(↑↓) → 2sa · sb = 2− 2× 3

4
= −3

2
=⇒ 1

2
(1 + 4sa · sb) = −1.

Therefore we can adopt

Hint = Kab −
1

2
Jab(1 + 4sa · sb) (4.12)

as an effective Hamiltonian.

Then we expand the above concept to the interaction between general spins Si indexed by i and formally extract the

spin part to obtain Heisenberg Hamiltonian
Heisenberg Hamiltonian� �

H = −2
∑
⟨i,j⟩

JijSi · Sj . (4.13)

� �
This is an important basics for us to treat various phenomena originated from the interaction between spins.

For exchange integral, when the interaction is the Coulomb repulsion,

Jab =
e2

4πϵ0

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)

1

r12
φb(r1)φa(r2) (4.14)

is always positive, which can be proven as eq. (2.26). And Jab can go up to 0.1 eV depending on the way of estimation,

hence might explain the room temperature ferromagnetism. In the above we see that the Coulomb repulsion causes a

strong ferromagnetic interaction between spins in Heitler-London approximation. This is called direct exchange in-
teraction. However, here we must notice that if we adopt the molecular orbital method, the interaction in the form of

Heisenberg Hamiltonian can be derived with negative J , that is the anti-ferromagnetic interaction. This can be more

easily understood from the general theory that in a general Schrödinger equation, the ground state has no degeneracy and

the wavefunction has no node[12]. Hence the orbital part of wavefunction is symmetric resulting in the antisymmetric

spin part.
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4.1.2 Exchange interaction in the presence of tunneling

As an improvement of Heitler-London approximation, we consider the electronic state, in which two electrons are

accommodated in a single atom as a possible configuration. In this treatment, a small amplitude of wavefunction

Ψ′ =
1√
N ′

∣∣∣∣φa(r1)χa(s1) φa(r1)χ
′
a(s1)

φa(r2)χa(s2) φa(r2)χ
′
a(s2)

∣∣∣∣ (4.15)

is overlapped to the one in (4.2). The transition of Ψ → Ψ′ means tunneling of an electron φbχb → φaχ
′
a. Hence for

such a superposition to occur, ⟨Ψ|H |Ψ′⟩ ̸= 0. For that, due to Pauli’s exclusion principle, χa and χb should be the spins

opposite to each other. When sa and sb are anti-parallel, this hopping process leads to the energy decrease

Wab = − 1

∆E
| ⟨Ψ′|H |Ψ⟩ |2 (4.16)

in the second order perturbation. For parallel spins, there is no such energy decrease. We thus write this part formally

1

2
(1− 4sa · sb)Wab, (4.17)

which is in the same form as eq. (4.12). In summary we reach

H ′
int =

1

2
(−Jab +Wab)− 2(Jab +Wab)sa · sb. (4.18)

Wab is negative and when Jab +Wab < 0 the total interaction becomes antiferromagnetic. We have confirmed Heitler-

London approximation overestimates the ferromagnetic interaction.

Appendix 6A: Aharonov-Bohm phase and degeneracy of Landau levels

I would like to introduce the way to memorize the degree of Landau level

degeneracy (the number of states per unit area). Of course this is just an

example, and you can find your own way. In the existence of magnetic field,

the momentum ℏk is modified to

ℏk → ℏk + eA = ℏ
(
k +

e

ℏ
A
)
.

This gives the phase evolution θ when a plane wave exp[ik · r] propagates

in space from a point P1 to P2 as

θ12 =

∫ P2

P1

(
k +

e

ℏ
A
)
· dr(I) =

∫ P2

P1

k · dr(I) +
e

ℏ

∫ P2

P1

A · dr(I) = θ
(k)
12(I) + θ

(A)
12(I). (6A.1)

The suffix I means the path signed as I in the figure. The first term in the rhs is the ordinary kinetic phase and the second

term expresses the effect of magnetic field. The latter is called Aharonov-Bohm (AB) phase.

In path II, the kinetic phase differs from that in path I by the difference in the length. The AB phase in path II is also

different from that in I. This can be understood by considering the route going back from P2 to P1 on path II. That is

∆θAB =
e

ℏ

[∫ P2

P1

A · dr(I) +
∫ P2

P1

A · dr(II)

]
=
e

ℏ

∮
A · dr =

e

ℏ

∫
S

rotAdσ = 2π
Φ

ϕ0
, ϕ0 =

h

e
. (6A.2)

Here ϕ0 is called flux quantum, which has the form of the ratio of h to e. This is an easy-to-memorize form. A physical

meaning is that 2π of AB phase is given to an electron going around this amount of flux, and this is the condition of

quantization in the electron loop.
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The number of states in the magnetic field of magnetic flux density B in two-dimensional system is given by the flux

per unit area (i.e. B) divided by the flux quantum. That is,

N(B) =
B

h/e
=
eB

h
=
eBm

hm
=
m

h2
(hωc) =

m

2πℏ2
(ℏωc). (6A.3)

Hence we can see the number of states per Landau level eB/h and the two-dimensional density of states m/2πℏ2 in a

very clear way.

Appendix 6B: Contribution of k-slab to the dHvA effect

There are various equivalent way to explain the principle of the dHvA effect. In the explanation from the density of

states as in the text, it is rather difficult to see the effect contains the information of k-space. Hence here we explain

the effect in the way given in Ref. [13]. Here we consider free electrons with an isotropic effective mass for simplicity.

Electrons are free in z-direction (field direction) and Landau-quantized in xy plane as in eq. (3.14). Hence we define

quasi-Fermi energy as the kinetic energy in xy-plane for a fixed kz , that is

E′
F ≡ EF − ℏ2k2z

2m
. (6B.1)

And we treat the system as a set of two-dimensional electrons with the Fermi energy of E′
F under Landau quantization.

In k-space, each kz is assigned to such a virtual two-dimensional system.

Then we consider a slab with thickness δkz in k-space corresponding to a kz . We call the region k-slab. The density

of states in a k-slab “per magnetic flux density” ξ is given by

ξ =
1

L

L

2π
δkz

eB

h

1

B
=

e

4π2ℏ
δkz

(
=
δkz
2π

1

ϕ0

)
, (6B.2)

where we also use things mentioned in App. 6A. I have put a comment on this quantity as a formula in the last parentheses.

ϕ0 ≡ h/e is flux quantum introduced in App. 6A. At absolute zero, the Landau levels corresponding to the integer q

which satisfies (q + 1/2)ℏωc ≤ E′
F are occupied. Let us write the maximum integer in q as qmax and the number of

occupied Landau levels is qmax + 1. Then the number of electrons belong to this k-slab is

ne(kz) = (qmax + 1)ξB (6B.3)

per unit area in the real space.

With increasing B, ne increases linearly in accordance with (6B.3), and when B exceeds the value determined by the

condition

qmax +
1

2
=

E′
F

ℏωc
=
mE′

F

ℏe
1

B
, (6B.4)

qmax decreases by one and ne discretely decreases. Namely, ne(kz) oscillates periodically against 1/B and the amplitude

(the amount of dropping at the condition (6B.4)) increases withB as ξB though the center of the oscillation is the electron

concentration of virtual 2-dimensional electrons (let us write it ne0) in the k-slab before the application of magnetic field.

The behavior is drawn in Fig. 6B.1. As shown in the figure, the electronic states of number eB/h at zero field are assigned

to a Landau level (App. 6A). In the oscillation, at the magnetic field ne(B) = ne0, where the electron concentration hits

the center, (qmax + 1)(eB/h) should be equal to ne0. We write qmax + 1 at such points as ν, the value of magnetic field

as Bν . Then they are in the relation

Bν =
1

ξ

ne0
ν

=
2π

δkz
ϕ0
ne0
ν

(ν = 1, 2, · · · ). (6B.5)
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Fig. 6B.1 Illustration of relations between the Landau level distance ℏωc, the two dimensional electron concentration
ne, and jumping at which qmax changes. The lower shows corresponding energy diagrams (occupied energy levels in
zero field is in orange color.

And the boundaries between different values of qmax are

Bν± =
mE′

F

ℏe
1

ν ± 1/2
. (6B.6)

The energy Uν0 of electrons in the k-slab corresponding to this Bν is expressed as

Uν0 = ξBνℏωc

ν−1∑
q=0

(
q +

1

2

)
+ ne

ℏ2k2z
2m

=
ξBνℏωcν

2
ν2 + ne

ℏ2k2z
2m

=
ℏωcν

2ξBν
n2e0 +

ℏ2k2z
2m

ne0 =
h2

2mδkz
n2e0 +

ℏ2k2z
2m

ne0. (6B.7)

This does not depend on the magnetic field and is the same as the sum of energies in k-slabs below EF. In the region in

the magnetic field [Bν+, Bν−], this expression holds with replacing ne0 with ne. We thus consider the quantity

U =
h2

2mδkz
n2e + ne

ℏ2k2z
2m

+ (ne0 − ne)E
′
F. (6B.8)

In the rhs, the first two terms are the extension of (6B.7) and the energy of electrons in k-slab. In the third term, the

energies coming in/out the k-slab at E′
F. This term keeps U continuous even at the magnetic field of eq. (6B.6), where

ne gets a gap. Now we write E′
F as

E′
F = ℏωcνν = ℏ

eBν

m

2π

δkz

h

e

ne0
Bν

=
h2

m

ne0
δkz

. (6B.9)

Then the variation in U is

δU = U − Uν0 =
h2

2mδkz
(n2e − n2e0) + E′

F(ne0 − ne) =
h2

2mδkz
(ne − ne0)

2, (6B.10)

which is more than or equal to zero.

The contribution of electrons in this k-slab to the magnetization is

δM = −∂U
∂B

= − h2

mδkz
(ne − ne0)

dne

dB
. (6B.11)

dne/dB is from eq. (6B.3)
dne

dB
= νξ ≃ E′

F

ℏωc
ξ. (6B.12)
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Then the contribution is obtained as

δM ≃ −E
′
F

B
(ne − ne0). (6B.13)

While B in the denominator increases linearly, ne − ne0 strongly oscillates resulting in the oscillation of magnetic

susceptibility.

In order to see the behavior of the total magnetization, the contribution in eq. (6B.13) should be summed up over kz .

For that, first δM is expanded in a Fourier series against the axis of B−1 as follows.

δM = δkz

∞∑
p=1

Ap sin px, x = 2π
E′

F

ℏωc
. (6B.14)

We apply a mathematical identity for −π < x < π

x = e

∞∑
n=1

(−1)n−1

n
sinnx, (6B.15)

and rewrite
δM = − 1

2π
ξE′

Fx =
1

π
E′

F

∑
p

(−1)p
sin px

p
. (6B.16)

Therefore the expansion coefficients are obtained as

Ap =
1

pπ
E′

F(−1)p
ξ

δkz
= (−1)p

eE′
F

4pπ3
. (6B.17)

From the above, the summation over kz can be written in the form of integration:

M =
e

4π3

∑
p

(−1)p

p

∫ kF

−kF

dkz · E′
F sin

[
pπ

ℏωc

(
EF − ℏ2k2z

2m

)]
. (6B.18)

Here, though the magnetic field is comparatively strong, we assume the condition ℏωc ≪ EF still holds. Then in the

integrand in eq. (6B.18), E′
F varies in the section [−kF, kF] as a parabola with the maximum at kz = 0. On the other

hand, the sine function rapidly oscillates against kz . As a result the integration cancels out other than the region around

kz = 0, where dE′
F/dkz ∼ 0. HenceE′

F outside the sine function can be replaced withEF. Further, applying the identity∫ ∞

0

cos
π

2
x2dx =

∫ ∞

0

sin
π

2
x2dx =

1

2
, (6B.19)

the integration in (6B.18) is calculated to be

EF

(
ℏωcm

2p

)1/2

sin

(
2πpEF

ℏωc
− π

4

)
. (6B.20)

Then we can write down the magnetization as

M =
EFe

3/2(ℏB)1/2

4π3

∑
p

(−1)p

p3/2
sin

(
p
2πEF

ℏωc
− π

4

)
. (6B.21)

The above discussion is for an ideal metal with a spherical Fermi surface. But this can be extended to general Fermi

surfaces. Even in the general case, the dHvA oscillation is dominated by the region where dE′
F/kz ≈ 0. Hence the

magnetic field angle dependence of the dHvA oscillation (amplitude, period, etc.) gives detailed information on the

Fermi surface.

E06-11



Appendix 6C: Band structure of graphene

One of the ways to form a two dimensional electron system is to utilize two-dimensional crystals (two-dimensional ma-

terials). Graphene is the representative two-dimensional material. Graphene provides a good expample for the application

of tight-binding calculation and we would like to see how the things go in a practical (though simplest) example.

The crystal structure of single-layer graphene is show in Fig. 6C.1(a), which is a simple honeycomb structure of carbon

atoms. The diamond drawn in the figure is the unit cell and the primitive lattice vectors and the primitive reciprocal lattice

vectors are written as

a1 =

(√
3a/2
a/2

)
, a2 =

(
0
a

)
, b1 =

(
4π/

√
3a

0

)
, b2 =

(
−2π/

√
3a

2π/a

)
. (6C.1)

Henceforce we calculate the electronic states of graphene under simplest approximation. Because the approximation

is rough, quantitative comparison with experiments is difficult. However, the results help understanding properties of

graphene, e.g. the Dirac points appear at the Fermi level in pure graphene. Carbon belongs to group-IV and the outmost

electrons exist in the orbitals 2s, 2px, 2py , 2pz . It is easy to see that these orbitals form sp2-hybrids and the electronic

states separate to σ-electrons (sp2) and π-electrons (pz). σ-electrons form the honeycome through covalent bonding and

the energy bands lie at low energy region. Then the electronic states placed around the Fermi level are π-electrons. Hence

we consider Schrödinger equation on π-electrons on the honeycomb lattice.

We write the equation as
ψ = H ψ, (6C.2)

and as Fig. 6C.1(a), we separate the lattice sites to A-sites and B-sites on different sub-lattices. We consider a kind of

A

B x

y

kx

ky

a1

a2

b1

b2

(a) (b)

G

K

K

M

Fig. 6C.1 (a) Two dimensional cryatal structure of graphene. Carbon atoms form a honeycomb lattice. It can be also
viewed as an overlap of two face-centered square lattices placed at A and B positions. (b) Reciprocal lattice of (a).
b1, b2 are the primitive reciprocal lattice vector corresponding to a1, a2. The centtral point of the first Brillouin zone
is Γ-point and as other points with high symmetries, K-point and M-point are indicated in the figure.
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Fig. 6C.2 Vectors indicating three directional couplings between near-
est neighbor carbon atoms.

tight-binding approximation between the two-sites. That is

ψ = ζAψA + ζBψB, (6C.3)

ψA =
∑
j∈A

exp(ikrj)ϕ(r − rj), (6C.4a)

ψB =
∑
j∈B

exp(ikrj)ϕ(r − rj), (6C.4b)

where ϕ(r) is atomic wavefunction of π-electrons, rj are the lattice points. Here we write the matrix elements of the

Hamiltonian between the each sub-lattice wavefunctions as

HAA = ⟨ψA|H |ψA⟩, HBB = ⟨ψB|H |ψB⟩, HAB = H∗
BA = ⟨ψA|H |ψB⟩. (6C.5)

And the number of atoms in the system is 2N , that is

⟨ψA|ψA⟩ = ⟨ψB|ψB⟩ = N. (6C.6)

Let ⟨ψA|ψB⟩ be zero. We substitute (6C.3) to (6C.2). The condition of have non-trivial (ζA, ζB) givies the cecular

equation ∣∣∣∣HAA −NE HAB

HBA HBB −NE

∣∣∣∣ = 0. (6C.7)

Lastly
E = (2N)−1

(
HAA +HBB ±

√
(HAA −HBB)2 + 4|HAB|2

)
≡ hAA ± |hAB|, (6C.8)

where we have used HAA = HBB, which comes from the symmetry, and we use lower cases for the quantities per atom

with being devided by (2N)−1.

HAB =
∑

l∈A,j∈B

exp [ik(rj − rl)] ⟨ϕ(r − rl)|H |ϕ(r − rj)⟩r. (6C.9)

We further approximate that the off-diagonal matrix elements of H just exist between the nearest neighbor sites. For the

calculation we take the atom indicated as A in Fig. 6C.1(a) as the center atom. The vectors from A to the nearest neighbor

atoms 1, 2, 3 are di(i = 1, 2, 3) respectively. As is apparent from the figure,

k · d1 =
kxa√
3
, k · d2 =

(
− kx

2
√
3
+
ky
2

)
a, k · d3 =

(
− kx

2
√
3
− ky

2

)
a, (6C.10)

where a = |a1| = |a2|. The terms ⟨ϕ(r− rl)|H |ϕ(r− rj)⟩r should be equal due to the symmetry and we write it as ξ.

Consequently the residual resonant integral from the crystal structure is the repetition of the above and

hAB =

 3∑
j=1

exp(ik · dj)

 ξ. (6C.11)
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E

kx

ky

Fig. 6C.3 Left: surface plot of eq.(6C.12). The figure shows the
appearance of Dirac points, where the vertices of energy corns crash
at the K-point. Upper: Schematical drawing of a Dirac point.

Substituting eqs.(6C.10), (6C.11) into eq.(6C.8), we get the following expressio for the energy.

E = hAA ± ξ

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (6C.12)

The second term is the perturbation from the nearest neighbor resonant integral, which vanishes at K-point in the recip-

rocal space

(kx, ky) =

(
0,±4π

3a

)
,

(
2π√
3a
,±2π

3a

)
,

(
− 2π√

3a
,±2π

3a

)
. (6C.13)

We write ky = 4π/3a and around kx = 0(one of the K-points), eq. (6C.12) can be approximated as

E

(
kx,

4π

3a

)
≈ hAA +

√
3ξa

2
|kx|. (6C.14)

Namely, at the K-point the upper band has a lower pointed shape. Because the same for the lower band and as a result,

at the K-point, as shown in Fig. 6C.3, the band structure called Dirac point, which has no energy gap, no effective mass,

appears.

Equation (6C.12) is for a very simplified model. Just like a cosine band appeared in the tight-binding model in one-

dimension, the model itself does not have realistic meaning. However the model tells that the reason why we have the

Dirac points at K-points is that the exsittence of three equivalent resonant integrals in eq. (6C.11). The inference holds for

the band calculation with any level precision since it is based on the symmetry. That meas the K-points in real graphene

are really Dirac points.
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Lecture note Magnetism (7)
25th May (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Lat week, we show that a ferromagnetic exchange interaction appears in Heitler-London approximation though a

hopping of electrons between the sites cases anti-ferromagnetic exchange interaction. The exchange interaction due

to the transfer of electrons is a kind of kinetic exchange interaction, which often gives anti-ferromagnetic interaction

though not always *1. Also, we found that the spin-spin interaction is always anti-ferromagnetic in a pure two-atom-model
*2. From the numerical simulations so far, they have found no realistic example in which the direct exchange interaction

causes ferromagnetism. However we extracted the concept of direct exchange interaction from the HL approximation

and inferred that some “exchange interaction” is working in any magnetic materials. We thus introduced Heisenberg

Hamiltonian (Heisenberg model). You may wonder why this kind of change in the related freedoms is possible. This can

be understood in the context of quantum entanglement as stated in Appendix 7A. In the appendix, it is shown that the

quantum entanglement is not a pure mathematical notion but a real physical phenomenon, useful in the experiment.

4.1.3 Hubbard model

The mechanism of anti-ferromagnetic exchange interaction in electron transfer can also be seen in the following simple

model. Let us consider two sites (i, j) and write the electronic states as |n;m⟩ (“;” separates the parameters of two states).

Electron hopping between the two sites is taken into account and the hopping operator is written as t(a†iσajσ +h.c.). Due

to the Pauli’s exclusion principle, two electrons occupying a single site are limited to spin up-down pair. Such states have

higher energy due to the on-site repulsion and can exist as intermediate states during hopping process. We write this

increase in the energy in the intermediate states as U , namely

U = E(|0;σ,−σ⟩)− E(|σ;−σ⟩). (4.19)

The hopping process, however decreases the energy in the second perturbation and the amplitude of decrease is about

|t|2/U . The above simple model is called Hubbard model, in which the hopping amplitude with the nearest neighbor

is t and the electron gets on-site repulsion U for double occupation. Here we introduce the simplest two-site model but

extended ones are one of the most important model in exploration of magnetism. With the notation niσ = a†iσaiσ , the

model can be expressed in Hamiltonian form as

H = t
∑
σ=↑↓

(a†1σa2σ + a†2σa1σ) + U(n1↑n1↓ + n2↑n2↓). (4.20)

We limit the electron number as ne = 2 then the available states are

|↑↓; 0⟩ , |0; ↑↓⟩ , |↑; ↑⟩ , 1√
2
(|↑; ↓⟩+ |↓; ↑⟩), |↓; ↓⟩ , 1√

2
(|↑; ↓⟩ − |↓; ↑⟩). (4.21)

The operators of spin at each site, total spin, and total electron number, are defined as

si =
∑
σσ′

a†iσ

(σ
2

)
σσ′

aiσ′ , S =
∑
i=1,2

si, N =
∑
i,σ

niσ, (4.22)

*1 Superexchange interaction, which we will see in the next section, is also a kind of kinetic exchange interaction. But sometimes it gives ferro-
magnetic interaction[1, 2].

*2 Then you might ask how about the Hund’s rule? This is a natural question long been addressed. Actually many textbooks on the physical
chemistry say that “Hund’s rule is empirical rules that cannot be mathematically proved.” In large scale numerical calculations, it turned out that
the disturbance of nuclear-potential screening by core electrons has larger effect than the Pauli exclusion principle. This is an example and there
are various new findings[3, 4]. Anyway we need more study in this field.
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No. S Sz E Eigenstate

1 0 0 U
1√
2
(|↑↓; 0⟩ − |0; ↑↓⟩)

2
(
1 +

1

a

)
U

2

√
1 + a

2
(|↑↓; 0⟩+ |0; ↑↓⟩) +

√
1− a

2
|0, 0⟩

3
(
1− 1

a

)
U

2

√
1 + a

2
|0, 0⟩ −

√
1− a

2
(|↑↓; 0⟩+ |0; ↑↓⟩)

4 1 +1 0 |1,+1⟩
5 0 |1, 0⟩
6 −1 |1,−1⟩

Tab. 4.1 Eigenenergies of two-
electron, two-site Hubbard model
eq. (4.20). a is defined as a−2 =

1 + (4t/U)2.

which commute with H and S2, Sz , N can be good quantum numbers. For N = 2, we can compose 6 eigenstates

common for these operators from (4.21). The eigenergies of them are listed in Tab. 4.1 with definition of a−2 = 1 +

(4t/U)2. When the Coulomb repulsion is sufficiently larger than the hopping effect t/U ≪ 1, from this table and from

calculation similar to that for the direct exchange interaction, the effective spin Hamiltonian is obtained as

Heff = −J
(
s1 · s2 −

1

4

)
, J = −4t2

U
, (4.23)

which again gives an anti-ferromagnetic exchange interaction.

4.2 Superexchange interaction

There are many magnetic materials, in which negative ions (anions) with closed shell electronic structures exists be-

tween magnetic positive ions. Figure 4.1(a) shows the crystal structure of perovskite-type KFeF3, which is an anti-

ferromagnet with the Néel temperature (explained later) 173 K. In the structure, F−1’s exist between Fe2+’s The inter-

action mechanism between such magnetic ions was proposed long time ago as superexchange interaction. As named,

it is a kind of exchange interaction. In the starting point, the negative ions do not have spin and the exchange effect first

causes spins in negative ions and then the created spins have interactions with magnetic ions. Hence the effect should

be second order perturbation. Figure 4.1(b) shows the model, in which a part of electrons shift from a negative ion to

neighboring magnetic ions. The transfer results in the appearance of a little spin on the negative ion that has the exchange

interactions with neighboring magnetic ions.

Fig. 4.1 (a) Cristal structure of anti-ferromagnet KFeF4 in perovskite structure. (b) Schematic diagram of superex-
change interaction.
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The unperturbed state of negative ions is symmetric for spins, but the hopping to the magnetic ions is asymmetric

due to the asymmetry of the magnetic ions. Hence a spin created on a negative ion reflects the direction of spin on

the magnetic ion. The exchange interaction of this created spin with another magnetic ion thus results in the effective

exchange interaction between magnetic ions. The above exchange interaction mechanism mediated by non-magnetic

negative ions is called superexchange interaction[5].

4.2.1 Conditional change in sign and amplitude

Though the superexchange is a kind of kinetic exchange interaction, it is not necessarily anti-ferromagnetic because

it is a three site problem*3. The sign and the amplitude of the superexchange interaction depend on the conditions

such as coupling angle of magnetic ion-negative ion-magnetic ion. The dependence was half-empirically summarized as

Goodenough-Kanamori’s rules.

Consider the combination of d-orbital (i, j), and write the interaction as

−
∑
i,j

2Jeff(i, j)si · sj . (4.24)

For simplicity, we assume Hund’s rule on each magnetic ion, namely the total spin S1 =
∑

i s1i，S2 =
∑

j s2j is

maximized. Let n be the number of electrons in the open shell of each ion, then si = S/n. The interaction is written

again as in the form
−2J12S1 · S2. (4.25)

The half empirical rules on the amplitude and the sign are called Goodenough-Kanamori’s rules[6, 7]. Here I just quote

what Kanamori himself describe: (after telling the difficulty in the calculation of J12) “However, about the amplitude

and the sign of J12, rather vague rules exist, which can be theoretically explained and show good agreements with

experiments[8].”

For example, when two magnetic ions and an anion line up in a straight line, the interaction between magnetic ions

of the same species is anti-ferromagnetic (J < 0). When one of d orbitals has electrons more than 5 and less than 5

Fig. 4.2 Examples of Goodenough-Kanamori’s rules. (a) Magnetic ions and an anion line up in a straight line (180◦).
(b) Bonding bends at an anion by 90◦. +. − represent the signs of orbitals (phases). The line diagrams below the
orbital drawings show electron hoppings between the orbitals. ◦’s and ×’s represent possibilities of hoppings. From
[8].

*3 Conversely, the two involved interaction is anti-ferromagnetic, the total interaction should be ferromagnetic.
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in the other, the interaction is ferromagnetic (J > 0). When the arrangement has a 90◦ bending at an anion as in (b),

the tendency is inverse to (a), namely the interaction is ferromagnetic for the same species magnetic ions but the case of

d5. However there are various cases and exceptions. For details, refer to the original paper by Kanamori[7], or review

articles[5].

4.3 s-d exchange interaction

In the superexchange interaction, we have considered insulating crystals without conduction electrons. Here on the

contrary, consider the case of metallic crystals with many conduction electrons which interact with the spins on magnetic

ions. Such situation occurs, e.g., small amount of magnetic ions like Fe or Mn are doped as impurities into non-magnetic

metals.

4.3.1 Conduction electrons around local moments

Let S be the total spin operator of a magnetic impurity, s be the spin operators of conduction electrons. We write the

matrix element of electron scattering by the local moment as

Hscatt = −2Jkk′S · s. (4.26)

In the long wavelength approximation (2π/k is longer than the radius of scattering center), Jkk′ = J (const.). In other

words, the interaction is δ-function (point-contact) type and with taking the position of impurity at the origin r = 0 the

above is approximated by
Hscatt = −2Jδ(r)S · s. (4.27)

We represent the conduction electrons as s, localized electrons at magnetic ion as d and call the interaction s-d exchange
interaction. I hope we can have time to go into a many body effect caused by this interaction later. From the conduction

electrons, the interaction in eq. (4.27) is equivalent to the δ-function like effective magnetic field 2JSδ(r)/(geµB) at the

origin with the direction of S. The Fourier transform of the field is

Beff(r) =
2Jδ(r)

geµB
· S =

∫
dq

(2π)3
√
V
Bqe

iq·r. (4.28)

We write the magnetization of conduction electrons as m(r) and the susceptibility χ(q) in the wavenumber space is

defined by

m(r) =

∫
χ(q)Bq

dq

(2π)3
√
V
. (4.29)

For simplicity we consider the free electron model. We treat eq. (4.27) as a perturbation to the plane wave to obtain

φk(r) =
eik·r√
V

± JS

V

∫
eik·r

E(k + q)− E(k)

dq

(2π)3
√
V
, (4.30)

where the double sign ± reflects the sign of the inner product of S and s. Then we can write

mk(r) =
geµB

2
(φ∗

k−φk− − φ∗
k+φk+) = −geµBJS

V 2

∫ (
1

E(k + q)− E(k)
+

1

E(k − q)− E(k)

)
eiq·r

dq

(2π)3
.

(4.31)

With summing up the above over k and from eq. (4.28), (4.28), we reach the expression

χ(q) =
g2eµ

2
B

2V

∫
k≤kF

(
1

E(k + q)− E(k)
+

1

E(k − q)− E(k)

)
dk

(2π)3

=
3N

8

(geµB)
2

EF

1

2

(
1 +

4k2F − q2

4qkF
log

∣∣∣∣2kF + q

2kF − q

∣∣∣∣) . (4.32)
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Fig. 4.3 Plot of f(x) in eq. (4.33). The region
is limited to x > 0 as f(x) is an even function.

The last part in the parenthesis (· · · ) is written as

f(x) = 1 +
1− x2

2x
log

∣∣∣∣1 + x

1− x

∣∣∣∣ , (4.33)

where x = q/2kF *4. The function is plotted in Fig. 4.3.

To calculatem(r) from eq. (4.29) and χq in eq. (4.32), we need the integral

F (r) =
1

2π

∫
dqeiq·rf

(
q

2kF

)
=

2

r

∫ ∞

0

q sin(qr)f

(
q

2kF

)
dq

=
1

r

∫ ∞

−∞
q sin(qr)f

(
q

2kF

)
dq. (4.34)

In the application of partial integral, we need to apply Cauchy’s principal value since df/dx diverges at x = 1 as shown

in Fig. 4.3. We also use the identities∫ ∞

−∞

sin[2kFr(1± x)]

1± x
dx = π,

∫ ∞

−∞

cos[2kFr(1± x)]

1± x
dx = 0, (4.35)

to obtain

F (r) = −16πk3F
2kFr cos(2kFr)− sin(2kFr)

(2kFr)4
. (4.36)

Then we finally reach the expression of the local magnetizationm(r):

m(r) = − 3

32π2

NgeµBF (r)J

EF
Sz, (4.37)

where we take z-direction to that of S and the expectation value Sz is used.

4.3.2 RKKY interaction

In eq. (4.37), the dependence on r is from F (r) in eq. (4.36), the r-dependent part of which is plotted in Fig. 4.4. The

decay with r is associated with an oscillation.

If we have another magnetic ion within the decay length, the conduction electrons interact with it by s-d exchange

interaction and as a result, a kind of exchange interaction between the magnetic ions is established. This is called RKKY
interaction *5. The interaction is estimated as

−
∫
m(r)Beff(r −R)dr =

3N

16π2

J2

EF
F (R)S1zS2z, (4.38)

*4 The notation is confusing with the Fermi distribution function (the function itself is close!). But we do not have so many good symbols and this
is a custom notation.

*5 Capital letters of Ruderman-Kittel-Kasuya-Yosida [9, 10, 11].
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Fig. 4.4 Plot of r-dependent part of
eq. (4.36), that is −(x cosx − sinx)x4

(x = 2kFr). It decays with r to zero with an
oscillation.

where R is the vector connecting the two magnetic ions, and the spins of them are written as S1 and S2. This equation

is obtained from the expectation value m(r) and thus expressed in the product of expectation values along z-axis. It

is an exchange interaction and we can replace S1zS2z with S1 · S2 to modify it to an RKKY Hamiltonian for quantum

mechanical calculations.

As in eq. (4.38), the RKKY interaction oscillates with the period about (2kF)−1 and decays asR−3. However when the

distance between the ions is short, namely the second ion is close to the origin in Fig. 4.4, the interaction between the ions

is always ferromagnetic because the s-d interaction works twice. De Gennes pointed out the possibility of ferromagnetism

in diluted magnetic alloys[12] via this RKKY ferromagnetic interaction. However it is still unclear weather such systems

really exist or not.

4.4 Double exchange interaction

The double exchange interaction mechanism was proposed by Zener[13] for the explanation of ferromagnetism in

Mn perovskite type compound magnets. A typical example is aMnO3, which is an insulating anti-ferromagnet due to the

superexchange interaction. However, with replacing a part of La with Ca, the material La1−xCaxMnO3 (0.2< x <0.4)

shows metallic conduction and transits to a ferromagnet.

Such a system can be modelized as Fig. 4.5. 3d electron levels are split by the octahedral potential of perovskite

to t2g orbitals and eg orbitals. t2g orbitals have lower energy and strongly localized while eg orbitals spread over the

neighbors, being hybridized with 2s, 2p orbitals to form a band. In LaMnO3, each Mn ion is 3+ and in the high spin

state with a single electron in an eg orbital. In spite of the formation of a band, the system is an insulator because of

the on-site Coulomb repulsion U for the hopping to the neighboring eg orbitals (due to the anti-ferromagnetic order, the

electron spins do not disturb the hopping). The situation is close to the Hubbard model introduced in Sec. 4.1.3, and such

insulators caused by the electron correlation are called Mott insulators.

Fig. 4.5 Schematic diagram of double ex-
change interaction.
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With replacing a part of La(3+) with Ca(2+), a part of electrons in Mn is transferred to Ca resulting in the appearance of

Mn4+. In Mn4+, the eg orbital is empty making the transfer of electrons via oxygen atoms possible (sometimes described

as “hole doping” in the vocabulary of semiconductor physics). This leads to the breaking of electron correlation that

sustains the insulating manner and the metallic conduction appears. In the metallic state, when an eg electron shifts to

the next Mn ion, the energy is lower for aligned spins of t2g electrons due to Hund’s rule in ions. And the higher transfer

of electrons causes lowering of the kinetic energy resulting in the ferromagnetism. As can be seen in the above scenario,

this can also be viewed as a kinetic exchange interaction.

So far we have seen superexchange, RKKY, and double exchange interactions. At the first glance they are so different,

but it is difficult to say weather they are essentially different. The naming of the interactions comes from the human

wish to understand the complicated behavior of spins in simple views. It is at a higher level than the fundamental law

of physics and sticking to the classification of interactions is not a meaningful idea. Particularly in the case of spins, the

interaction is due to the magic of entanglement as in Appendix 7A. We must keep in mind that sometimes the magic goes

away.

4.5 Anisotropic exchange interaction

In many cases actual electrons in crystals have anisotropy reflecting complicated band structures. Such anisotropies in

orbitals are reflected to spins through the spin-orbit interactions. Hence in treating the exchange interactions, we should

take into account the anisotropy. We thus express the exchange interaction between sites i and j with a tensor Jij . Then

the Hamiltonian of the spin system is given by

H =
∑
j

HA(Sj)−
1

2

∑
i ̸=j

tSiJijSj , (4.39)

where ta is the transpose of a. The anisotropic energy on site is written as HA. We write the tensor elements indices as

Jµν
ij and separate (µ, ν) to symmetric and anti-symmetric parts as

Jµν =
1

2
[(Jµν + Jνµ) + (Jµν − Jνµ)] ≡ Kµν +

∑
ξ=x,y,z

ϵµνξD
ξ. (4.40)

ϵµνξ is the complete anti-symmetric tensor (Levi=Chivita symbol). The site indices (i, j) are omitted. The second term

in the rhs, the anti-symmetric part of eq. (4.39) is expressed as

H
(DM)
ij = tSi

∑
ξ

ϵµνξD
ξ
ij

Sj =Dij · (Si × Sj). (4.41)

Dij = −Dji and this anti-symmetric exchange interaction H
(DM)
ij is called Dzyaloshinskii-Moriya (DM)

interaction[14, 15].

The DM interaction is important in the discussion of magnetic anisotropy of anti-ferromagnets, weak ferromagnets. In

resent researches, the DM interaction is important in the magnetic interaction between thin films and in other spintronics

field.
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Chapter 5
Theories of magnetic insulators

Ferrite core transformer

There are many magnetic insulators as ferrites (AFe2O4, A=Mn, Co, Ni, Cu, Zn, · · · ). They are very advantageous for

the high frequency use in the absence of eddy current and of skin effect. Now they are indispensable in high frequency

techniques. Also since they do not deteriorate such as rust, the ferrites are mostly used for the magnets on blackboards

etc., the magnetic sheets that can be used with cut *6

In the previous chapter we have introduced the Heisenberg model, which is one of the human-friendly models for

dealing with magnetism. In insulators, superexchange interactions work between localized spins, and a situation close to

the Heisenberg model may be realized in essence. Here we will see what kind of phenomena the model includes.

5.1 Molecular field theory

We consider mean field theory, which is the most basic approach in many body problems. In the field of magnetism,

the approach is also called molecular field approximation.

5.1.1 Ferromagnetic Heisenberg model

We consider the Heisenberg model in eq. (4.13) with the magnetic field of magnetic flux densityB:

H = −2J
∑
⟨i,j⟩

Si · Sj − µ
∑
i

B · Si, (5.1)

where the sum on ⟨i, j⟩ is taken for the nearest neighbors. The interaction is ferromagnetic, i.e., J > 0, µ is taken as

positive. In the mean field approximation for site i, the surrounding spins are replaced with averaged magnetic moments.

Heff(i) = −2J
∑
δ

⟨Si+δ⟩ · Si − µB · Si = −µBeff · Si. (5.2)

δ is for nearest neighbors. The effective fieldBeff in eq. (5.2):

µBeff = 2J
∑
δ

⟨Si+δ⟩+ µB, (5.3)

which is also called molecular field.

*6 Long time ago, the ferrites were also used in magnetic tapes.
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Here we use the expression (2.51) for magnetization M per single ion with replacing gJµB → µ, J → S, Brillouin

function BJ → BS to obtain

M = µSBS

[
µS

kBT

(
B +

2αzJ

µ2
M

)]
. (5.4)

αz is the number of neighboring sites and the direction of B is taken to z-direction. Equation (5.4) is a self-consistent

equation for M .

We use the expansion of coth in Brillouin function BS and obtain

BS(x) =
S + 1

3S
x− 1

90

[(S + 1)2 + S2](S + 1)

S3
x3 + · · · . (5.5)

Then eq. (5.4) is expanded as(
1− 2αzJ

µ2
χ0

)
M +

1

90
[(S + 1)2 + S2]

1

(kBT )3

(
2αzJ

µ2

)2

M3 = χ0B. (5.6)

χ0 = µ2S(S + 1)/3kBT represents the Curie law in eq. (2.53).

When (5.6) has a non-zero solution of M (spontaneous magnetization) for B = 0, the system can have a ferromagnetic

state. The condition is the coefficient of the first order inM in the lhs of (5.6) becomes zero. This gives the ferromagnetic

transition temperature (Curie temperature) TC as

kBTC =
2

3
S(S + 1)αzJ. (5.7)

The susceptibility for T > TC is obtained from eq. (5.6) by considering the first order term as

χ = χ0

(
1− 2αzJ

µ2
χ0

)−1

= µ2 S(S + 1)

3kB(T − TC)
, (5.8)

which diverges as (T − TC)
−1. This behavior is called Curie-Weiss law.

Appendix 7A: Quantum entanglement and quantum dot experiments

Although the magnetic-mediated spin-to-spin interaction is very weak, we found that a strong spin-to-spin interaction

occurs due to the relationship with the orbit. Then the spin Hamiltonian model is introduced. As above, in quantum

theory, the freedoms in an interaction model can be exchanged under some conditions. This is on the concept of quantum
entanglement, which is widely used in the quantum information field.

7A.1 Quantum entanglement and effective Hamiltonian

The readers are already familiar with the concept and here a brief introduction is given. Let us consider two systems

with two-dimensional orthogonal basis {|1⟩ , |2⟩} and {|p⟩ , |q⟩}. We write the wavefunctions in the systems as |ψ⟩ =

a1 |1⟩ + a2 |2⟩, |ϕ⟩ = ap |p⟩ + aq |q⟩. When these two have no relation between them, a state of the combined system

(of course the combined system can be considered even if there are no relation) is written as a direct product of the two

wavefunctions:
|Ψn⟩ = |ψ⟩ ⊗ |ϕ⟩ = a1ap |1⟩ |p⟩+ a1aq |1⟩ |q⟩+ a2ap |2⟩ |p⟩+ a2aq |2⟩ |q⟩ . (7A.1)
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On the other hand, we consider the case when the wavefunction of combined system is written in the form

|ξ⟩ = (|1⟩ |p⟩+ |2⟩ |q⟩)/
√
2. (7A.2)

In this state, assume we perform measurement on |ψ⟩ and obtain e.g. the result 1. Then without observation on |ϕ⟩ and

without direct interaction between the two systems, the state of |ϕ⟩ is determined to p by the above measurement. This

situation is described as |ψ⟩ and |ϕ⟩ are entangled. This was clearly pointed out in the famous EPR paper[16, 17]. In

particular the state in eq. (7A.2) is called a maximally entangled state and the operations on the systems are unseparable.

Further, we write another maximally entangled state

|ζ⟩ = (|1⟩ |q⟩+ |2⟩ |p⟩)/
√
2, (7A.3)

and consider the case the basis space is limited to {|ξ⟩ , |ζ⟩}. We assume the Hamiltonian in the system {|1⟩ , |2⟩}

Hn =

(
h11 h12
h21 h22

)
. (7A.4)

Then
⟨ξ|Hn|ξ⟩ = h11 + h22, ⟨ξ|Hn|ζ⟩ = h12 + h21, ⟨ζ|Hn|ζ⟩ = h11 + h22. (7A.5)

Hence if we can prepare an operator Ha working on {|p⟩ , |q⟩} and gives the same matrix as Hn

Ha =

(
h11 h12
h21 h22

)
, (7A.6)

Hn and Ha give the same results in the basis space {|ξ⟩ , |ζ⟩}.

As seen above, the concept of “effective Hamiltonian” works when the basis space is limited to entangled states of two

freedoms. In such states, operations on one system is equivalent to those on the other system. Hence they are working

as “operators” very differently but equivalent. In quantum physics, though not always explicitly, the concept of quantum

entanglement is used in various situations.

7A.2 Quantum entanglement and observation

Quantum entanglement is not only a tool for theory, but also used widely in experiments, confirming that the EPR

paradox is not a mere thought experiment.

The electron paramagnetic resonance is introduced as an experiment to observe the Larmor precession of spins in

magnetic field. The traditional way to detect the resonance is to detect the lowering in the Q-value of resonator due to the

absorption of energy in electromagnetic wave by the spin system at the resonance. To give a change in the characteristics

of a macroscopic resonator, an ordinary experiment in microwave needs at least 1010 spins[18]. In this method, in other

words, the magnetic field caused by the magnetic dipoles of spins are detected though the interaction in eq. (4.1). The

signal is naturally tiny and it is hopeless to detect single spin precession.

Let us consider “what is measurement.” A possible answer is that a measurement is to create an entanglement between

the freedoms of an object and those of something human can directly distinguish. As a system for measurement we

consider {|↑⟩ , |↓⟩} and {|A⟩ , |B⟩} as another system which human can directly distinguish. Then the measurement is to

create a maximally entangled state

Ψ =
1√
2
[|↑⟩ |A⟩+ |↓⟩ |B⟩]. (7A.7)

The system {|A⟩ , |B⟩} is readily integrated out and the measurement is accomplished when this Ψ is created *7.

Now, then, in the case of a spin, instead of entanglement of spin with a photon through the magnetic moment, entan-

glement with other freedom with much larger effect might make the detection of single spin possible.

(to be continued).

*7 In the terms of Schrödinger’s cat problem, dead/alive of the cat is determined before the box is opened.
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Lecture note Magnetism (8)
1st June (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Fig. 5.1 Schematic drawing of susceptibility
χ above TC and spontaneous magnetization M

below TC for a ferromagnet.

Last week we introduced the Heisenberg model for magnetic in-

sulators. In mean field (molecular field) approximation, the power

series expansion of the Brillouin function (eq. (5.6)) gives the equa-

tion, which leads to the Curie-Weiss law:

χ =
µ2S(S + 1)

kB

1

T − TC
. (5.8)

In the region T < TC, the solutions of M ̸= 0 exists for B =

0, i.e., the spontaneous magnetization appears. In the vicinity of

TC, the term of M3 in eq. (5.6) is included to give the spontaneous

magnetization as

M = µ

√
10

3

S(S + 1)√
(S + 1)2 + S2

√
1− T

TC
. (5.9)

On the other hand, at T ≪ TC, we use the asymptotic expression

BS(x) ∼ 1− 1

S
exp

(
−x

S

)
+

[
2S + 1

S
exp

(
−2S + 1

S
x

)]
(5.10)

for x≫ 1. The first two leading terms give

M = µ

[
S − exp

(
− 3

S + 1

TC
T

)]
, (5.11)

which approaches the perfect magnetization µS with T → 0. The temperature dependences of χ and M obtained above

are summarized schematically in Fig. 5.1.

5.2 Phenomenology of ferromagnetic transition: the GL theory

The above simple results still contains characteristic features of cooperative phenomena. For example, in eq. (5.8),

T ≈ TC, we can write

χ ∝ 1

1− (TC/T )
= 1 +

TC
T

+

(
TC
T

)2

+

(
TC
T

)3

+ · · · ,

which expresses the following process: the effective field by the neighboring sites gives the excess polarization propor-

tional to TC/T , while the neighboring sites get the same excess polarizations that give the feedback of (TC/T )2. This

series continues infinitely. The series reaches the radius of convergence at T = TC and the spontaneous magnetization

appears there.

We know that even such a simple model includes a mechanism of the appearance of ferromagnetism. Then, here,

we have a look on a very general properties of phase transitions and try to find the correspondence with the mean field

approximation.
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Fig. 5.2 Illustration of power expansion formula for the free energy F by M eq. (5.14). (a) Case a ≥ 0. (b) case
a < 0. In (c), a varies continuously through 0, and F is plotted in a wireframe.

5.2.1 Free energy

Here we introduce the Ginzburg-Landau (GL) theory of phase transition[1, 2]. This was constructed to understand

superconductivity and superconducting transition phenomenologically. The GL theory, however, can be applied to a wide

range of phase transition phenomena, and naturally have hugely been affecting the study of critical phenomena[3, 4]. In

the theory, the free energy of the system is a function of physical quantities. In an equilibrium, the free energy should be

at a minimum for the parameters “adjustable” by the system such as magnetization. In other words, the parameters take

the values that make the free energy take a minimum. Let F be the free energy per spin, then we consider the functional

form of F (M), where M is the magnetization per spin.

In order to consider the symmetry of the system, we turn off the magnetic field in the Hamiltonian in eq. (5.1), which

reduces the symmetry. Now we perform a kind of symmetry operation of spin inversion on all sites, namely

∀i Si → −Si.

For this operation, the Hamiltonian in eq. (.1) withB = 0 is invariant. Accordingly F is unchanged. On the other hand,

from the definition,
M = ⟨Si⟩ → ⟨−Si⟩ = −M , (5.12)

that is the parameter M is inverted. The above inference leads to

F (M) = F (−M), (5.13)

namely F is an even function of M . Therefore we can expand F to the power series of small M (hence close to the

transition) to the forth order as
F (M) = F0 + aM2 + bM4. (5.14)

First in eq. (5.14), to have a stable point of F at finite M , b should be positive (b > 0). Under this condition, a positive

a (a ≥ 0) always gives M = 0 as the stable point of F as in Fig. 5.2(a). For a < 0, two finite values of M give energy

minima, hence are stable points, lower than the energy for M = 0 as in Fig. 5.2(b). The equation which gives the stable

points is
∂F

∂M
= 0 = 2aM + 4bM3 = 2M(2bM2 + a), (5.15)

which is in the same form as in eq. (5.6), thus is the same equation. This is sometimes called “magnetic equation of

state.” As in Fig. 5.2, the system is paramagnetic for (a) a ≥ 0, and ferromagnetic for (b) a < 0. We now find that a is

a parameter: i) which determines F (M); ii) which has no anomaly at zero, the transition point of M . Therefore a is a

“relevant” parameter for the transition (in a sense, a parameter that drives the transition). a must vary in the first order for
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thermodynamic parameters like temperature, pressure, etc. Figure 5.2(c) shows such continuous change in F (M) with

the variation of a, and the appearance of stable points other than M = 0 at the transition point a = 0. This indicates that

we are considering a second order phase transition, which does not have latent heat at the ferromagnetic transition. If we

take temperature T as the relevant parameter of the transition, a should be in the first order of T . As the expression of a,

which is zero at the transition point and in the first order in T , we can write a = k(TC − T )/TC. Then a finite solution

of M0 for eq. (5.15) is given by

M0 =

√
− a

2b
=

√
k(TC − T )

2bTC
. (5.16)

5.2.2 Spontaneous symmetry breaking

In the region T ≤ TC, F (±M0) are the thermodynamically stable solutions, in which ⟨M⟩ = M0 or −M0. These

correspond to the spontaneous magnetization of ferromagnets, which was introduced in the first lecture *1. For the

expansion of eq. (5.14), we have used the symmetry of free energy (5.13) deduced from the symmetry of Hamiltonian

(5.1) for the symmetry operation ∀i : Si → −Si. In the region T < TC, M = 0 is unstable and one of stable solutions

±M0 is realized. Due to (5.13), the symmetry operation does not change the free energy, but now M is the parameter

determining the state of the system. That means the operation changes the state. The situation is summarized that

the symmetry of realized state is broken while that of the system (Hamiltonian) is kept. Such a phenomenon is called

spontaneous symmetry breaking. The concept was introduced by Yoichiro Nambu[5, 6, 7] from the analogy of the

BCS theory (and the Bogoliubov theory) for superconductivity and the mechanism for the appearance of particle mass. It

is one of the basic concepts in physics, has been widely applied to a variety of phenomena under active research. There

are many textbooks including the one for general public written by Nambu himself[8, 9, 10, 11].

The continuous spatial symmetry in the original system with random direction of spins is broken in the state with

spontaneous magnetization M0, in which the spins are in order pointing a single point in space. The parameter that

appears at the critical point and represents the order of the state is called order parameter.

5.3 Critical exponent

F in the presence of spontaneous magnetization M0 is given as a function of temperature as

F (T ) = F0 + aM2
0 + bM4

0 = F0 −
a2

4b
= F0 −

k2(TC − T )2

4bT 2
C

. (5.17)

Then in T ≤ TC, the specific heat C is given by

C = −T ∂
2F

∂T 2
=

k2T

2bT 2
C

. (5.18)

On the other hand in T ≥ TC, C = 0 because M0 = 0 and

F (T ) = F0. Then the specific heat has a jump of

∆C =
k2

2bTC
, (5.19)

at T = TC which is illustrated in the left.

Now when a small magnetic field is introduced, in the low-

est order approximation, we can replace the term of external

*1 As also introduced in the lecture, in practice, with zero-field cooling from above the Curie temperature, we cannot observe macroscopic sponta-
neous magnetization due to the formation of magnetic domains, which build up magnetic circuit and confine the magnetic flux inside.
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field in Hamiltonian (5.1) with −BM , where M is the mag-

netization. That is we add the first order term as

F (M) = F0 + aM2 + bM4 −BM. (5.20)

Then from
∂F

∂M
= 0 = 2aM + 4bM3 −B, (5.21)

we get M3 ∝ B just at the critical point T = TC because a = 0.

So far we have obtained the expressions for magnetization M , susceptibility χ and specific heat C in the forms of

M ∝

{
B1/δ (T = TC),

(TC − T )β (T < TC),
(5.22a)

χ ∝

{
(T − TC)

−γ (T > TC),

(TC − T )−γ′
(T < TC),

(5.22b)

C ∝

{
(T − TC)

−α (T > TC),

(TC − T )−α′
(T < TC).

(5.22c)

As above, we pick up a relevant parameter, which drives a phase transition in the system, and consider the shift from

the critical value. The power indices of the “shift” in the functional expressions of physical quantities are called critical
exponents. This is particularly important concept in the second order phase transitions. The above symbols α, β, γ, δ,

· · · are habitually used in the field of magnetism and statistical physics. There is an anomaly of jump for the specific heat

in eq. (5.22c), we apply the forms of critical exponent separately for T < TC and for TC < T . In both cases the main

term is a constant in the expression of T − TC, hence α = α′ = 0.

The critical exponents depend on symmetry, dimension, range of interaction, way of approximation, etc. of the model.

On the other hand, the variations in the system parameters do not change the exponents. The property is expressed as

the critical exponents have universality. Further, we can classify the theoretical models (including approximations) of

phase transitions with the set of the values of critical exponents. This classification called universality class, depends, as

we saw in the introduction of the GL theory, often symmetry of the system. The universality class is also determined by

general properties of the system such as the spatial dimension, the range of interaction. The next table summarizes the

values of critical exponents in the mean field theory.

Critical exponent α β γ δ

Mean field approximation 0 1/2 1 3

Though we have introduced the concept of universality class, the model examined is only the mean field theory of

Heisenberg model. We would like to have a short look at the other models.

5.4 Theoretical models of ferromagnet (localized spins)

The theoretical models of magnetic materials are the big stage for statistical physics. In the above we consider the

Heisenberg model as ferromagnetic insulators. In the Heisenberg model, the spin variable has three components Si =

(Sx
i , S

y
i , S

z
i ). In the XY model, the spin components are limited to two, that is Si = (Sx

i , S
y
i ). In the Ising model, the

spin has a single component. In the Heisenberg model and the XY model, the spin degree of freedom takes a continuous

value while in the Ising model it is quantized to the two values.
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5.4.1 XY model

First we pick up a direction for “angle zero,” then because the spins in this model are in the two-dimensional plane, we

can assign an angle ϕi for each site i measured from the angle zero. Then the angle between the spins at sites i and j is

ϕi − ϕj . Accordingly the Hamiltonian of the XY model can be written as

H = −J
∑
⟨i,j⟩

cos(ϕi − ϕj). (5.23)

In the two dimensional XY model, there is no long range order due to the Mermin-Wagner theorem though it has another

type of phase transition, in which the order parameter decreases not with exponential damping but with power of distance

damping. The transition is called Berezinskii-Kosterlitz-Thouless (BKT) transition[12]. The BKT transition is caused

by excitations called vortices, in which the spins form rotation structures. They have two possible directions of rotation,

and we distinguish them with the naming vortex and anti-vortex. An attractive force works between a vortex and an

anti-vortex, which form a vortex pair bound state. The bound states are more stable than free unbound vortices. In the

low temperature phase all vortices are bound into pairs. With increasing temperature the number of vortex pairs increases

and at the transition point free unbound vortices appear due to the weakening of attractive force by screening. This can

be taken as a two-dimensional melting transition.

It is easier to realize the XY model (5.23) in superconducting Josephson networks than in spin systems[13]. A Joseph-

son network is an arrangement of superconducting islands and junctions connecting them. They can be prepared by e.g.,

lithography, or growth of granular films. We can write the phase of superconducting order parameter on each plaquette

(island) i as ϕi*2. Then the summation of Josephson energy is written in the form of (5.23). Also two-dimensional vor-

tices mentioned above appear in a thin film of superfluid on a plate (the film flow effect). Hence observation of the BKT

transition has been reported in such systems.

5.4.2 Ising model

The name of the Ising model comes from Ernst Ising, who showed the solution of this model in the case of nearest

neighbor interaction[14]. It can be expressed by the Hamiltonian:

H = −J
∑
⟨i,j⟩

SiSj − h
∑
i

Si, (5.24)

where i, j are indices of the lattice. Si is the Ising spin on i, which takes values ±1. In the second term µB is written

as h for simplicity. The Ising model may be the most known model of magnetic materials. The model is so simple, and

overall, not only the solution by Ernst Ising for one-dimensional model, but also the rigorous solution of two-dimensional

model in the absence of magnetic field[15] are the base of study for various physics in this system.

The critical exponents of these models are listed in the following table[16]. What is written using the decimal point is

the value obtained by the computation with the Monte Carlo method.

Model (Universality class) α β γ δ

2D Ising 0 1/8 7/4 15

3D Ising 0.115 0.324 1.239 4.82

3D XY −0.01 0.34 1.32 4.9

3D Heisenberg −0.11 0.36 1.39 4.9

Mean field approximation 0 1/2 1 3

*2 This quantity is not gauge invariant, not an observable. However the phase difference appears in the Hamiltonian is a gauge invariant observable.
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5.5 Anti-ferromagnetic Heisenberg model

Next we consider the case when the interaction is anti-ferromagnetic (J < 0) in the Heisenberg model:

H = −2J
∑
⟨i,j⟩

Si · Sj − µ
∑
i

B · Si. (5.1)

We consider a two dimensional square lattice with nearest neighbor interaction. When the system is in the anti-

ferromagnetic order, the classical ground state of two-dimensional square lattice Heisenberg model is a Néel ordering

state, in which the neighboring spins are in anti-parallel order. We divide the entire crystal lattice into A and B sublat-

tices, and consider a state in which the spins are parallel in each lattice. In the treatment of ferromagnetic Heisenberg

model, we first applied an external magnetic field to give direction to the isotropic space*3. In the anti-ferromagnetic

case, we take a similar method. This time as in the right panel of Fig. 5.3, we need to prepare the field that changes the

direction alternatively with site[17]. Anyway the alternative field will be set to zero in the ordered state. We consider

the starting state as the moments are alternatively aligned with the alternative field with oblique angle due to the external

magnetic field as illustrated in the right panel of Fig. 5.3.

LetBu be the external constant field, ±Bs be the site-alternative field. The fields on the two kinds of sites are

BA = Bu +Bs,

BB = Bu −Bs.

}
(5.25)

The effective Hamiltonian of the molecular field approximation is

Heff(i) = −2J
∑
δ

⟨Si+δ⟩ · Si − µBA · Si (i ∈ A), (5.26a)

Heff(j) = −2J
∑
δ

⟨Sj+δ⟩ · Sj − µBB · Sj (j ∈ B). (5.26b)

The averaged magnetic moments at the two sites are

MA = µ ⟨Si⟩ =Mu +Ms

MB = µ ⟨Sj⟩ =Mu −Ms

}
. (5.27)

Fig. 5.3 Left: Illustration of Néel anti-ferromagnetic order. Right: Drawing of “seeds field” to set the spins around
the anti-ferromagnetic order. From [17].

*3 In theories, without such “seeds” field, the system continues to take the unstable solution.
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We here define the Brillouin “vector” function as

B⃗S(x) = BS(x)
x

x
. (5.28)

Then the self-consistent equation is written as *4,

Mu +Ms = µSB⃗S

{
µS

kBT

[
Bu +Bs +

2αzJ

µ2
(Mu −Ms)

]}
. (5.29)

Above the critical temperature T > TN, from B⃗S(x) ∼ (S + 1)x/3S, we write

Mu +Ms = χ0

[
Bu +Bs +

2αzJ

µ2
(Mu −Ms)

]
. (5.30)

The definition of χ0 is in eq. (5.6).

Then uniform susceptibility χu, and sublattice susceptibility χs are given by

χu = lim
Bu→0

Mu

Bu
= χ0

(
1− 2αzJ

µ2
χ0

)−1

, (5.31a)

χs = lim
Bs→0

Ms

Bs
= χ0

(
1 +

2αzJ

µ2
χ0

)−1

. (5.31b)

Because J < 0, χu does not diverge. On the other hand χs diverges at Néel temperature

kBTN =
2

3
S(S + 1)αz|J |. (5.32)

Hence withBs → 0, we have sublattice spontaneous magnetizationMs.

From the expansion around the spontaneous magnetizationMs,

Mu +Ms = µS

[
B⃗S

(
µS

kBT

−2αzJ

µ2
Ms

)
+

d

dMs
BS

(
µS

kBT

−2αzJ

µ2
Ms

)(
−Mu − µ2

2αzJ
Bu

)]
. (5.33)

From the first term in the rhs, we obtain the self-consistent equation for Ms as

Ms = µSBS

(
µS

kBT

−2αzJ

µ2
Ms

)
. (5.34)

By taking derivative of both sides with Ms we know

1 = µS
d

dMs
BS

(
µS

kBT

−2αzJ

µ2
Ms

)
.

Then from the second term in the rhs of eq. (5.33), we obtain

Mu = −Mu − µ2

2αzJ
Bu. (5.35)

And fromMu = −µ2Bu/4αzJ , the uniform susceptibility is obtained as

χu = lim
Bu→0

Mu

Bu
= − µ2

−4αzJ
. (5.36)

The above results are illustrated in Fig. 5.4.

*4 αz = 4 in the present case
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Fig. 5.4 Illustration of (uniform) susceptibility and sub-
lattice spontaneous magnetization in anti-ferromagnetic
Heisenberg model.
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Lecture note Magnetism (9)
8th June (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

In the last lecture, we stopped at the molecular field approximation of anti-ferromagnetic Heisenberg model. The

lecture note was at the beginning of ferrimagnetism. I would like to add the treatment of parallel magnetic field to

spontaneous (internal) magnetization of an anti-ferromagnetic state. And would like to change some notations in the

ferrimagnetic part. Hence, here, I would like to rewrite the ferrimagnetic part.

5.5.1 Parallel susceptibility

Next we consider the case that the external magnetic field is parallel or anti-parallel (collinear) to the spontaneous

magnetizations of sublattices. The Heisenberg model is completely isotropic. If we assume that the system always takes

the lowest energy state, then the magnetization should rotate to be perpendicular to the external magnetic field. However

real materials usually have some magnetic anisotropies that lock the directions of moment. We thus consider the case the

external field is collinear to the spontaneous magnetization. The effective fields in A and B sublattices are written as

Beff(A) = B +Bsub(A), (5.37a)

Beff(B) = B +Bsub(B). (5.37b)

Because the vectors are collinear, we do not use vector symbols here. Then as is due course, we write down a set of

self-consistent equations for magnetizations as

〈MA〉 = µSBS

[
µS

kBT

(
B +

2αzJ

µ2
〈MB〉

)]
,

〈MB〉 = µSBS

[
µS

kBT

(
B +

2αzJ

µ2
〈MA〉

)]
,

(5.38)

where BS(x) is the Brillouin function. With solving the above and from the relation *1 ，

χ∥ = lim
B→0

MA +MB

B
, (5.39)

Fig. 5.1 Left panel: Schematic diagram of temperature dependent susceptibility in the molecular field approximation
of the anti-ferromagnetic Heisenberg model. The susceptibilities for magnetic field perpendicular (χ⊥) and parallel
(χ∥) to the spin polarization. Measured susceptibilities of (a) GdNiGe3, (b) MnF2. From [1].

*1 As is the case of spontaneous ferromagnetic magnetization, we need to solve the equation numerically.
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Fig. 5.2 Examples of spin configurations in metal oxides, fluorides. (a) and (b) shows the spin-directions at magnetic
ions. (c) also shows the positions of F-atoms. (a) MnO. From [2]. Red broken lines show the sheets of aligned spins.
(b) NiO. From [3]. (c) MnF2. From [4].

we obtain the parallel magnetization.

From eq. (5.38), in the limit of T → 0, MA = −MB = µS as in the case of ferromagnetism, χ∥ → 0. On the other

hand, χ∥ = χ⊥ at T = TN The susceptibility, thus has a large anisotropy below TN as shown in the left panel of Fig. 5.1.

Though the situation of perpendicular field to the sublattice magnetization cannot be realized in the Heisenberg model, a

small anisotropy may enable it. In many anti-ferromagnets, such properties have been really observed. Figure 5.1(a), (b)

show examples of GdNiGe3, MnF2, which are claimed to be close to the anti-ferromagnetic Heisenberg model.

5.5.2 Antiferromagnetic insulators

So far, we have discussed the magnetic susceptibility of antiferromagnetic materials with a very simple two-

dimensional Heisenberg model. As mentioned in the section on superexchange interactions, oxides and fluorides of

magnetic metals are often antiferromagnetic. Figure 5.2 shows examples of spin configurations in anti-ferromagnetic

insulators. As in the Heisenberg model, neighboring (though with intermediate negative ions) spins at magnetic ions

have opposite directions. As can be seen in the figure, actual “sublattices” can be taken as two-dimensional spin-aligned

sheets. In such a case, the structure is a kind of magnetic superlattice.

In an anti-ferromagnetic ordered state, the spins have a periodic structure with a larger volume than that of lattice (unit

cell). This is sometimes called a spin-superlattice. For this situation, we can apply a concept called magnetic unit cell,
which is the unit of periodicity including the spin configuration. These two kinds of unit cell lengths are indicated in

Fig. 5.2(a).

χu in eq. (5.31a) does not diverge because J < 0. Instead it shows the temperature dependence

χu ∝ 1

T + θ
, (5.40)

which is different from the Curie law. This θ is called Weiss temperature.

The Néel temperatures and the Weiss temperatures of typical anti-ferromagnets are liste in Tab. 5.1. From

eqs. (5.31,32), these two kinds of temperatures should be symmetric to 0 K. Of course, a simple model even without

anisotropy should give results far different from the reality. However, there is some rough correlation between them.
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Material Lattice-type of magnetic ions Néel temperature (K) Weiss temperature (K)

MnO fcc 116 610

MnS fcc 160 528

MnTe hexagonal 307 690

MnF2 bct 67 82

FeF2 bct 79 117

FeCl2 hexagonal 24 48

FeO fcc 198 570

CoCl2 hexagonal 25 38

CoO fcc 291 330

NiCl2 hexagonal 50 62

NiO fcc 525 ∼ 2000

Cr fcc 308

Tab. 5.1 Néel temperatures and Weiss temperatures of typical anti-ferromagnets.

5.5.3 Spin flop transition and metamagnetism

Consider a general material with susceptibility χ. With increasing the external magnetic field, the energy gain due to

the magnetization is

Em = −
∫ B

0

M(B′)

µ0

dB′

µ0
= −χ

∫ B

0

B′

µ0

dB′

µ0
= − χ

2µ2
0

B2. (5.41)

In the region T < TN, χ⊥ > χ∥ as shown in Fig. 5.1, hence the energy is lower for the magnetic field perpendicular to

the sublattice magnetization. As mentioned in the beginning of “parallel susceptibility,” with increasing a parallel field,

the energy difference overcomes the anisotropic energy K at a certain point, at which the sublattice magnetizations rotate

to the direction perpendicular to the magnetic field. This is called spin flop transition. The critical field is obtained from

χ⊥ − χ∥

2µ2
0

B2
c = K, (5.42)

as

Bc = µ0

√
2K

χ⊥ − χ∥
. (5.43)

After the transition, the field also gives an oblique angle to sublattice magnetizations as shown in Fig. 5.3(a). In the

process of increasing field, the total magnetization increases with the field proportionally and saturates at the field of

complete polarization.

In conventional anti-ferromagnets, this critical field is too large to reach in many of laboratories. Recently, however,

there have been many reports on the spin flop transition in nano-ferromagnets or in molecular ferromagnets. Figure 5.3(b)

shows such an example of a crystal composed of a polymer {[Mn2(bpdo)(H2O)4][Nb(CN)8] · 6H2O}n. It has Néel

point at TN=15 K, which is comparatively low. We observe a clear spin flop transition at around 0.6 T at 1.8 K.

So far we have considered the case of nearest-neighbor-only exchange interaction. That is, only inter-sublattice in-

teraction is considered and intra-sublattice interaction is ignored. In reality, the super-exchange interaction often works

between spins in a sublattice (intra-sublattice interaction). In some cases, an anti-ferromagnetism at zero field is realized

by a small difference in inter-sublattice anti-ferromagnetic interaction and intra-sublattice ferromagnetic interaction. In

such a case, increasing the external field lowers the energy of magnetic moments parallel to the field. And at a certain
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Fig. 5.3 (a) Illustration of spin flop transition (red line) and metamagnetism (blue line). (b) Spin flop transition
appeared in a polymer anti-ferromagnet {[Mn2(bpdo)(H2O)4][Nb(CN)8] · 6H2O}n. The inset shows the suscepti-
bility at a low (0.1 T) field. It is an anti-ferromagnet with TN=15 K, with the spin-easy axis along a-axis. From [5].
Lower panel shows the molecular structure with axes b (pointing up), c (pointing left), a (coming up from this paper).
(c) Examples of metamagnetic transition in a Mott insulator Sm0.5Ca0.25Sr0.25MnO3[6].

field, the whole system goes to a ferromagnetic, which phenomenon appears as a sudden or steep increase in magnetiza-

tion up to the saturation. This is called meta-magnetism[6]. An example is shown in Fig. 5.3(c). Meta-magnetism often

has strong temperature dependence. If we fix the magnetic field close to the critical field, the temperature also drives a

meta magnetic transition, which gives a very large (∂M/∂T )B . From eq. (2.114), this is very advantageous for magnetic

refrigeration. And now the application of meta-magnetism to high-efficiency magnetic refrigeration is active([7] is an

example from a helimagnetism).

5.6 Ferrimagnetism

The most typical material of magnetic insulators is ferrite, which I

mentioned in the beginning of this chapter.

5.6.1 Magnetism in ferrite

In the ferromagnetism of ferrite (AFe2O4, A=Mn, Co, Ni, Cu, Zn,

· · · ), the spin-alignment is a mixture of anti-ferro and ferro types. Be-

cause the sublattices have different magnetic moments, they do not cancel

out. As a result a total finite spontaneous magnetization appears. Such

magnetism is named ferrimagnetism after ferrite.

In the unit cell of spinel-type ferrite, there are 16 Fe3+, 8 M2+, 32

O2−. Spin magnetic moments at Fe ions are mostly cancelled by anti-

ferromagnetic interaction, and spins at M2+ survive, causing the ferri-

magnetism. The expected magnetic moments of ferrite and experimental values along with this statement are listed

below showing a good agreement.
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Materials MnFe2O4 FeFe2O4 CoFe2O4 NiFe2O4 CuFe2O4

Moment (Theory) 5µB 4µB 3µB 2µB 1µB

Moment (Exp.) 5.0 4.2 3.3 2.3 1.3

TN (K) 783 848 793 863 728

A bit detailed discussions on the magnetism of ferrite can be found in ref. [8] (in Japanese), or in refs. [9, 10]. For the

application of ferrite magnetism, refer to refs. [11, 12]. Ferrite is extremely important in industrial application. They show

various magnetism depending on species of M, crystal types and shapes of samples. Even now, research is extremely

active, and many review papers for each individual ferrite can be found even in the last few years.

5.6.2 Molecular field approximation of ferrimagnetism

We here use a Heisenberg model with unbalanced sublattices A and B.

BA = αMA + (−γ)(−MB) = αMA + γMB, (5.44a)
BB = γMA + βMB, (5.44b)

where we consider not only inter-sublattice exchange interaction but also intra-sublattice interaction. The imbalance is

taken into account by the difference between α, β. The inter-sublattice interaction is γ (must be common).

5.6.3 Magnetization below the Néel temperature

The set of self-consistent equations for magnetizationsMA andMB in sublattices is from molecular field approximation

(5.44) as

MA = µSABSA

[
µSA

kBT
(αMA + γMB)

]
, (5.45a)

MB = µSBBSB

[
µSB

kBT
(γMA + βMB)

]
, (5.45b)

where the Brillouin function is written as BS(x). Though µ = gµB may be different for sublattices if g-factors are

different, we here assume they are common for simplicity.

To obtain MA, MB, thus the total magnetization M =MA −MB, we need to solve eq. (5.45) numerically.

In such compensated ferrimagnetism, magnetizations show complicated temperature dependences below Néel temper-

ature due to the differences between SA and SB, α and β. As an example, compensated ferrimagnetism is displayed in

(a) (b)

Fig. 5.4 (a) Conceptual scheme of compensated ferrimagnetism. (b) Compensated ferrimagnetism appeared in the
magnetization of amorphous alloy Gd-Co-Mn. From [13].
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Fig. 5.4. In conceptual diagram in Fig. 5.4(a), A-sublattice has a larger lowest temperature magnetization (SA > SB).

On the other hand, B-sublattice has a larger intra-sublattice interaction (β < α), then the growth of magnetization MB

below Néel is faster with lowering the temperature. Hence in a certain temperature region lower than TN, MB > MA

holds and as indicated by the broken line MA −MB is negative though in the measurement, magnetization M parallel

to the field always has lower energy and the green line is observed. With lowering of temperature, MA increases and

the total magnetization disappears at the point of MA = MB. But with further lowering of temperature, MA > MB

and the magnetization reappears. As a whole, it becomes a curious temperature dependence as shown by the green line.

Figure 5.4(b) shows such a temperature dependence of an amorphous alloy Gd-Co-Mo[13]. In “complete compensation

type” ferrimagnetism, there is a difference in intra-interaction but the sublattice magnetic moments are the same and the

total magnetization disappears at lowest temperatures[14].

5.7 Helimagnetism

It is not alway possible to separate a spin system with anti-ferromagnetic interaction into a small numbers of magnetic

sublattices. Also as considered in the previous section, ranges of interactions may span over more than single (magnetic)

lattice constant. Let us consider helimagnetism, that appears in such a complex system in a Heisenberg model. It has a

spiral-like spin configuration, which shows considerable difference from parallel/anti-parallel (collinear) configurations

so far considered. In the treatment of anti-ferromagnetism, firstly the anti-ferromagnetic ground state (Néel ordered state)

is given. Then the molecular field is considered based on the state. This time, we have a look on the process to find out

the ground state[15].

5.7.1 Classical Heisenberg model

Here the exchange interaction potential J depends on the combination of sites (i, j) and a site-dependent magnetic

fieldBi is working on each site.
H = −

∑
⟨i,j⟩

JijSi · Sj − µ
∑
i

Bi · Si. (5.46)

However we put Bi = 0 for a while. And in the first place, to see that a helical spin configuration can be stable, we

consider a classical Heisenberg model, in that the spins are treated as classical vectors.

To look for an ordered stated, we assume an ordered state and perform Fourier expansion as

〈Si〉 =
1√
N

∑
q

〈Sq〉 exp(iq · ri). (5.47)

Then
| 〈Si〉 |2 = S2 =

1

N

∑
q,q′

〈Sq〉 · 〈Sq′〉 exp(i(q + q′) · ri) (5.48)

Now the expectation value of Hamiltonian can be written as

〈H 〉 = −
∑
⟨i,j⟩

Jij 〈Si〉 · 〈Sj〉 = −
∑
q

Jq 〈Sq〉 · 〈S−q〉 , (5.49)

where
Jq =

∑
j

Jij exp[−iq · (ri − rj)] (5.50)

is the Fourier transform of the interaction potential. Taking the sum of both sides of eq. (5.48)on subscript i, the right

hand side is
1

N

∑
i

∑
q,q′

〈Sq〉 · 〈Sq′〉 exp(i(q + q′) · ri) =
∑
q,q′

〈Sq〉 · 〈Sq′〉 δq,−q′ .

E09-6



Then
NS2 =

∑
q

〈Sq〉 · 〈S−q〉 . (5.51)

This works as a condition fulfilled by the classical solution.

In the Heisenberg model, Jij = Jji and also is real, Jq should be an even function of q. We then assume that Jq takes

the maximum (i.e., has a repeating structure with a finite period), and let ±Q be the wavenubers that give the maxima to

Jq . When Q = K −Q with an inverse lattice vector K, the system is in classical anti-ferromagnetic state, and out of

our scope here. Then though it is a bit bold, under the condition (5.51), we assume

〈SQ〉 6= 0, 〈S−Q〉 6= 0, (others) = 0. (5.52)

Then eq. (5.48) can be written as follows:

NS2 = 〈SQ〉 · 〈SQ〉 exp(2iQ · ri) + 〈S−Q〉 · 〈S−Q〉 exp(−2iQ · ri) + 2 〈SQ〉 · 〈S−Q〉 . (5.53)

Because the sum in the rhs of eq. (5.51) should be taken for q = ±Q, in the

present case 2 〈SQ〉 · 〈S−Q〉, that just corresponds to the third term in eq. (5.53).

From the above we get

〈SQ〉 · 〈SQ〉 = 〈S−Q〉 · 〈S−Q〉 = 0. (5.54)

This condition is, for example, for 〈SQ〉,

Re[〈SQ〉] = a, Im[〈SQ〉] = b 7−→ |a|2 − |b|2 = 0, a · b = 0, (5.55)

that is, the amplitude of the real and the imaginary parts are the same and they

should be orthogonal. Then, we can write

〈SQ〉 =
√
N

2
S(u− iv), (5.56)

where u and v are orthogonal unit vectors. This leads to the expectation value of spins in the ground state:

〈Si〉 = S[u cos(Q · ri) + v sin(Q · ri)]. (5.57)

In this spin configuration, the spin rotates along and around Q-axis in the plane stretched by (uandv). The con-

figuration is called helical spin structure. Though the structure is affected by crystal anisotropy in real materials, the

theoretical Heisenberg model is isotropic and the plane of (u,v) can be taken to any direction.

5.7.2 Molecular field approximation

Based on the classical ground state, we apply the molecular field approximation, by introducing the site-dependent

magnetic field
Bi = Bq[u cos(q · ri) + v sin(q · ri)] (5.58)

into eq. (5.46). We write the averaged spin as

〈Si〉 = mq[u cos(q · ri) + v sin(q · ri)]. (5.59)

Then along with molecular field procedure, the effective Hamiltonian at site i is given by

Heff(i) = −(2mqJq + µBq)[u cos(q · ri) + v sin(q · ri)] · Si. (5.60)

Then as is the course, a self-consistent equation is given by

mq = SBS

[
S

kBT
(2mqJq + µBq)

]
. (5.61)
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This has a just same form as that in the ferromagnetism. If we define “helical magnetization” as µmq , we obtain the

helical magnetization in paramagnetic states as

χq = lim
Bq→0

µmq

Bq
= χ0

(
1− 2Jq

µ2
χ0

)−1

. (5.62)

The critical temperature for the appearance of helical order TQ is given by

kBTQ =
2

3
S(S + 1)JQ. (5.63)

5.7.3 Observation of helimagnetism, skyrmion excitations

In the above, a helimagnetism in a Heisenberg model is considered. In real materials, it is said that NiBr2 or β-MnO2

may have situations close to the model. There have been found many materials with helimagnetisms. Holmium (Ho)

has a helimagnetism originated from the RKKY interaction. The Dyaloshinsky-Moriya (DM) interaction often causes

helimagnetism.

Here I would like to introduce an experimental method called “Lorentz microscope” for observing real space image

of magnetic structure, and observation of helimagnetism and related magnetic phenomena. One of the most powerful

methods to observe spin configurations is the neutron diffraction. Actually one of the motivations for finding helimag-

netism was an anomalous neutron spectrum of β-MnO2, etc. Despite the powerfulness of neutron diffraction in detecting

periodic structures, it has difficulties in catching local real space images. Lorentz transmission microscope is one of the

methods to observe local images *2.

Figure 5.5 shows the principle of Lorentz microscope, which utilizes the bending of electron beams by Lorentz force

from the magnetic field in samples. Complete re-focusing of electrons, however, restore the bending resulting in no-

Fig. 5.5 Left panel: Illustration of electron beam lines in a Lorentz microscope. Focused electron beams go though
a sample, and re-focused by electron lenses for forming an image on a screen. Three right panels: When the sample
has inner magnetic field, the Lorentz force gives curving on the electron beams. Left in right: When the screen is just
at the focal level, the bending are restored to have no contrast. Center in right: When the screen is a bit far, the over
focusing results in a contrast. Right in right: When the screen is closer, the under focusing also results in a contrast.
From Li-cong et al. Ch. Phys. B 27, 066802 (‘18).

*2 There are many others like traditional observation of distribution of magnetic powders, micro MOKE with utilizing the Kerr rotation, magnetic
force microscope, which detects magnetic field gradient, scanning SQUID, etc.
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Fig. 5.6 Left: Cubic ϵ-FeSi (B20-type) structure without centrosymmetric point. A: Illustration of helimagnetism.
B: Expected contrast in Lorentz micrograph for an observation in the angle of z-axis. C: False colored real space
imaging of helimagnetism in Fe1−xCoxSi at 20 K by a Lorentz microscope. D: Magnetic moment along z-axis
deduced from the above[16].

contrast. Hence as illustrated in the right two panels in Fig. 5.5, the beams are a bit defocused to have a contrast, of which

the intensity is reversed by the direction of defocusing.

Figure 5.6 shows an example of observing helimagnetism. The sample is Fe1−xCoxSi in a non-centrosymmetric cubic

ϵ-FeSi (B20) structure. Because of the lack of inversion symmetry, a term in similar form as an electric field appears in

electric effective Hamiltonian and causes strong spin-orbit interaction. This leads to a strong DM interaction that creates

the helimagnetism.

When one observes a helimagnetic spin ordered state in a side-view, as in Fig. 5.6A, B, the magnetization is modulated

Fig. 5.7 Left: Experimentally obtained phase diagram of Cu2OSeO3. At low temperatures, low magnetic fields, it
shows a helimagnetism, which is overtaken by a phase with skyrmion excitations with increasing the magnetic field.
With further increase of the field, it changes to a ferrimagnetism. Right: A: Unit cell structure of Cu2OSeO3. B: Cu
spin configuration in the ferrimagnetic phase. C ∼ G: Lorentz microscope images. At low magnetic field, a stripe
due to helimagnetism, and at middle fields images of skyrmion are observed. H: shows schematic view of a skyrmion
spin configuration. From ref. [17].
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wavy in space. This corresponds to a Fresnel configuration of Lorentz microscope and actually in the image, a striping

contrast is observed as in Fig. 5.6C.

Figure 5.7 shows skyrmion excitations observed with a Lorentz microscope. This is observed in Cu2OSeO3, which

does not have inversion symmetry in lattice as shown in Fig. 5.7A, and the DM interaction causes a helimagnetism as in

the phase diagram at low temperatures and at low magnetic fields. The helimagnetic phase is detected as stripe images

by a Lorentz microscope as in C, F. With increasing the magnetic field, a phase with skyrmion excitation appears as in

D, G, E. They are observed to be aligned periodically. Further increase in the field drives the system into a ferrimagnetic

phase, of which spin configuration is shown in B.

5.8 Spin wave

The phase transitions with appearance of spontaneous magnetizations like ferromagnetic transition are an example of

spontaneous symmetry breakings. They are also associated with the appearance of excited states called spin wave. Let

us have a look on them.

5.8.1 Ferromagnetic spin wave

Here we need to consider dynamical properties of spins in ordered states. For that in ferromagnetic Heisenberg model

(5.1), we consider the time evolution of operator Si by applying the Heisenberg equation of motion as

ℏ
dSi

dt
=

1

i
[Si,H ] = −2J

∑
δ

Si+δ × Si − µB × Si, (5.64)

where δ is taken for the nearest neighbor of i. This calculation can be followed, with the use of commutation relation

[Sα, Sβ ] = iSγ , (α, β, γ) = (x, y, z; cyclic), e.g., as

[Sx
i , S

x
i S

x
j + Sy

i S
y
j + Sz

i S
z
j ] = [Sx

i , S
y
i S

y
j ] + [Sx

i , S
z
i S

z
j ] = i(Sz

i S
y
j − Sy

i S
z
j ) = i(Sj × Si)x.

Equation (5.64) is in the form of equation of motion for precession around the effective field (the external field plus the

nearest neighbor interaction). Then we can foresee that the precessions are chained through the exchange interaction and

forms a wave propagates over the spins. To see that we need to consider higher order approximation than the “averaged”

field.

Then we consider the Fourier transform

Sq =
1√
N

∑
i

Si exp(−iq · ri), Jq =
∑
δ

J exp[−iq · (ri − ri+δ)], (5.65)

and with substituting the inverse Fourier transformation into eq. (5.64), we represent (5.64) in the Fourier transformation

as
ℏ
dSq

dt
= − 2√

N

∑
q′

Jq′Sq′ × Sq−q′ − µB × Sq. (5.66)

With the above, we extract a wave from the precessions of spins. By taking z-axis along magnetic field B, 〈S0〉 =
√
NSez has by far the largest expectation value in a ferromagnetic state. Hence in the first term of rhs of (5.66), we

ignore the terms other than 〈S0〉 to obtain

ℏ
dSq

dt
= −[2(J0 − Jq)S + µB]ez × Sq. (5.67)
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In each component 
ℏ
dSqx

dt
= [2(J0 − Jq)S + µB]Sqy,

ℏ
dSqy

dt
= −[2(J0 − Jq)S + µB]Sqx,

ℏ
dSqz

dt
= 0.

(5.68)

For Sqx and Sqy these are harmonic oscillator equations. By comparison of this with

Sqx + iSqy ∝ exp[−iϵqt/ℏ], (5.69)

we obtain the energy ϵq of precession in q space as

ϵq = 2(J0 − Jq)S + µB. (5.70)

Because the precession is in q-space, this represents a propagating wave in real space.

5.8.2 Holstein-Primakoff transformation

As is the case of Larmor precession, the equation of motion derived quantum mechanically has the same form as

classical one. Then next we consider quantization of this wave. For a spin operator S, we write an eigenfunction |m〉 of

Sz with eigenvalue m (m = −S,−S + 1, · · · , S − 1, S). The operation of up-down operators S± = Sx ± Sy gives

S+ |m〉 =
√
S(S + 1)−m(m+ 1) |m+ 1〉 ,

S− |m〉 =
√
S(S + 1)−m(m− 1) |m− 1〉 .

}
(5.71)

Let us express a spin operator with creation and annihilation operators a†, a of bosons. For that we take the state

Sz = S, i.e., |S〉 as the vacuum of boson, and |S − n〉 as n boson state. Namely,

a |S〉 = 0, |S − n〉 = 1√
n!
(a†)n |S〉 . (5.72)

Then with n̂ = a†a, we can formally write
Sz = S − n̂,

S+ =
√
2S − n̂ a,

S− = a†
√
2S − n̂.

 (5.73)

The above is called Holstein-Primakoff transformation.

Appendix 9A: Various “magnetism”

There are many ways to classify magnetisms and the classification itself is not very important. For example, as a

macroscopic phenomena, there is “ferromagnetism”. However this contains a wide variety of magnetisms including

“all-aligned” simple magnetism, ferrimagnetism, canted anti-ferromagnetism, etc. If we count for metastable configura-

tion, the number of classes is huge, and the classification brings little knowledge. Here I would like to introduce some

magnetisms to have smooth talks with experts on magnetism.
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9A.1 Paramagnetism

So far we have seen the paramagnetism by local moments and that by itinerant electrons (Pauli paramagnetism). The

Pauli paramagnetism usually have smaller contribution to the susceptibility and for the detection, a combination with

other methods is usually required.

There are the cases that a finite number of spins form an ordered state, which does not spread over the system. Such a

system generally shows paramagnetism with a huge magnetic moment, which is called superparamagnetism. The be-

havior of susceptibility resembles those of anti-ferromagnetism or spin-glass. Distinction of these is sometimes difficult.

9A.2 Diamagnetism

As we saw in the Landau diamagnetism in metals, usually diamagnetism originates from orbital motion of electrons. It

sometimes becomes very large reflecting peculiar band structures as we saw in the section of graphite. Since water also

has a large diamagnetism, various things including water cause magnetic levitation in a very large magnetic field. As a

bit special example, the superconductors have perfect diamagnetism (the Meissner effect).

9A.3 Ferromagnetism

As mentioned at the beginning of this section, there can be various definitions of ”ferromagnetism.” It often refers to the

case where itinerant electrons exist like metal and their spins become imbalanced to generate spontaneous magnetization.

Also ferrimagnetism is often called ”ferromagnetism.”

9A.4 Anti-ferromagnetism

すでに見たように，磁気副格子内でスピンの向きが揃っているが，副格子のモーメントが互いに反転しているため
に全体としては自発磁化を持たないように見える (帯磁率が発散しない)ものを反強磁性と呼ぶ．

9A.5 Ferrimagnetism

As in anti-ferromagnets, neighboring moments have antiparallel alignment. However because there are unbalances in

the size of moments or the numbers of magnetic sublattices, total spontaneous magnetization appears in ferrimagnetism.

Oxide ferromagnets like ferrites, garnets are this type.

9A.6 Canted anti-ferromagnetism

This type also has anti-ferromagnetic interactions though the moments in magnetic sublattices are not completely

inverted, but canted. Some of ferrite. Total spontaneous magnetization is generally small (weak ferromagnetism).

9A.7 Helimagnetism

The magnetic moments are arranged helically in space, and total spontaneous magnetization vanishes. On the other

hand, ”chirality” occurs depending on the winding direction of the spiral, which causes various phenomena. In some

cases, a topological excitation called “skyrmion” appears, and they form a lattice. This kinds of materials have been

attracting attentions in these decades.
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9A.8 Spin density wave

The state in which the spin density and direction are spatially distributed in a wavy manner is called the spin density

wave (SDW). There are also anti-ferromagnetic SDW without total magnetization, and ferrimagnetic SDW with a total

magnetization.

9A.9 Spin glass

When the localized magnetic moments exist randomly in space and the interaction between the moments is also ran-

dom, the angles of the moments are randomly frozen, as in a glass state (amorphous state) in which atoms are randomly

aggregated. This is called spin glass. It is found in dilute magnetic alloys containing magnetic atoms as impurities. In

ferromagnetism and anti-ferromagnetism, there are only a few stable states of free energy, but in spin glass, there are

a large number of metastable points. The Nishimori quantum annealing theory is built on the mathematical similarity

between the relaxation from such metastable points to the true ground state by quantum tunneling (annealing) and a kind

of optimization problem. This is the basics of modern quantum annealing computation[18]．The behavior of the mag-

netism is similar to that of anti-ferromagnetic materials. When cooling in a magnetic field, the temperature dependence

becomes weaker on the lower temperature side than the spin glass transition point, and in zero magnetic field cooling,

the magnetism disappears near zero degrees. As the temperature rises, the magnetization also rises and joins the cooling

value in the magnetic field at the transition point.
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Last week, we have seen the Holstein-Primakoff transformation. However, we have skipped some elementary expla-

nation on the classical view of the spin wave, and here I added some explanations in Appendix 10A.

Why we need to introduce the method of Holstein-Primakoff transformation? Because the variable in the Hamiltonian

is now spin, which differs from the canonical variables in classical mechanics such as a spatial coordinate of an electron,

and the ordinary general method of quantum field theory cannot be applied. Various problems in the Holtein-Primakoff

way were pointed out, e.g., in [1]. A particularly problematic is the “extension” of functional space for n over 2S in

the form of eq. (5.72). It is proven that the operators of physical quantities have no matrix element between the original

functional space and the extended space[2]. However we need to be careful that the proof is for exact theories and some

approximations may create some elements. We can escape the problem in treating small n cases.

In the quantization of the Heisenberg model by the Holstein-Primakoff method, the quantized bosons have mutual

interaction due to the non-linear term in eq. (5.73). In order to ignore the interaction and to treat it as the sum of harmonic

oscillators, we apply the following approximation. The expansions of eq. (5.73) with n̂:

Ŝj+ =
√
2S

(
1−

a†jaj

4S
+ · · ·

)
aj ,

Ŝj− =
√
2Sa†j

(
1−

a†jaj

4S
+ · · ·

)
,

 (5.74)

are substituted to the Heisenberg model, to get

H = −2
∑
⟨i,j⟩

JijŜi · Ŝj = −2
∑
⟨i,j⟩

Jij{ŜizŜjz + (Ŝi+Ŝj− + Ŝi−Ŝj+)/2}

= −2
∑
⟨i,j⟩

Jij

[
S2 − S(n̂i + n̂j) + S(a†iaj + a†jai) + n̂in̂j −

1

4
a†ia

†
jajaj −

1

4
a†ja

†
jajai + · · ·

]
, (5.75)

where n̂i = a†iai. We take the terms to quadratic of ai, a
†
i to reach

H = −2
∑
⟨i,j⟩

Jij [S
2 − S(n̂i + n̂j) + S(a†iaj + a†jai)]. (5.76)

The result is the same if we take the terms with S in them.

We define the Fourier transform of a†j , aj as

aq =
1√
N

∑
j

aj exp(iq · r),

a†q =
1√
N

∑
j

aj exp(−iq · r).

 (5.77)

With substituting the above, the Hamiltonian is finally given by

H = −2
∑
⟨i,j⟩

JijS
2 + 2

∑
q

[J0 − Jq]Sa
†
qaq

= E0 +
∑
q

ℏωqa
†
qaq, (5.78)

which is in the form of a set of spin waves without mutual interaction. In this way, we can take into account the interaction

systematically with taking the higher order terms one by one. Such quantized spin waves as bosons are called magnons.
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5.8.3 Magnon approximation of low energy excitations

As we saw in the derivation of eq. (5.76), the approximation of harmonic oscillators corresponds to the ignorance of

the interaction between magnons. The approximation is not good for many-magnon excitation at high temperatures. We

thus consider the contributions of magnons to physical quantities at low temperatures. With taking the magnetic field

along z-axis, the magnetization is

M = µ

⟨∑
i

Siz

⟩
= µSN − µ

∑
i

⟨a†iai⟩ = µSN − µ
∑
q

n(ϵq), (5.79)

where

n(ϵ) =

(
exp

ϵ

kBT
− 1

)−1

(5.80)

is the Bose distribution function. From eq. (5.78), ℏϵq = 2S(J0−Jq . We assume the exchange interaction J works only

between nearest neighbors. We here consider a square lattice. Let a be the distance of nearest neighbors and q vector be

along a lattice direction. Then

ℏϵq = 2S(J0 − Jq) = 2SJ{2− [exp(iqa) + exp(−iqa)]} ≃ 2SJ

[
2− 2

(
1− (qa)2

2

)]
= 2SJ(qa)2. (5.81)

From the above, with use of the low temperature asymptotic form of the Bose distribution function, M is given by

M = µN

[
S − ζ

(
3

2

)(
kBT

8πJS

)3/2
]
, (5.82)

where ζ(x) is the Riemann’s ζ-function and ζ(3/2) ≈ 2.61.

Next, we consider the specific heat at low temperatures. The internal energy is obtained from the low temperature

asymptotic form of the Bose function and the dispersion relation as

U = E0 +
∑
q

n(ϵq) = E0 + 12πJSNζ

(
5

2

)(
kBT

8πJS

)5/2

, (5.83)

from which the specific heat is obtained as

C =
∂U

∂T
=

15

4
NkBζ

(
5

2

)(
kBT

8πJS

)3/2

. (5.84)

5.8.4 Anti-ferromagnetic spin wave

Next we proceed to the anti-ferromagnet. As in Sec. 5.5, we consider A and B sublattices with antiparallel mag-

netizations. We assume ferromagnetic Holstein-Primakoff transform can be applied to A-sublattice. Then a magnon

propagation in A-sublattice affects spins in B-sublattice and causes propagation of precession around z-axis. However in

B-sublattice the direction of the effective field is inverse and the direction of precession should be inverse. Consequently,

the system can be described as coexistence of two-types of magnons with a mutual interaction. Then we need to consider

another kind of bosons in B-sublattice. The vacuum should be the inverse of that in A-sublattice and |0⟩B = |−S⟩ Then

for site j in B-sublattice j (j ∈ B), we introduce the transform

Sjz = −S + b†jbj ,

Sj+ = b†j

√
2S − b†jbj ,

Sj− =
√

2S − b†jbjbj .

 (5.85)
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As in the case of ferromagnet, (5.73) and (5.85) are substituted into the anti-ferromagnetic Heisenberg model. Then

taking to quadratic of boson operators,

H = −αz|J |NS2 + 2|J |S
∑
⟨i,j⟩

(a†iai + b†jbj + aibj + a†i b
†
j), (5.86)

where i ∈ A, j ∈ B. Let the Fourier transform of ai, bj be written as

ai =

√
2

N

∑
q

aq exp(−iq · ri),

bj =

√
2

N

∑
q

bq exp(−iq · rj),

 (5.87)

then the Hamiltonian is re-written as

H = −αz|J |NS2 + 2αz|J |S
∑
q

[a†qaq + b†qbq + γ(q)(a†qb
†
q + aqbq)], (5.88)

where γ(q) is defined as
γ(q) = α−1

z

∑
ρ

exp(−iq · ρ) (5.89)

with ρ a vector connecting interacting two spins.

For the diagonalization of the Hamiltonian, we introduce the Bogoliubov transformation (aq, bq) → (αq, βq) as

aq = cosh θqαq − sinh θqβ
†
q,

bq = cosh θqβq − sinh θqα
†
q.

}
(5.90)

(αq, βq) satisfy the following boson commutation relations,

[αq, α
†
q] = 1, [βq, β

†
q] = 1, [αq, βq] = [α†

q, β
†
q] = 0. (5.91)

The Hamiltonian reads

H = −αz|J |NS2 + 2αz|J |S
∑
q

[(cosh 2θq − γ(q) sinh θq)(α
†
qαq + β†

qβq + 1)

− 1− (sinh 2θq − γ(q) cosh 2θq)(αqβq + α†
qβ

†
q)]. (5.92)

For the last off-diagonal term to vanish, we should choose the parameter θq as

sinh 2θq/ cosh 2θq = tanh 2θq = γ(q). (5.93)

Hence the diagonalized Hamiltonian is given by

H = −αz|J |NS2 + 2αz|J |S
∑
q

[(
√

1− γ(q)2 − 1) +
√
1− γ(q)2(α†

qαq + β†
qβq)]. (5.94)

In eq. (5.94), the first two terms without operator represent the ground state energy. The first term is the energy of

Néel ordered state. The second term can be interpreted as the zero-point motion energy of magnons. The classical

Néel ordered state is not the quantum mechanical ground state unlike the ferromagnetic case. Namely the original

Sjz = S, S − 1, · · · ,−S states are hybridized though the anti-ferromagnetic interaction and the perturbation decreases

the ground state energy. Accordingly, the expectation value of spin size diminishes from the full-size of S. The amount

of the decrease is

⟨Sjz⟩ = S − 2

N

∑
q

sinh θq = S − 1

N

∑
q

(
1√

1− γ(q)2
− 1

)
. (5.95)

The table below shows the decreases in spin size (∆ = S − ⟨Sjz⟩), and the variation in energy (ϵ is defined as E0 =

N |J |αzS(S + ϵ)), calculated for some simple lattice structures[3].
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Lattice Square Simple Cubic Body Centered Cubic

∆ 0.917 0.078 0.0593

ϵ 0.158+0.0062S−1 0.097+0.0024S−1 0.073+0.0013S−1

The anti-ferromagnetic magnons expressed by the last two terms, degenerate reflecting the equivalency of A- and

B-sublattices. The dispersion relation is obtained from

ϵq = 2αz|J |S
√

1− γ(q)2. (5.96)

γ(q) defined in eq. (5.89) can be calculated, e. g., for simple cubic lattice with a unit cell size a, the dispersion in the

long wavelength limit is given by
ϵq = 2

√
2αz|J |Saq, (5.97)

which is linear in q.

Specific heat is a quantity to be compared with experiments. As in the case of ferromagnet, we consider the internal

energy which is given in the case of simple cubic lattice by

U = E0 +
π2

15
N

(
kBT

2
√
2αz|J |S

)3

kBT, (5.98)

whereE0 is the ground state energy given by the first two terms in eq. (5.94). The calculated specific heats are summarized

in the following table including the cases of 1D, 2D, etc.[3]．

Lattice 1D Chain 2D Square Lattice 3D Simple Cubic

− E0

αz|J |NS2
1+0.363S−1 1+0.158S−1 1+0.097S−1

C

NkB

2π

3

(
kBT

2αz|J |S

)
14.42

π

(
kBT

2αz|J |S

)2

4
√
3
π2

5

(
kBT

2αz|J |S

)3

∆S Diverge 0.197 0.078

The original purpose of considering magnons is to treat thermal fluctuation at low temperatures correctly. Particularly

for anti-ferromagnets, there are real materials close to the theoretical models. Hence it is important whether the simple

models can explain such experiments. Figure 5.8 shows the crystal structure and the measured specific heat of an organic

Fig. 5.8 Crystal structure and specific heat of κ-(BETS)2FeX4. Left: (a) Molecular structure of BETS. (b) Crystal
structure viewed from b-axis. BETS molecules are in line with alternative oblique angles. (c) Crystal structure viewed
from c-axis. Right: Low temperature specific heat of a sample with X=Br. The contribution from phonons with T 3

dependence is indicated by a black line. The inset shows CpT
−1 as a function of T 2[4].
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anti-ferromagnet κ-(BETS)2FeBr4 (BETS = bis(ethylenedithio)tetraselenafulvalene)[4]. This material is not an insulator

having metallic conductivity. At low temperatures, it undergoes an anti-ferromagnetic transition at TN =2.47 K, and

further, a superconducting transition at 1.1 K. The crystal shown in the left panel is composed of stacking of comparatively

small molecules. Electrons in π-bonds spread over ab plane, which is stacked along c-axis. The anti-ferromagnetism

originates from 3d-electrons in Fe with S =5/2. There are Jdd, which is direct interaction between d’s, and Jπd, which

is mediated by π.

The right panel in Fig. 5.8 displays the measured specific heat, which shows very sharp increase at TN. This corresponds

to the jump at TC in the figure in Sec. 5.3. The inset shows Cp/T as a function of T 2. An ordinary metal has a specific

heat Cm = AT + BT 3 from an electron contribution (∝ T ) and a lattice contribution (∝ T 3). This is written as

Cm/T = A+ BT 2 and expressed as a line in this plot. The contribution of electrons is negligibly small as known from

the fitting at high temperatures. The heat capacity shows T 2-like variation in the region lower than TN, as it shows a line.

This seems to be in accordance with the result of 2D specific heat in the above table. In the paper, however, the authors

claim that the results are in accordance with a theory on 1D anti-ferromagnetic chain.

5.8.5 Nambu-Goldstone theorem and spin wave

In the section of ferromagnetic transition in Heisenberg model, we have visited the concept of spontaneous symmetry

breaking (SSB). In typical continuous phase transitions, a symmetry should be spontaneously broken and at the same

time an order appears.

Nambu-Goldston theorem is summarized as follows:
Nambu-Goldstone theorem� �
When a symmetry of a physical system is spontaneously broken, there is an excitation with zero energy (gap) in the

long wavelength limit.� �
Sometimes it is described as “excitation with zero-mass.” From the still energy E = mc2, the two descriptions are

equivalent.

This can be intuitively understood in the case of ferromagnetic transition. In the phenomenology in Sec. 5.2, as (a)→(b)

in Fig. 5.2, the SSB caused by appearance of two minima in the free energy F (M). For example, two-dimensional

Heisenberg model is isotropic and in the SSB state, the free energy of the state (M0 cos θ,M0 sin θ) does not depend

on θ, in other words, the state can freely go around on the yellow line in the figure. The motion on the yellow line is

Nambu-Goldstone mode (NG mode) in the present case. This corresponds to the rotation of macroscopic magnetization

Fig. 5.9 Left: Free energy F of a system with rotational symmetry. The lowest F is obtained at M (magne-
tization)=0 on (Mx,My) plane. Right: A spontaneous symmetry breaking yields an order parameter (magnetiza-
tion). The states with minimum F exist continuously, between which the system can transit without energy (Nambu-
Goldstone mode).
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and can be seen as the limit of long wavelength. Classically the magnon wavelength is determined by the phase shift of

precessions between neighboring sites. In the long wavelength limit, the phase shift is zero, and the spins are rotating

coherently. Hence we can say the magnon is the NG mode in the present case.

The dispersion relation of ferromagnetic magnon is quadratic in q as eq. (5.81). On the other hand in the anti-

ferromagnetic magnons, the dispersion is linear as in eq. (5.96). Sometimes the latter is called type-A and the former is

called type-B NG mode. On the other hand Nielsen-Chadha[5] called ℏω ∝ k2n+1 as type-I, ℏω ∝ k2n as type-II.

As is well known, it originated from Yoichiro Nambu’s idea for the acquisition of particle mass on the superconducting

BCS theory as a model, and from there, the standard theory of elementary particles makes great progress. And also in the

condensed matter theory, it is one of the central concepts as introduced by Anderson in the book “basic notions”[6]. Even

though there are many open questions even in the basics of the NG mode. Surprisingly there are many important findings

and progresses recently. Here I introduce an example. In the na’́ive NG theorem, the number of broken symmetries NBS

and that of NG modes NNG should be the same(NBS = NNG). However that does not hold in many simple examples. In

the case of 3D ferromagnetic transition, the rotation symmetries of two axes are broken, hence NBS = 2 though simple

ferromagnetic magnon NG mode number is one, i.e., NNG = 1.

For this problem, based on the pioneering works by Nielsen-Chadha[5] and by others, Watanabe-Murayama[7], and

Hidaka[8] reached the satisfactory answer in 2012 independently. This can be viewed as a generalization of the NG

theorem. To say it very short, let NI and NII be the number of type-I and type-II NG modes respectively, then

NI + 2NII = NBS.

For the detail see the review paper[9].

5.9 Experiments on magnons

As we saw in the above, magnons are elementary excitations from the ground state, considered to calculate macro-

scopic quantities of magnetic materials at finite temperatures. However recently, the concept of magnon goes beyond the

framework. The researches are prosperous on the wave and the particle like manners, soliton physics or Bose-Einstein

condensation in the high-density non-linear region where the original spin wave approximation does not hold. The birth

is given to the word “magnonics” and application to quantum information processing is seriously considered[10]. You

can find many reviews[11] and textbools[12].

Here I would like to introduce rather old results, which are now the basis of present studies, however.

5.9.1 Measurement of magnon dispersion relation by neutron scattering

Neutron scattering has long been used as a means of measuring microscopic magnetic structures. It can be said that it is

still the most powerful reliable experimental method with atomic resolution. Inelastic scattering was used, in particular,

for magnon dispersion measurements.

We write the interaction between the magnetic moment µe of electrons in an atom and that of a neutron as

Hint = −µe ·Bn, (5.99)

where
Bn = rot

(
µn × r

r3

)
(5.100)

is the magnetic field of neutron magnetic moment µn, r is the vector connecting the atom and the neutron. When a

neutron is scattered by such an interaction as
ℏk −→ ℏ(k − q), (5.101)
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Fig. 5.10 (a), (b) Magnon dispersion relations calculated for MnF2, FeF2 incorporating anisotropic field[12]. Right
panel: Magnon dispersion relation measured in MnF2 by time of flight method of neutron scattering[13].

the variation in the energy is

∆E =
ℏ2

2M
(−2k · q + q2). (5.102)

In very short, pulses of neutron with appropriate energy is applied to the sample, and the measurements of the energy

(momentum) change and the scattering angle give certain information. This is (in the case of ∆E ̸= 0) the inelastic
scattering of neutron. On the other hand in the case of elastic scattering (∆E = 0), the wave nature of neutrons the

diffraction is important.

To obtain the dispersion relation of magnons, the inelastic scattering of neutron is mostly used. Figure 5.10 shows the

magnon dispersion relation of MnF2 obtained by neutron inelastic scattering. For the above information of (5.101) and

(5.102), time-of-flight (TOF) method was utilized[13]. The result shows a good agreement with the result of molecular

field approximation with the effect of anisotropy.

5.9.2 Bose-Einstein condensation of magnons

In the process of introducing magnons with creation/annihilation operators, we defined the vacuum |0⟩F as |S⟩, i.e., the

state of Sz = S, and |n⟩F as |S − n⟩. As mentioned, while we do not have negative n state from the definition, repetitive

operation of creation operator creates infinite number of n states. However in reality, Sz can take only down to −S. This

physical space of function does not have any matrix element with the extended space as long as the theory is exact (no

approximation). This means that the magnons, though their creation/annihilation operators satisfy bosonic commutation

relations, the condition that “a single state can accommodate an infinite number of particles” is not fulfilled. In this sense,

the statistics of magnon is not complete Bose statistics but a para-statistics[14].

A typical phenomenon appeared in the system of bosons is the Bose-Einstein Condensation (BEC). The BEC is

very shortly introduced in Appendix 10B. Superfluidity of helium, BEC in laser-cooled neutral atomic gases are the

representatives. Even for these phenomena, the interaction between the particles exists and they are not jus the same as

the simple BEC described in the Appendix. Also, the superconductivity, in which weakly bound fermion pairs condensate

is a similar phenomenon. Even in the case of magnons, though they obey para-statistics, they can be viewed as “bosons

with hard cores” and there is a possibility that a similar phenomenon occurs. It is still difficult, though, for magnons to

fulfill the basic condition of BEC that (averaged de Broglie wavelength)=(averaged particle distance) because the particle

density decreases with lowering the temperature, as is guessed from the calculation of the magnetization in eq. (5.79).

Then an experiment was carried out, in which a large number of magnons are excited by microwave and a non-equilibrium

BEC took place[15]. They studied the Brillouin scattering of light by magnons and observed anomalous narrowing of the

linewidth of the resonance.
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(a) (b)

Fig. 5.11 (a) Temperature dependent magnetization of TlCuCl3 in magnetic fields[16], (b) Temperature variation of
the intensity of Bragg reflection (1,0,−3) in neutron diffraction[17]. As indicated in the right axis, this is proportional
to the square of vertical magnetic moment per site.

Let us see an experimental observation of BEC in thermal equilibrium[16, 17]. Due to the above restriction, the

situation is rather special. The material is a compound of TlCuCl3 in chemical formula. Two magnetic ions form pairs

(dimer) with an antiferromagnetic coupling. There are singlet |0, 0⟩ and triplet (|1,−1⟩ , |1, 0⟩ , |1, 1⟩) as the states of the

pair, in which the single is the ground state due to the antiferromagnetic coupling. There is an energy gap (spin gap)

between the ground state and the first excited state. With applying magnetic field, the energy of |1, 1⟩ is lowered and

the field driven phase transition takes place for the ferromagnetism to appear. In this system, the magnon appears when

the energies of |0, 0⟩ and |1, 1⟩ are close as the propagation of |1, 1⟩ states to the neighboring sites. As known from this

example, the propagation of magnons is the equivalent to that of spin angular momentum and that brings a spin current.
For the behavior of magnetization in such a system without magnon BEC, a theory has been presented [18] and the high

temperature behavior is well explained. It predicts for the the magnetization transverse to the spontaneous magnetization

that it should be constant for temperature. However in the experiment, as in Fig. 5.11(a) the magnetization once decreases

with decrease of temperature but the dependence is inverted around the transition point and increases. The magnon-BEC

theory explains the experiment that an order grows in the mixture of |0, 0⟩ and |1, 1⟩ and the transverse magnetization

appears as an average (does not cancel out)[16]. Furthermore as in Fig. 5.11(b) in neutron diffraction, it was confirmed

that such an order actually grows[17]. From the above, the observation of magnon BEC is claimed.

Appendix 10A: Collective motion of spins

Because a macroscopic number of spins are bound to in a ferromagnetic state, the motion can be described as a

collective motion. On the other hand, as lattice vibrations in lattice formation, a kind of collective motion from the

magnetic ground state can exist and quantization as phonons is possible.
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10A.1 Collective motion of magnetization

For a ferromagnetic total magnetization
S =

∑
i

Si, (10A.1)

we apply Heisenberg equation of motion as

iℏ
∂S

∂t
= [S,H ], (10A.2)

which is formally the same as eq. (2.11) and represents the Larmor precession. A resonance experiment as EPR for a

total magnetization is possible and called as ferromagnetic resonance (FMR). From FMR we get various information

on the ferromagnetism and the spin wave.

Next we consider the case that the phase of the precession has a constant shift between neighboring spins. The above

motion of the total magnetization can be considered as the long wavelength limit of this motion. The magnetization and

the external field direction is taken to z. This situation is expressed as

Six = A cos(ω0t+ θi), Siy = A sin(ω0t+ θi), (10A.3)

with a shift of θi with i. Let us use complex numbers for spins. And the Fourier transform and the inverse transform

Sqx =
1√
N

∑
j

Sjz exp(−iq · rj), Sjx =
1√
N

∑
q

Sqx exp(iq · rj) (10A.4)

are introduced.

We apply (10A.2) to Heisenberg Hamiltonian H = −2J
∑

⟨i,j⟩ Ŝi · Ŝj to obtain the following.

iℏ
∂Sqx

∂t
=

4i√
N
J
∑
⟨i,j⟩

SiySjz exp(−iq · ri){1− exp[iq · (ri − rj)]} (10A.5a)

iℏ
∂Sqy

∂t
= − 4i√

N
J
∑
⟨i,j⟩

SixSjz exp(−iq · ri){1− exp[iq · (ri − rj)]}. (10A.5b)

Fourier transform of J is written as
Jq =

∑
j

J exp[iq · (ri − rj)]. (10A.6)

In the above, the sum over j and i can be taken anywhere because the interaction only depends on ri − rj . Further,

the sum only over the nearest neighbor because the interaction is assumed to work only for nearest neighbors. Here we

approximate Sjz by S, which corresponds to small angle approximation. Then

ℏ
∂Sqx

∂t
= 2[J0 − Jq]SSqy, (10A.7a)

ℏ
∂Sqy

∂t
= −2[J0 − Jq]SSqx. (10A.7b)

This is the same as eq. (5.68) but with B = 0.

Fig. 10A.1 Schematic diagram showing a constant
phase shift between neighboring spins.
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Appendix 10B: Bose-Einstein condensation

The Bose-Einstein Condensation (BEC) *1 is called a phase transitoin that is not due to the interaction between freedoms

(quantum statistical phase transition). Though phase transitions caused by interaction beween some freedoms can be

intuitively understood, there are different types of phase transitions, in which the transitions are caused as the results of

competition between various factors. A representative is BEC.

In the case of bosonic systems, in spite of the absence of “force” betwen the particles, there exists the tendency for

them to occupy the same quantum state originating from their statistical property. Let us see that for the case of two

particles. We write a solution of the wave equation for two particles as ψ(x1,x2). For the composition of wavefunctions

of the system Ψ(x1,x2) that reflects the statistical property of bosons, the symmetrization of ψ results in

Ψ(x1,x2) =
1√
2
[ψ(x1,x2) + ψ(x2,x1)] . (10B.1)

Hence the probability of finding the system at (x1,x2) is

|Ψ(x1,x2)|2 =
1

2

[
|ψ(x1,x2)|2 + |ψ(x2,x1)|2 + ψ(x1,x2)

∗ψ(x2,x1) + ψ(x1,x2)ψ(x2,x1)
∗] . (10B.2)

This reveals that the last two interference terms intensify the probability of finding the system under the condition of

x1 = x2. Let us write the de Broglie wavelength as λ and the averaged distance between the particles as l. Then at low

temperatures λ ∼ l, this tendency of bosons makes many of them to occupy the state of k = 0, which behavior leads to

BEC. The above discusstion is expressed as

Ek =
p2

2M
= kBT,

∆p ∼
√
MkBT

∴ λ =
h

∆p
∼ h√

MkBT
. (10B.3)

λ elongates as 1/
√
T with lowering the temperature. And with growing of the overlapp between the single particle

wavefunctions makes them undistinguishable and the symmetrization of the wavefunction cause the condensation to the

ground state in the phase space (r,p). The phase transition to the condensate at a certain temperature is BEC.

10B.1 Bose-Einstein condensation of ideal gas

Let us consider spin 0 ideal Bose gas. For the Bose distribution

f(ϵ) =
1

e(ϵ−µ)β − 1
(β ≡ (kBT )

−1) (10B.4)

we define the point of µ = 0 as follows. At T = 0, from (10B.4) all the particles fall into the ground state, there we

define
µ(T = 0) = 0. (10B.5)

At finite temperatures, let N be the number of particles in the system:

N =
∑
i

f(ϵi).

*1 The acronym of BEC is applied to both Bose-Einstein Condensation and Bose-Einstein Condensate. In actual use, the confution is not serious.
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In the usual case we can write
N →

∫
f(ϵ)D(ϵ)dϵ. (?)

Here the number of particle at the ground state N0 should be

N0 =
1

e−µβ − 1
∼ 1

−µβ
= −kBT

µ
→ µ ∼ −kBT

N0
. (10B.6)

If we calculate the particle distribution on this line, for three dimensional ideal gas

ϵ(k) =
ℏ2k2

2m
then D(ϵ) =

m3/2V√
2π2ℏ3

√
ϵ. (10B.7)

Therefore

N =
V m3/2

√
2π2ℏ3

∫ ∞

0

√
ϵ

e(ϵ−µ)β − 1
dϵ =

(mkBT )
3/2

√
2π2ℏ3

V

∫ ∞

0

√
x

ex−α − 1
dx, (10B.8)

where x ≡ ϵβ and α ≡ µβ. We write the definite integral term as I(α), then I is

I(0) =

∫ ∞

0

√
x

ex − 1
dx =

√
π

2
ζ

(
3

2

)
∼ 2.6, (10B.9)

which decreases with increasing of the absolute value of α < 0. Then, in this logic, with T → 0 the maximum number

of N determined from (10B.8) goes to zeo. It is apparent that we have dropped something from the counting. That is, of

course, the macroscopic number of particles fall into the ground state.

From Eq. (10B.8),

I(α) =

√
2π2ℏ3

(mkBT )3/2
N

V
.

When this excessds (10B.9) at low temperatures the anomaly (increase in the particle number at the ground state.) occurs.

This critical temperature Tc is

T < Tc ≡
2πℏ2

mkB

[
N

ζ(3/2)V

]2/3
. (10B.10)

Here l ≡ (V/N)1/3 is the average distance between the particles and Eq. (10B.10) is interpreted as

l =
h

ζ(3/2)
√
2πmkBTc

∼ λ(T = Tc). (10B.11)

This confirms the statement that the BEC takes place when the average de Broglie wavelength is comparable with the

average particel distance.

Below Tc, we add the number of ground state particles N0 to Eq. (10B.8):

N =
V m3/2

√
2π2ℏ3

∫ ∞

0

√
ϵ

e(ϵ−µ)β − 1
dϵ+N0. (10B.12)

From Eq. (10B.6), N0 becomes a macroscopic number fro T < Tc, then µ = 0. Therefore

N0 = N − V m3/2

√
2π2ℏ3

∫ ∞

0

√
ϵ

eϵβ − 1
dϵ = N

[
1− V

N

(mkBT )
3/2

√
2π2ℏ3

I(0)

]
= N

[
1−

(
T

Tc

)3/2
]
. (10B.13)

This is just like a spontaneous magnetization rapidly grows to finite values below the critical temperature in the ferro-

magnetic transition.

The total energy of the system for T < Tc is calculated as

E =
V m3/2

√
2π2ℏ3

∫ ∞

0

ϵ3/2

eβϵ − 1
dϵ (10B.14)

ここで T < Tcでは
∫ ∞

0

x3/2

ex − 1
dx =

3
√
π

4
ζ

(
5

2

)
より

E =
3

2
ζ

(
5

2

)( m

2πℏ2
)3/2

V (kBT )
5/2. (10B.15)
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Fig. 10B.1 Specific heat at constant volume of three di-
mensional ideal Bose gas as a function of temperature. Tc

is the critical temperature of the BEC.

Then the heat capacity at constant volume is calculated as

Cv =
15

4
ζ

(
5

2

)( m

2πℏ2
)3/2

V k
5/2
B T 3/2. (10B.16)

Cv shows a cusp at Tc indicating that this is the phase transition.

10B.2 Bosonic stimulation

Here we have a look at bosonic stimulation for N particles, which is, though, essentially the same as what has been

mentioned on the case of two particles in Sed. ??. As we have seen, the bosonic stimulation works as if it is a driving

force in BEC or laser oscillation. Let us consider a identical boson system the case a particle in state φini gets perturbation

and transitions to other single particel state φfin. Now the problem is the difference in the transition probabilities to the

state occupied with N particles and to the empty state. We write the initial state as

ψ
(i)
+ (r1, · · · , rN+1) =

1√
(N + 1)N !

∏
l nl!

N∏
m=1

R̂m,N+1det
(+){φi(rj)}φini(rN+1). (10B.17)

The symbol det(+) represents permanent, which is obtained by making the signs of all the terms into +. The final

state ψ(f)
+ is obtaned by exchanging φini with φfin. Let the matrix elements of perturbation Hamiltonian be a, i.e.

⟨φfin|Ĥ1|φini⟩ = a.

Assuming that φi (i ≤ N) is orthogonal to φfin, among ⟨ψ(f)
+ |Ĥ1|ψ(i)

+ ⟩, number of terms that give non-zero a is

(N+1)N !
∏

l nl!. This is equal to the sqare of the denominator in normalization constant. Then finally ⟨ψ(f)
+ |Ĥ1|ψ(i)

+ ⟩ =
a.

On the other hand, assuming all of φi (i ≤ N) are φfin, we can write

ψ
(i)
+ =

1√
(N + 1)

N∏
m=1

R̂m,N+1φfin(r1) · · ·φfin(rN )φini(rN+1). (10B.18)

All of the N ! terms in det(+) are φfin(r1) · · ·φfin(rN ) and devided by N ! in the denominator of normalization constant

to 1. However the final state is
ψ
(f)
+ = φfin(r1) · · ·φfin(rN )φfin(rN+1). (10B.19)

Then we get ⟨φfin|Ĥ1|φini⟩ = a
√
N + 1, and from the Fermi’s golden rule, the transition probability should be N + 1

times larger.
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Lecture note Magnetism (11)
22nd June (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

In the last week we saw an example of magnon BEC in thermal equilibrium observed in a bit special material *1. Here

we would like to see an experiment on the BEC under quasi-equilibrium condition.

The experimental setup is shown in the left panel of Fig. 5.11[1]. A microwave pulse is applied to an YIG thin film

for the generation of low energy (∼ 100 mK) magnons through a parametric process. A photon of microwave has a very

small momentum, with which the excitation of a single magnon is difficult. However as shown in the inset, it is possible

to excite two magnons with the same momentums but in opposite directions. Therefore, the excited magnons have almost

the half of the energy of applied microwave. The concentration and the energy distribution of magnons are measured

by Brillouin scattering of a laser light. The right panel of Fig. 5.11 shows the results. With increasing the power of

microwave from 4 W to 5.9 W, the number of magnons increased rapidly with keeping the width of distribution. The

observed distribution is much broader than the actual one as demonstrated in (d), in which the result of measurement with

a higher resolution is displayed. This is claimed as the observation of BEC.

Fig. 5.11 Left: Experimental setup to observe a magnon BEC in quasi-equilibrium. A microwave is applied through
a strip line. It excites a number of low energy magnons through a parametric process shown in the inset. A laser
beam is applied for measurement of magnon distribution with the Brillouin scattering. Right: Time evolution of
energy distribution of magnons after a microwave excitation pulse. Black closed dots are for 5.9 W of the power of
microwave. Open ones are for 4 W. The red curve in (d) is with 50 MHz resolution measurement.

5.9.3 Ferromagnetic (Antiferromagnetic) resonance

As noted in Appendix 10A.1, ferromagnetic resonance (FMR) is a resonance absorption by the Larmor precession of a

macroscopic magnetization. It can also be seen as the long wavelength limit of magnons. In an analysis of an experiment

on a system with magnetic order, we need to consider complicated experimental details such as demagnetizing field,

which was explained in the first lecture. Let us write the free energy of the system F as

F =
∑
⟨i,j⟩

λijMi ·Mj −
∑
i,j

MiKi,jMj −
∑
i

Mi ·

H −N
∑
j

Mj

 , (5.103a)

= −λM2 +M ·KM −M · (H −NM), (5.103b)

*1 Dimer magnetism is not so rare, but it often has a very high critical field of spin gap closing, that situation makes experiments difficult.
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where eq. (5.103a) is for a paramagnetic case, and eq. (5.103b) is for a ferromagnetic case with macroscopic magnetiza-

tion. Though we are mainly using B, which is mostly used in experiments, here, we use H to avoid confusion due to

existence of a spontaneous magnetization. In the rhs of eq. (5.103a), the first term is the exchange interaction, the second:

magnetic anisotropy, the third: Zeeman with demagnetizing effect (N (tensor), Sec. 1.2.2). Then the effective magnetic

field working onM other thanH is
Heff = λM − (K +N)M , (5.104)

in which λM can be dropped from the equation of motion because it is always parallel to M . Then the equation of

motion is then given by
1

γ

dM

dt
=M × (H −KM −NM), (5.105)

where γ is the gyromagnetic ratio. This becomes a very complicated form in general experiments. However, in case that

the sample shape has an axis of rotational symmetry taken along the easy axis of magnetization, and the external field is

also along the easy axis, the resonance frequency ω is given by

ω = γ
√

(H + (Kx −Kz +Nx −Nz)M)(H + (Ky −Kz +Ny −Nz)M), (5.106)

where z-axis is taken along the field.

Also in antiferromagnets, ferrimagnets, similar resonances take place due to the Larmor precession of macroscopic

magnetization. In order to treat the situation we consider the resonance conditions of magnetizations M1, M2
*2 of

magnetic sublattices. The effective fieldsHeff1,Heff2 forM1,M2 respectively, are

Heff1 = −λM2 +K11M1 +K12M2 +N(M1 +M2) (5.107a)

Heff2 = −λM1 +K21M1 +K22M2 +N(M1 +M2). (5.107b)

In antiferromagnetic case, because M1 = −M2, the last terms in the two equations of eq. (5.107) vanish. And in the

tensor of anisotropy, the followings hold.

K11 = K22, K12 = K21. (5.108)

If the anisotropy is uniaxial, the anisotropic energy FA is

FA = −K1

2
(cos2 θ1 + cos2 θ2), (5.109)

where θi are the angles between the primary axis and the magnetizationMi. The anisotropy tensor is

Kzz = − K1

|M1|
, (others) = 0, (5.110)

where the primary axis is taken to z. The resonance conditions, then, are given as follows[2].

ω±

γ
=
√
2λK1 + (K1/|M1|)2 ±H, H ≤ Hc, (5.111a)

ω+

γ
=
√
B2 − 2λK1 H > Hc. (5.111b)

Here, Hc =
√
2λK1 is the critical field of the spin-flop transition. When the anisotropic field K1/|M1| is much smaller

than the exchange field λ|M1|, we can write the condition as

ω±

γ
=
√
2λK1 ±H, H ≤ Hc. (5.112)

In the case of ferrimagnet, the complexities are unavoidable. Refer to [3, 4], if necessary.

*2 So far we have used MA, MB, which way makes the subscripts awkward. We will use 1, 2 instead, for a while.
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Fig. 5.12 Spin wave resonance (Walker mode) observed in
a permalloy film with thickness of 560 nm. The horizontal
axis is magnetic field in unit of Oe. The vertical axis is ab-
sorption strength for microwave of frequency 8.89 GHz. The
boundary condition leaded to the observation of the odd num-
ber modes from n=7 to 13 in eq. (5.114). The absorption lines
at higher fields were not counted by some reason. From [5].

5.9.4 Spin wave resonance

(A)FMR is a resonance of total magnetization and can be seen as the limit of long wavelength. For thin film samples,

standing wave modes perpendicular to the films are expected. The spectra of such standing wave mode is discrete. Those

modes are also called Walker modes *3. From the simplest dispersion relation (5.81) obtained in Secs.5.8.2, 5.8.3, the

resonance frequency is

ωk = γH +
2SJ

ℏ
(ka)2. (5.113)

Here γ is the gyromagnetic ratio defined for H- representation.

Now, we consider the case that spins are fixed at the surfaces due to some strong magnetic anisotropy. From the

boundary condition that the surfaces should be the nodes, the condition of resonance is

k =
nπ

L
, n = 1, 2, · · · , (5.114)

where L is the film thickness[6]. In a comparatively simple case as the easy axis is perpendicular to the film, various

information can be obtained by, e.g. changing the film thickness. This is called spin wave resonance (magnon reso-
nance). Figure 5.12 shows an example of spectrum. In the era of theoretical proposal and experimental confirmation, the

method was frequently used for direct measurement of exchange interaction coefficient J . In recent nano-sized magnets,

various confinement shapes have been tested. In many cases, the analysis needs the help of numerical calculations[7].

A resonant motion of macroscopic magnetization can be viewed as a condensate of magnons and this can exists be-

cause they are bosons. The phenomenon is, however, different from the BEC, in which the boson system spontaneously

condensates breaking the gauge symmetry. On the other hands, resultant phenomena are similar in that many quanta

occupy a single quantum state and the condensate behaves as a classical wave. This is, for example, the same for electro-

magnetic waves, which we are using for communication in daily life. There is no problem in treating these as classical

waves, but quantum mechanically, multiple photons are occupying a single quantum state and it is not too much to say

they are forming (near) coherent states. This has long been pointed out, e.g., in introductory publications on quantum

mechanics[8]. Accordingly, the fact that such condensates of magnons can be created at room temperatures with non-

adiabatic methods, is not very surprising. But then, magnon condensate also shows quantum phenomena like quantum

tunneling of macroscopic magnetization, or quantum entanglement with photons, and so on. This means we need to be

aware of what phenomena we are observing in studying them.

In the lecture, we will see some examples of classical wavy manner in magnon condensates.

*3 Because the wave equation has the form of Walker equation.
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5.10 Renormalization group and scaling theory of phase transitions

Let us be back to general theory of phase transition. Magnetic phase transitions are the best subject for guessing the

concept of scaling.

A huge number of review articles and books have been published on the renormalization group (RG), which is a major

theme for physics as a whole. Anyone interested in this issue should read, after all, a bible review[9] in this area. As

mentioned in the title of this paper, the original motive for developing the renormalization group theory is the Kondo effect

discovered in dilute magnetic alloys and the Kondo problem (this is also a major subject for whole physics) raised by

Kondo’s theory. In that sense, the RG is closely related to the magnetism. I recommend as a basic textbook ref. [10, 11],

as a standard for experts ref. [12] *4. Among the commentaries on the Internet, ref. [13] seems to be careful and easy to

understand. Also a review ref. [14] can be taken in arXiv. In the lecture I would give a super digest explanation.

5.10.1 Correlation function

For the scaling and RG, an important concept is the correlation function. So far we considered the case the magneti-

zation is uniform in space. Even the fluctuations, considered as magnons, have spatially uniform amplitude. However in

reality, as we observed in the movie of numerical calculation of Ising model, with lowering the temperature, orderings

in spins locally appear (spin cluster), the size of which grows on approaching the critical point. If we observe the phe-

nomenon from the view point of spatial fluctuation and in the Fourier space, the characteristic wavelength of fluctuation

grows to diverge at the critical point.

Let us treat the above process as follows. We consider a local magnetization density m, weakly depending on r as

m(r). Let m be a local order parameter. By the same logic in Sec. 5.2.1, the free energy density f at r is

f(m(r,∇m(r)) = f0 +
a

2
m2 +

b

4
m4 + c|∇m|2 − hm, (5.115)

where in the rhs, the argument r is omitted. h is the local field. Free energy F is represented in the functional form as

F{m(r)} =

∫
V

dr′f(m(r′),∇′m(r′)). (5.116)

The partition function is

Z =

∫
Dm(r) exp

[
−F{m(r)}

kBT

]
. (5.117)

Here Dm(r) is a functional integral, which means taking the sum over all possible m(r). This is a well known concept

in the Feynman path integral[15, 16]. Because the probability density of realization of distribution m(r) is

p{m(r)} =
1

Z
exp

[
−F{m(r)}

kBT

]
, (5.118)

the statistical average of a physical quantity A is given by

〈A〉 = 1

Z

∫
Dm(r)A exp

[
−F{m(r)}

kBT

]
. (5.119)

Then as we did for eq/ (5.16), we assume the temperature dependences of a and b in eq. (5.115) as

a = α(T − TC) (α > 0), b = const. (> 0). (5.120)

*4 I recommend solving the problems. One of my friends in particle field solved all of these. I myself tried some, but felt difficult.
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c is also assumed to be constant. We write the correlation function of fluctuation in the order parameter as

g(r) = 〈(m(0)− 〈m(0)〉)(m(r)− 〈m(r)〉)〉 = 〈m(0)m(r)〉 − 〈m(0)〉 〈m(r)〉 . (5.121)

In the region T > TC, the average of the order parameter itself is zero, thus the second term is zero. The Fourier

expansion representation of m(r) is

m(r) =
1√
V

∑
k

mk exp(ik · r), (5.122)

where V is the system volume. Because m(r) is real, m−k = m∗
k should hold. In 〈m(0)m(r)〉, the term exp(±ik · r)

can be expressed as
(mk +m−k)(mke

ikr +m−ke
−ikr) = 2|mk|2e−ikr + 2|m−k|2eikr.

By using this and from the translational symmetry of the system, we write

g(r) =
1

V

∑
k

〈|mk|2〉 exp(−ik · r). (5.123)

Then we obtain

F = V f0 +
∑
k

|mk|2
(a
2
+ ck2

)
+

b

4V

∑
k1+k2+k3+k4=0

mk1
mk2

mk3
mk4

, (5.124)

where we take the zero field limit h → 0. In the region T > TC, we can ignore the last 4-th order term in (5.124). The

weight function (5.118) now gives the Gaussian distribution

1

Z
exp

[
− 2

kBT

′∑
k

(a
2
+ ck2

)
(m

(r)2
k +m

(i)2
k )

]
, (5.125)

where we drop the first constant term in eq. (5.124). In the last parentheses, the term |mk|2 is written in a real-imaginary-

separated form as
Re[mk] = m

(r)
k , Im[mk] = m

(i)
k .

The symbol
∑′

k means taking the sum over independent k, which give a half of the sum in (5.124). Hence the factor 2 is

given. From the above we can write the average of |mk|2 as

〈|mk|2〉 =
kBT

a+ 2ck2
. (5.126)

Substituting the above into eq. (5.123), g(r) is expressed as

g(r) =
1

V

′∑
k

kBT

a+ 2ck2
e−ik·r = kBT

∫ ∞

0

e−ik·r

2ck2 + a

d3k

(2π)3
=
kBT

8πd

exp(−r/ξ)
r

, ξ =

√
2c

a
. (5.127)

The result indicates that the correlation is damped exponentially on the distance in the region T > TC. ξ in eq. (5.127)

is called correlation length. Considering the temperature dependence in eq. (5.120), the correlation length varies as

(T − TC)
1/2 in the vicinity of TC. While ξ diverges at TC, the correlation of fluctuation decrease with the distance as

g(r) ∝ r−1.

In the region T < TC, a long range order appears resulting in the difference between the correlation of fluctuation

(5.121) and that of the order parameter itself, that is

g̃(r) = 〈m(0)m(r)〉 . (5.128)

This g̃(r) is thus finite for r → ∞. This is equivalent with the appearance of long range order[17]. As for g(r), it goes

zero at r → ∞.
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5.10.2 Scaling relations

We introduced the concept of critical exponent in Sec. 5.3. In introducing the scaling relations, we review the “routine”

notations. The relevant parameters are the temperature t ≡ (T − TC)/TC, and the external magnetic field h. The

behaviors in the critical region are

Specific heat : C ∼ |t|−α,

Magnetization (order parameter) : m ∼ |t|β (t < 0)

m ∼ h1/δ (t = 0),

Susceptibility : χ ∼ |t|−γ ,

Correlation length : ξ ∼ |t|−ν .

As we saw in the previous subsection, these anomalous behaviors around the critical point t = h = 0, originate from the

divergence of correlation length, namely the divergence of the size of clusters with a short range order.

The correlation function of fluctuation (5.121) of the system with spatial dimension of d is generally written as

g(r) ∼ exp(−r/ξ)
rd−2+η

. (5.129)

Here η is one of the critical exponents and in eq. (5.127) (i.e., the GL theory) η = 0. The GL theory also gives

α = 0, β = 1/2, γ = 1, δ = 3, ν = 1/2, η = 0. (5.130)

The GL theory is a phenomenology. The critical exponents depend on the “universality” of the system as we already saw.

These critical exponents have the following relations.

γ = (2− η)ν, (5.131a)
α+ 2β + γ = 2, (5.131b)
β + γ = βδ. (5.131c)

Among them, eq. (5.131b) and eq. (5.131c) are called scaling relation, which can be derived from the scaling ansatz
explained in the following. We have taken t and h as the relevant parameters of the transition, but the ansatz tells the

behavior of the system in the vicinity of transition is determined by single relevant parameter h/|t|∆. Here ∆ is called

gap exponent.
We assume that the anomalous part of the free energy fs can be expressed with the use of a function f±(x)

fs ∼ |t|2−αf±

(
h

|t|∆

)
, (5.132)

around the critical point. ± in f± correspond to T ≷ TC. For h = 0, t can move without affecting h/|t|∆. The factor

|t|2−α is then attached to have the consistency with the specific heat. Now the magnetization and the susceptibility are

m(h = 0) ∼ −∂fs
∂h

∼ |t|2−α−∆f ′±(0) ∼ |t|β (t < 0) (5.133)

χ ∼ −∂
2f

∂h2
∼ |t|2−α−2∆f ′′±(0) ∼ |t|−γ . (5.134)

These lead to the relations

β = 2− α−∆ (5.135)
−γ = 2− α− 2∆. (5.136)

Then erasing
∆ = β + γ (5.137)

E11-6



from the above, a scaling relation (5.131b) is obtained.

Next to see the behavior of magnetization at t = 0, we need to explore the asymptotic behavior of f ′± for h/t∆ → ∞.

We assume the asymptotic form as
f ′±(x) ∼ xλ± (x→ ∞). (5.138)

Then the asymptotic behavior of eq. (5.133) is

m ∼ |t|βf ′±
(

h

|t|∆

)
∼ hλ±

|t|∆λ±−β
. (5.139)

For m to be finite for t→ 0,

λ± =
β

∆
=

β

β + γ
. (5.140)

From this relation and the relation and the definition of the critical exponent m ∼ h1/δ ,

δ =
β + γ

β
, (5.141)

which is eq. (5.131c). There is also a relation
2− α = dν, (5.142)

with the spatial dimension d, and is called hyperscaling relation.

5.10.3 Renormalization group

As approaching the critical point, the correlation length of fluctuation ξ gets longer. Within the space of this length,

some order is growing. Taking a distance x shorter than ξ (1 < x � ξ), we can assume that the system is uniform in

a space with a size of x. We thus average physical quantities within the size x and then the unit of length is changed to

x (i.e., x 7→ 1). This is called coarse graining. With this operation, the correlation length is transformed to ξ/x and the

system looks being drew apart from the critical point. Similarly, the parameters of the system get various modifications

by this operation. This operation is called renormalization group (RG) transformation with scaling factor x.

Let R(x) be such an operation, then, e.g, the transform of H → H ′ can be written as

H ′ = R(x)H . (5.143)

Sequential operation of R(x) and R(x′) is the same as a single RG transform with scaling factor of xx′. That is

R(x′)R(x) = R(x′x). (5.144)

The RG transformation thus fulfils the associativity forming a semigroup. It is called then renormalization group.

Generally there is no inverse transformation from once coarse-grained system to the original fine-grained system. Hence

a set of such transformations is not a group but semigroup.

Figure 5.13(a) show an example of an Ising model on a two-dimensional square lattice, in which four spins are averaged

into one as
sq =

1

4

∑
i

sqi. (5.145)

Then a new lattice in Fig. 5.13(b) appears. The scaling factor is
√
4 = 2. The averaging makes the spins to be able to take

the value of ±1, and the model is no longer an Ising model. Also the range of interaction is modified. Accordingly, with

repetition of RG transformation, the system moves in the parameter(s) space. The invariants with RG transformation are

the symmetry of the order parameter and the spatial dimension. The parameter(s) space is then characterized by them.
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Fig. 5.13 (a) Illustration of an Ising model on two-dimensional square lattice. (b) Schematically shows a renor-
malization group transformation of averaging four spins in (a) as a single spin. (c) Schematic illustration of a flow
diagram. A is a stable fixed point. B is an unstable fixed point.

Now we take the scaling factor as a continuous variable. Then the system transitions in the parameter space become

continuous. Figure 5.13(c) shows an example of such continuous “flows” of system in parameter space by RG trans-

formation. This kind of diagram is called flow diagram. If a system is in the high temperature side of the critical

temperature at the starting point, the RG transformation drives it to the completely disordered state. If the starting point

is in the opposite lower side of TC (t = 0), it will transition to the perfectly ordered state. Perfectly ordered/disordered

states are invariant for RG transformation, hence they form fixed points in the flow diagram as illustrated in Fig. 5.13(c).

They are called stable fixed points, an example of which is indicated as A in Fig. 5.13(c). They collect the flow lines.

On the other hand, just on the critical point, the correlation length of fluctuation diverges and the system on it does not

change with RG transformation. Therefore the critical point is a fixed point. However, an infinitesimally small shift in

the parameter causes repelling of flow lines from the critical point. Hence it is called unstable fixed point. In Fig. 5.13(c),

B is an example of such an unstable fixed point.

5.10.4 Derivation of scaling ansatz

We again take t (temperature) and h (magnetic field) as the relevant parameters of transition. We write a RG transfor-

mation with a scale factor x as

t′ = g
(x)
1 (t, h), (5.146a)

h′ = g
(x)
2 (t, h). (5.146b)

In the vicinity of the fixed point t = h = 0 (critical point), we try to expand the above in the form

t′ ' Λ11(x)t+ Λ21(x)h,

h′ ' Λ21(x)t+ Λ22(x)h.
(5.147)

There is no constant (0-th order) term because it is a fixed point. We further know that there is no linear coupling between

t and h because the sign of h is reversed with reversing the sign of the order parameter while t does not change with that.

Namely Λ12(x) = Λ21(x) = 0. Therefore the association law (5.144) gives

(Λ11(x))
n = Λ11(x

n), (Λ22(x))
n = Λ22(x

n). (5.148)

This should hold for any natural number n and any x (> 1). This means Λ11(x) and Λ22(x) are power functions of x.

Λ11(x) = xλ1 , Λ22(x) = xλ2 . (5.149)
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Now we apply a RG transform with scaling factor x, n-times on a system that has the starting point at (t, h). We

assume the final state temperature t0 = xnλ1t is far enough from the critical point. Because the correlation length of the

fluctuation is
ξ(t)

ξ(t0)
= xn =

(
t

t0

)−1/λ1

, (5.150)

and from the critical exponent definition ξ ∼ |t|−ν , we obtaine ν = λ−1
1 .

On the other hand in d-dimensional system, the free energy density f(t, h) becomes xd times by the RG transformation.

Therefore
xndf(t, h) = f(xnλ1t, xnλ2h) = f(t0, (t/t0)

−λ2/λ1h). (5.151)

We see t0 as a constant, then with an appropriate function f±(x) we write

f(t, h) = td/λ1f±(t
−λ2/λ1h) = tdνf±

(
h

t∆

)
∆ =

λ2
λ1
. (5.152)

This is showing the scaling ansatz.
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Chapter 6
Magnetism of itinerant electrons

The mechanism of ferromagnetism in common metals such as iron, cobalt, and nickel is thought to be significantly

different from what we have seen so far.
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Lecture note Magnetism (12)
29th June (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Chapter 6
Magnetism of Itinerant Electrons

In insulators, the following picture is expected to describe the magnetism: the spins localized at the lattice point cause

magnetism through various spin-to-spin interactions. Common ferromagnetic metals like iron, cobalt, and nickel are

supposed to have largely different mechanism from the above. Namely, electrons migrating in crystals (itinerant electrons)

have their spins aligned partially due to the correlation effect, which phenomenon may generate the ferromagnetism.

When the correlation effect is not very strong and the system is paramagnetic, such itinerant electron systems can be

treated within the Landau’s Fermi liquid theory[1] as mentioned in Ch. 3. On the other hand, the correlation is so strong

that a ferromagnetism appears, the difficulties in theories increase largely. It was not easy for theoretical models to

explain such types of ferromagnetism to the level in which the theories can be comparable with experiments. Including

such difficulties, we would like to review the present understandings and open questions in the last three weeks.

6.1 Hartree-Fock approximation of electron gas

We would have a brief look at the difficulty to have a realistic ferromagnetism in the model of electron gas. We use the

simplest Hartree-Fock approximation (not very simple actually) of electron correlation.

6.1.1 Hartree-Fock approximation

Though you are already familiar with Hartee-Fock (HF) approximation, we will shortly review it here (we will not

use such details in analysis of electron gas here). We consider an N -particle system, in which the particles occupy

single-particle wavefunctions
φk1

, φk2
, · · · , φkN

. (6.1)
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The many body state of this N -body system can be expressed by the Slater determinant:

Φ =
1√
N !

∣∣∣∣∣∣∣
φk1(x1) · · · φkN

(x1)
...

. . .
...

φk1
(xN ) · · · φkN

(xN )

∣∣∣∣∣∣∣ , (6.2)

which satisfies the ferminon particle exchange statistics. xi is a general coordinate, which contains all of single particle

freedoms. We write the Hamiltonian in the form

H =

N∑
j=1

h(xj) +
∑
⟨i,j⟩

v(xi, xj), (6.3)

where h is a single-particle Hamiltonian, v is a two-body interaction. In the HF approximation, we calculate the expec-

tation value
W = ⟨Φ|H |Φ⟩ , (6.4)

and look for the set {φkj} that minimize W with a variational method.

Here we use the ket representation |kj⟩ for φkj
. We assume the orthonormal basis condition:

⟨ki|kj⟩ = δij . (6.5)

In this representation, W is written as

W =

N∑
j=1

⟨kj |h|kj⟩+
∑
⟨i,j⟩

[⟨kikj |v|kikj⟩ − ⟨kikj |v|kjki⟩]. (6.6)

In the rhs, in the term ⟨kikj |v|kikj⟩, the two particles interact in the same order but in ⟨kikj |v|kjki⟩, the two particles

exchange their positions during the interaction. The former is called the direct integral, the latter is called the exchange

integral (exchange interaction). In the following, we adopt the Lagrange multiplier method to minimize the energy of the

system (6.6) under the constraint of (6.5). That is, we consider the quantity

W −
∑
⟨i,j⟩

λij ⟨ki|kj⟩ , (6.7)

which should be minimized. In order for that, we consider the condition that the variations of the above quantity with

{φ∗
kj
} are zero, which can be expressed as

hφkj
+
∑
i=1

[⟨ki|v|ki⟩φkj
− ⟨ki|v|kj⟩φki

] =

N∑
i=1

λijφki
. (6.8)

Here we define a single-body density matrix as

ρ(x, x′) =

N∑
i=1

φ∗
ki
(x)φki(x

′), (6.9)

with which we further define veff and A as

veff(x) =

∫
dx′v(x, x′)ρ(x′, x′), A(x)φ(x) =

∫
dx′v(x, x′)φ(x′)ρ(x′, x). (6.10)

Then eq. (6.8) is written as

[h(x) + veff(x)−A(x)]φkj
(x) =

N∑
i=1

λijφki
(x). (6.11)

In eq. (6.11), the Hermite operator given in [· · · ] in the left hand side does not depend on the specific selection of kj
in the operand. Also the eigenfunctions are orthogonal to each other. Hence by taking φkj

as the eigenfunctions, we can

write
[h(x) + veff(x)−A(x)]φkj

(x) = ϵkj
φkj

(x). (6.12)
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Then we take N solutions in the ascending order from the lowest {ϵkj}. The Slater determinant of these N solutions

is the ground state in the HF approximation. However, the operator in the [· · · ] part also depends on {ϵkj
} (though not

depends on specific selection of the operand), (6.12) should be solved self-consistently. Equation (6.12) is called Hartree-
Fock equation. This is essentially the same as the self-consistent equation in the molecular field approximation of the

Heisenberg model. To see how to proceed the calculation in more specific physical problems, or how to go beyond the

HF approximation (e.g., taking the effect of higher order term into account), refer to textbooks on many-body problems

(e.g., [2, 3, 4]).

6.1.2 Jellium model and ferromagnetism

Here we adopt jellium model, in which the lattice potential is approximated by a uniform background with a plus

charge. And we consider a free electron system in the background. The ground state in the absence of electron mutual

interaction is the state in which the Fermi sphere is filled up as

|Ψ⟩ =
∏

E(k,σ)≤EF

c†kσ |0⟩ . (6.13)

Next we write down the Hamiltonian in the presence of electron-electron interaction as

H =
∑
k,σ

ϵkc
†
kσckσ +

1

2V

∑
k,k′,σ,σ′,q ̸=0

vqc
†
k+q,σc

†
k′−q,σ′ck′σckσ, (6.14)

where V is the system volume, ϵk = ℏ2k2/2m and vq = 4πe2/q2. The Fermi wavenumber kF is determined from the

Fermi energy EF, and the only parameter that characterizes the system is the averaged electron distance measured by

Bohr radius aB:

rs ≡
1

aB

[
3

4π(k3F/3π
2)

]1/3
, (6.15)

in the jellium model.

Because the system has spatially translational symmetry in the jellium model, plane waves are already the solutions of

self-consistent HF equation (6.12), and then the residual procedure of the HF approximation is to minimize the energy of

many-body state. The kinetic energy per single electron is

ϵke =
1

N

∑
ks

ϵknks =
2V

N

∫
d3k

(2π)3
ℏ2k2

2m
nk =

3

10

ℏ2k2F
m

=
2.21

r2s
Ry, (6.16)

where Ry=ℏ2/2ma2B=13.6 eV is the unit named “Rydberg,” and is the binding energy of hydrogen atom. The Hartree

term that corresponds to the direct integral is vanished by the charge neutral condition of jellium model. The exchange

term, that is the expectation value of interaction between the states of exchanged particles. It is then

ϵex = − 1

2NV

∑
k,q ̸=0,s

vq ⟨ψ|ck+q,sck+q,sc
†
kscks|ψ⟩ =

1

2NV

∑
ks

vqnk+qnk, (6.17)

per an electron. The summation can be carried out as an integral over q to be

ϵex = −3e2

4

kF
π

= −0.92

rs
Ry. (6.18)

Then the total Hartree-Fock energy is

ϵhf =

(
2.21

r2s
− 0.92

rs

)
Ry. (6.19)

From eq. (6.16), the total kinetic energy of electrons per unit volume is

Eke =
3

10

ℏ2k2F
m

4π

3

(
kF
2π

)3

=
ℏ2k5F
20π2m

. (6.20)
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Let (kF↑, n↑), (kF↓, n↓) be the Fermi wavenumber and the electron number of up and down spin states respectively. Then

Eke(p) =
ℏ2

20π2m
(k5F↑ + k5F↓) =

3(6π2)2/3ℏ2

10m
(n

5/3
↑ + n

5/3
↓ ) =

3(6π2)2/3ℏ2

10m
[p5/3 − (1− p)5/3]n

5/3
0 , (6.21)

Eex(p) = −3e2

4

(
6

π

)1/3

(n
4/3
↑ + n

4/3
↓ ) = −3e2

4

(
6

π

)1/3

[p4/3 − (1− p)4/3]n
4/3
0 . (6.22)

Here because polarization 0.5 ≤ p ≤ 1 is defined as n↑ = pn0, n↓ = (1−p)n0, p = 1 corresponds to perfect polarization,

p = 0.5 corresponds to no polarization. Then let ∆E be

∆E = [Eke(1) + Eex(1)]− [Eke(0.5) + Eex(0.5)], (6.23)

then if ∆E < 0, the ground state is a spin-polarized ferromagnetic state. This condition can be calculated from the above

and expressed with the average distance parameter defined in eq. (6.15), as

rs > 5.4531. (6.24)

However, we found several ordinary metals with rs ∼ 5. Hence the above criterion does not fit the reality.

6.1.3 Electron correlation

The above discrepancy should come from either overestimation of lowering in the Coulomb energy with avoiding each

other between parallel spins, or that of the Coulomb repulsion energy between antiparallel spins. The latter seems to be

more plausible because the itinerant electrons with antiparallel spins also should avoid each other to lower the Coulomb

repulsion energy. That means, in the jellium model, the solution of antiparallel spins in HF (mean field) approximation

is not good enough for discussion of ground state. We need to go for higher order approximation or to consider some

different approximation. We here define correlation energy as the energy difference between the energy of true ground

state and that of mean field approximation.

There exist various methods in the estimation of correlation energy. Figure 6.1 shows a phase diagram of charged

fermion gas in the jellium model calculated by diffusion Monte-Carlo method[5]. The red line indicates spin-polarized gas

and the ferromagnetism appears in the region that the red line lies below the blue broken line which indicates unpolarized

gas. However as can be seen, rs for the appearance of the ferromagnetism is around 70, which is too sparse for real

metals. Around rs ∼ 90 the Wigner crystal state in which the electrons form a crystal and localize. This means if the

correlation energy is correctly estimated, the ferromagnetism in common metallic ferromagnet like iron or nickel cannot

be explained at all.

Fig. 6.1 Phase diagram of electron gas calculated
by diffusion Monte-Carlo method. The energy ori-
gin (0) is taken to that of a bosonic system. The re-
gion where the red line lies lowest position should
be ferromagnetic. From [5].
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6.2 HF approximation in Hubbard model

The jellium model, not only in the mean field approximation, even with correct estimation of correlation energy, is

far from the realistic explanation of ferromagnetism in metals. In the case of ferromagnets caused by double-exchange

interaction, which we have seen in the previous chapter, the electrons hopping between local sites mediate ferromagnetic

interaction between localized spins. Though the situation is different in the case of 3d transition metals, it can be a hint

that the coexistence of localization and hopping can cause ferromagnetism in realistic conditions. Then we try to consider

the Hubbard model introduced in Sec. 4.1.3.

6.2.1 Hubbard model for multiple site

We introduced two-site Hubbard model (sometimes referred to as Kanamori-Hubbard model) in Sec. 4.1.3. It is ex-

pected to describe from insulators, metals, ferromagnets and superconductors in spite of its compactness, and has been

long used in theories. As we saw there, the long range part of the Coulomb interaction is ignored and the Coulomb re-

pulsion only works between electrons in the same site (on-site interaction). On the other hand, the electrons hop between

site i and site j with probability tij . The Hamiltonian for a general number of sites is

Hubbard Hamiltonian (1)� �
H =

∑
i,j,s

tijc
†
iscjs + U

N∑
i

n̂i↑n̂i↓, (6.25)

� �
where s is the spin freedom. cis satisfies the fermion commutation relation

{c†is, cis′} = δijδss′ . (6.26)

In the first hopping term, the annihilation operator cis and hopping transition matrix element tij are Fourier-expanded

as
cis =

1√
N

∑
k

eiRi·kaks, tij =
1

N

∑
k

ϵke
ik·(Ri−Rj). (6.27)

Ri is the spatial coordinate of site i. With substituting these into the first term in the right hand side of (6.25), because∑
⟨i,j⟩,s

tijc
†
iscjs =

∑
i,j,s

2

N2

∑
k1,k2,k3

ϵk1
eik1·(Ri−Rj)e−ik2·Ria†k2s

eik3·Rjak3s =
∑
k,s

ϵka
†
ksaks, (6.28)

we can view the hopping (1st) term as kinetic energy term of wide-spreading electrons. From this, (6.25) can be expressed

as follows.

H =
∑
k,s

ϵka
†
ksaks + U

N∑
i

n̂i↑n̂i↓. (6.29)

The Hubbard model is widely used in the study of many-body problem. Particularly it is practical to be applied to

the ferromagnetism of 3d transition metals. In such systems, 4s and 3d electrons coexist in single band. 3d electrons

are the origin of ferromagnetism and though the wavefunctions spread over the whole crystal (itinerant) they have high

probabilities of existence at atomic positions, i.e. tendency to localize. On the other hand, 4s electrons tend to delocalize

and screen the Coulomb interaction between 3d electrons. This property justifies the approximation of on-site short range

Coulomb interaction.
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6.2.2 HF approximation

We apply HF (mean field, molecular field) approximation to the Hubbard model. There is the same problem of overes-

timation as that in electron gas, but we will see what is different in the case of Hubbard model.

To estimate the ferromagnetic transition, we consider magnetization and electron number per site:

m = ⟨n↑⟩ − ⟨n↓⟩ , n = ⟨n↑⟩+ ⟨n↓⟩ , (6.30)

and compare the expectation values of energy for the states of m = 0 and m ̸= 0. The magnetization is expressed in the

unit of µB and g-factor is set to 2.

In the HF approximation of Hubbard model (6.25), the second term (interaction term) is simplified as

U
∑
i

n̂i↑n̂i↓ = U
∑
i

[⟨n̂↑⟩ n̂i↓ + ⟨n̂↓⟩ n̂i↑ − ⟨n̂↑⟩ ⟨n̂↓⟩+ (n̂i↑ − ⟨n↑⟩)(n̂i↓ − ⟨n↓⟩)]

≃ U
∑
i

(⟨n̂↑⟩ n̂i↓ + ⟨n̂↓⟩ n̂i↑)−NU ⟨n↑⟩ ⟨n↓⟩ (6.31)

Take average → =
NU

4
(n2 −m2). (6.32)

Namely, the second order term of fluctuation (n̂i↑ − ⟨n↑⟩)(n̂i↓ − ⟨n↓⟩) is ignored. In this approximation, ↓-electrons

work as an average on an ↑-electron, conversely, ↑-electrons work as an average on a ↓-electron. The last equation shows

the expectation value for eigenstates.

We can rewrite eq. (6.31) with the Fourier expansions in (6.27), (6.28) to a Hamiltonian with the operators n̂ks as

HHF =
∑
k,s

(ϵk + U ⟨n−s⟩)nks −NU ⟨n↑⟩ ⟨n↓⟩ . (6.33)

Here we assign s = ±1 to spin ↑, ↓, and use the relation

⟨ns⟩ =
1

2
(n+ sm), (6.34)

to obtain

HHF =
∑
k,s

(
ϵk − sUm

2

)
n̂ks +

NU

4
(n2 +m2)

≡
∑
k,s

ϵ̃ksn̂ks +
NU

4
(n2 +m2), (6.35)

where we take averages as
∑

k,s n̂ks → N(⟨n↑⟩+ ⟨n↓⟩). That is, the appearance of the magnetizationm shifts the single

electron energy by ∆µ = (−s)Um/2. The directions of the shifts are opposite depending on spins. With packing the

electrons into this band up to a common chemical potential µ, the total energy is given by

E =
∑

ϵ̃ks≤µ

(
ϵk − sUm

2

)
+
NU

4
(n2 +m2)

=
∑

ϵ̃ks≤µ

ϵk +
NU

4
(n2 −m2). (6.36)

On the other hand, the spin-dependence of ∆µ brings about the difference in the electron numbers in ↑ and ↓ states.

And the difference should be equal to m. This is the self-consistent condition, which commonly appears in mean-field

approximation. For simplicity, we assume that the density of states D(EF) around EF is constant for energy. Then from

m = 2D(EF)∆µ = D(EF)Um, (6.37)
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the condition m ̸= 0 gives the criterion of appearance of nonzero m as

UD(EF) = 1. (6.38)

We estimate the enhancement of kinetic energy by magnetization as we did in the electron gas. From the above

condition we obtain

D(EF)(∆µ)
2 =

m2

4D(EF)
. (6.39)

As in eq. (6.36), the decrease in the Coulomb repulsion energy by appearance of m is −NUm2/4. Summing up of these

gives

∆E =
N

4

[
m2

D(EF)
− Um2

]
. (6.40)

The condition ∆E < 0 is
UD(EF) ≥ 1, (6.41)

which agrees with the criterion (6.38). This is called Stoner condition.

Roughly speaking, let Ew be the bandwidth and from D(EF) ∼ E−1
w , we can say that the Stoner condition means

the ferromagnetism appears when the Coulomb interaction width U exceeds the bandwidth Ew. Because it is still a HF

approximation, as in the case of electron gas, we have the problem of overestimation the stability of ferromagnetic state.

6.2.3 Susceptibility

Before going into the problem, we see the magnetic susceptibility given in the HF approximation. The magnetization

M is expressed as
M =

gµB

2

∑
i

[⟨ni↑⟩ − ⟨ni↓⟩]
gµB

2

∑
i

ni−. (6.42)

The susceptibility χ per an atom is

χ =
M

NB
=
gµB

2

n−
B
. (6.43)

Since the interaction energy of magnetic field and magnetic moment (Zeeman energy) is −MB, the energy of electrons

in magnetic field is written as
EB = E(0) + E2n

2
− −N

gµB

2
Bn−, (6.44)

where n− is small. And E2 is

E2 =
1

2

d2(∆E)

dn2
−

, (6.45)

where ∆E corresponds to ∆E in eq. (6.40).

In paramagnetic state, the coefficient of the term with the second order in M is positive in the GL theory. Then E2 is

also positive and n− that minimizes EB , gives the susceptibility. Namely,

χ =
(gµB)

2N

4E2
. (6.46)

If we calculate E2 from the HF approximation in eq. (6.40), we obtain

χ =
(gµB

2

)2 D(EF)

1− UD(EF)
=

χPauli(a)

1− UD(EF)
, (6.47)

where χPauli(a) is the Pauli paramagnetic susceptibility in eq. (3.8) per an atom.

In the HF approximation, when the system does not fulfill the Stoner condition, it keeps paramagnetism though as in

eq. (6.47), the susceptibility is enhanced from the Pauli paramagnetic susceptibility by the factor [1− UD(EF)]
−1. This

is called Stoner factor.
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Here from the identity of temperature expansion of the chemical potential when the system is strongly Fermi degener-

ated:

µ = µ0

[
1− π2

6

d logD(µ0)

d log µ0

(
kBT

µ0

)2

+ · · ·

]
, (6.48)

the temperature variation of chemical potential δµ is written as

δµ = −π
2D′

F

6DF
(kBT )

2. (6.49)

For simpler expression, dD(E)/dE|E=EF
is simply written as D′

F. To add this to ∆µ in eq. (6.37) as correction, taking

the second derivative by the energy is required. Hence we write

A =
π2

6

(
(D′

F)
2

DF
−D′′

F

)
, (6.50)

and the temperature dependence of susceptibility is written as

χ =
(gµB

2

)2 D(EF)

1− UD(EF) + UA(kBT )2
. (6.51)

The temperature that gives zero for the denominator is TC, and by using this, we can write

χ =
C

T 2 − T 2
C

. (6.52)

This does not agree with the Curie-Weiss law, which is also observed in 3d transition metals with ferromagnetism. This

indicates that the HF approximation has problems other than the quantitative problem we will see in the second next

section.

6.3 Ferromagnetism in 3d transition metals

Before going into more realistic theories, we would like to have a look on experimental facts on the ferromagnetism in

3d metals. Those should be also the target of more realistic theory. We also see “tuning” of the exchange parameter gives

a qualitative understanding of the experiments even within the HF approximation.

In the table below, the bulk parameters of the three elemental ferromagnetic metals are listed[6]．

structure

/density

(kgm−3)

lattice

parameters

(pm)

TC

(K)

MS

(MAm−1)

K1

(kJm−3)

λS

(10−6)

α P

(%)

Fe bcc

7874

287 1044 1.71 48 −7 1.6 45

Co hcp

8836

251

407 (fcc)

1388 1.45 530 −62 8.0 42

Ni fcc

8902

352 628 0.49 −5 −34 44

Tab. 6.1 Bulk properties related to the ferromagnetism in Fe, Co, Ni. K1 is density of anisotropic energy; λS spin
diffusion length; α damping factor of spin resonance; P spin polarization. P is measured by the Andreev reflection
at 4.2 K. The others are measured at room temperature. From [6].
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Fig. 6.2 Averaged spontaneous magnetic
moment (in unit µB) is plotted as a function
of averaged valence electron number (hori-
zontal axis) for various 3d transition metals
(elemental metals, and alloys). From [7].
Valence electron number 6 corresponds to
Cr, 11 corresponds to Cu.

6.3.1 Slater-Pauling’s curve

As shown above, among 3d transition metals, elemental metals that show ferromagnetism are Fe, Co, and Ni. The

averaged valence electron numbers are 8, 9, 10 respectively. However, with making alloys with other 3d metals or

Heusler alloys, which contains group III, or IV elements, we can synthesis metallic ferromagnets with the valence electron

number from around 6 to about 10.5. Then we plot the spontaneous magnetization per an atom obtained from the saturated

magnetization as a function of number of valence electrons. The data points align regularly as in Fig. 6.2. They are on

the lines forming a triangle with Fe around the peak. And the edges of the triangle have gradients of ±1. This curve is

called Slater-Pauling’ curve.

In Fig. 6.2 the alloys plotted in the left region than Fe are mainly Heusler alloys. For Heusler alloys, the following

relation is reported to hold[8]:

mmatnetization per atom in unit of µB = Z − 24. (6.53)

Relation like eq. (6.53) is called Slater-Pauling law.

6.3.2 Spin-band structure in Ni

This relation should come from the number of 3d electron spins in the open shell. Here, however, the “open shells”

form an energy band and the electrons in it are itinerant. Then numerically calculated band structures are often used for

the explanation of Slater-Pauling’s curve. The band structure must have spin-dependence, that means the electron mutual

interaction should be taken into account in some way. Many of them are the HF approximation, which is known to

overestimate the exchange energy gain. But still, qualitative explanation of Slater-Pauling’s curve is possible as follows.

Nickel (Ni) has fcc structure and TC is comparatively low among the three elemental ferromagnets. Figure 6.3(a)

shows the spin-dependent density of states calculated by the APW method (Appendix 12A)[9]. The 4s electron band

has a widely spread density of states with low amplitudes. Conversely, the 3d electron band has a comparatively narrow

distribution and has several high sharp peaks. A single spin subband of 4s electrons can accommodate a single electron

per atom while that of 3d electrons can accommodate 5 electrons per atom. The bottom of 4s band is lower than that of

3d band. The position of EF shown in Fig. 6.3(a) indicates that the 4s band as 0.6 electron, the 3d ↑ band (the upper

side in the figure. the major spin subband) has 5 electrons, the 3d ↓ band has 5.4 electrons. 10 valence electrons are
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(a) (b)

Fig. 6.3 Spin-dependent density of states in (a) Ni, (b) Fe, calculated by the APW method. (a) is from [9]. (b) is from [10].

in an atom in total. In total, the total spin for 0.6 electron remains, which fact explains the appearance of spontaneous

magnetic moment with 0.6µB. As above, the non-integer spontaneous magnetic moment is explained by the coexistence

of 4s band and 3d band and partial occupation of them by valence electrons.

In Ni-Cu alloys, the spontaneous magnetizations vanishes around 60% of Cu content. A Cu atom has 11 valence

electrons, which is one more than Ni. Hence with increasing the Cu content, the extra one electron fills the vacant space

of 0.6 electron in 3d ↓ band. Just at 60%, the space is filled up and the spontaneous magnetization vanishes. Also, it is

now clear that the gradient is −1 in Slater-Pauling’s curve from Ni to Cu.

6.3.3 Spin band structure in Fe

Figure 6.3(b) shows the spin dependent density of states in bee Fe calculated by the APW method. Though the shape

of density of states resembles to that of Ni, there is a large difference in the position of EF. The total electron number is

8 and the 4s band has 0.8 electron. Of the remaining 7.2 electrons, 4.7 electrons are in the major spin subband (the lower

in the figure), 2.5 electrons are in the minor spin subband. The configuration brings about the spontaneous magnetization

of 2.2µB.

The reason why the major spin subband does not have full 5 electrons can be explained in Fig. 6.3(b). In the case of Ni,

EF places above the 3d major spin subband while in the case of Fe, EF hits a valley of the minor spin subband. In such

a situation, a variation of electron number in the minor spin subband causes a large shift in the relative EF position. The

position of EF in fixed energy space does not move largely. That means actually the whole band should move largely.

Summing up the discussion, once EF hits a valley of density of states, change of electron number is mostly absorbed by

other subbands and EF is locked to the valley. This makes it hard to increase the space (hole) in the minor spin subband.

And the major spin subband still has some hole in it.

Alloying with Co increases the number of electrons, with which we can test the above hypothesis. When the Co

concentration is low, the increasing electrons fill the major spin band, and the spontaneous magnetic moment increases

with the Co concentration. At 30% where the major spin band is completely filled (5−4.7 = 0.3), the increasing electrons

work in the direction of filling the holes in the minor spin band, and the number starts to decrease. For the same reason,
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the moment decreases due to alloying with Cr, which reduces the number of electrons.

Appendix 12A: An example of band calculation (APW)

Numerical calculations that exceed the HF approximation are still not vey common, and many theories used to explain

the Slater-Pauling law are by (a bit-modified) HF approximation. Band calculation is often the basis for considering

the electron correlation effect, so let us take a brief look at a type of calculation method here. Here we introduce APW

(augmented plane wave) method, which is one of the techniques to find solutions of Kohn-Sham equation *1, for the

details, refer to [11, 12] and the references therein.

Let us consider the Schrödinger equation of the state ϕ(r) in potential V (r):

H ϕ(r) =

[
− ℏ2

2m
∇2 + V (r)

]
ϕ(r) = Eϕ(r). (12A.1)

As the potential, we consider one called Muffin-tin potential. Let rc be the radius of Muffin-tins, which must be shorter

than the half of the distance between neighboring atoms. Then the potential is described as(Fig. 12A.1)

V (r) =

{
Va(r) (spherical) (r < rc)

Vo (= Va(rc): const.) (r ≥ rc).
(12A.2)

As V (r), Hartree potential, which corresponds to the direct integral in eq. (6.6), is adopted. That is

Vd(r) =
∑
i

⟨ϕi(r′)|
e2

|r − r′|
|ϕi(r′)⟩ . (12A.3)

And exchange potential which corresponds to the exchange integral is

Vex↑ = −3e2
(

3

4π

)1/3

ρ↑(r)
1/3. (12A.4)

The above is from spin density function approximation. The above Hartree and exchange potentials are obtained from

the eigen functions, which are the solutions of eq. (12A.1). Hence the equation constitutes the self-consistent equation.

Actual calculation is on the variational method. As the variation functions, we adopt

Φvr(r) =

{∑
l,mAlmRl(r)Y

m
l (θ, φ) r < rc,∑N

n=0Bn exp[i(k +Kn) · r] r > rc.
(12A.5)

That is, inside the muffin-cup, wavefunctions have the same form for an isolated atom potential, and outside, the super-

positions of plane waves. Kn are inverse-lattice vectors.

Fig. 12A.1 Schematic diagram of Muffin-
tin potential. From [13].

*1 Though APW method was invented long before the Kohn-Sham equation, now it can be placed at such a position in the present understandings.
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The wavenumber k is fixed and the variation is taken under the boundary condition of wavefunction Φ connection at

r = rc. Actually, the coefficients {Bn} is determined for ⟨Φ|H |Φ⟩ to take the extremals. N cannot be taken to infinity

and the calculation is done within a finite number. Thus obtained Φ is used to calculate the potential and the procedure

is continued to reach conversion. Then k is varied and the same procedure is repeated to obtain the band structure as we

have seen in Sec. 6.3.

Appendix 12B: MateriApps

MateriApps (https://ma.issp.u-tokyo.ac.jp/) is a portal site for material science simulations operated in cooperation

with the Institute for Solid State Physics CMS and others, and has information and download links for many related

applications.

Among them, Quantum Espresso (https://www.quantum-espresso.org/) is an application that performs a wide range of

calculations such as ground state calculation, DFT calculation, and quantum transport, and is characterized by being able

to run on a PC.
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materials for spintronics: Co2fez (z=al, ga, si, ge). Science and Technology of Advanced Materials, Vol. 9, No. 1,

p. 014102, January 2008.

E12-12



[8] I. Galanakis, P. H. Dederichs, and N. Papanikolaou. Slater-pauling behavior and origin of the half-metallicity of the

full-heusler alloys. Phys. Rev. B, Vol. 66, p. 174429, Nov 2002.

[9] John W. D. Connolly. Energy bands in ferromagnetic nickel. Phys. Rev., Vol. 159, pp. 415–426, Jul 1967.

[10] Rastko Maglic. Van hove singularity in the iron density of states. Phys. Rev. Lett., Vol. 31, pp. 546–548, Aug 1973.

[11] 和子望月,直鈴木. 固体の電子状態と磁性. 大学教育出版, 7 2003.

[12] Jorge Kohanoff. Electronic Structure Calculations for Solids and Molecules. Cambridge University Press, June

2006.

[13] Walter A. Harrison. Solid State Theory (Dover Books on Physics) (English Edition). Dover Publications, 4 2012.

E12-13



Lecture note Magnetism (13)
6th July (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Last week, we saw that the HF approximation on the Hubbard model leads to the Stoner condition, which brings about

an energy difference between the ↑-band and the ↓-band. This modeling and the approximation enable us to explain some

experimental facts like Slater-Paulings’ curve qualitatively. On the other hand, the approximation still has qualitative

and quantitative problems naturally for such a simple approximation. In such situations, self-consistent renormalization

(SCR) spin-fluctuation theory gave satisfactory results at least for the ground states. This week we would like to reach

the entrance of SCR theory but before that we need a bit heavy preparation, to which most of the lecture time is devoted.

6.4 Dynamic susceptibility

So far we have seen responses of materials to static magnetic fields. Here we turn our attention to responses to vibrating

external fields. In such a case, we need to use the linear response theory.

6.4.1 Linear response

Let Hext(t) be the Hamiltonian of time-dependent external field. The total Hamiltonian is expressed as H0+Hext(t).

From the time dependence of density matrix ρ defined in the previous section in eq. (6.9) is,

iℏ
∂ρ

∂t
= [H0 + Hext(t), ρ(t)], (6.54)

where only time t is shown explicitly as a variable. The initial state, for time t = −∞, is set to the thermal equilibrium

state of H0, that is

ρ(−∞) = ρeq =
1

Z0
exp

(
− H0

kBT

)
, (6.55)

where Z0 = Tr[exp(−H0/kBT )] is the partition function of unperturbed state.

As shown in Appendix 13A, the density matrix satisfies the following integral equation.

ρ(t) = ρeq +
1

iℏ

∫ t

−∞
dt′[U0(t− t′)Hext(t

′)U−1
0 (t− t′), U0(t− t′)ρ(t′)U−1

0 (t− t′)] (6.56)

= ρeq +
1

iℏ

∫ t

−∞
dt′U0(t− t′)[Hext(t

′), ρ(t′)]U−1
0 (t− t′), (6.57)

where also as in (13A.1),

U0(t) ≡ exp

(
H0

iℏ
t

)
. (6.58)

Since the commutation relation in the right hand side of eq. (6.57) is the response to an external field in addition to ρeq,

the lowest order in it is the first order of t. In the same way, Hext is a time-dependent part with no constant. As long

as we consider the liner response, ρ(t′) in the commutation relation in eq. (6.57) can be replaced with time-independent

ρeq. ρeq commutes with Hamiltonian H0, being made from the eigenstates of it. Then we can write

ρ(t) ≃ ρeq +
1

iℏ

∫ t

−∞
dt′[U0(t− t′)Hext(t

′)U−1
0 (t− t′), ρeq]. (6.59)
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Now we assume the Hamiltonian of external field can be written in the form of

Hext(t) = −PF (t), (6.60)

where F (t) is a quantity to represent the strength of the field and P is the operator corresponding to the field. With this

density matrix, an expectation value of a general physical quantityQ can be obtained as Tr{ρ(t)Q}[1, 2] in the following.

⟨Q(t)⟩ = Tr{ρ(t)Q} = ⟨Qeq⟩+
1

iℏ

∫ t

−∞
dt′ ⟨[P,Q(t− t′)]⟩F (t′). (6.61)

Here ⟨Qeq⟩ and Q(t) are defined as

⟨Qeq⟩ = Tr{ρeqQ}, Q(t) = U0(t)
−1QU0(t). (6.62)

From eq. (6.61), we know that the expectation value ⟨[P,Q(t− t′)]⟩ is a pure imaginary.

Now we consider the external field of frequency ω and write

F (t) = F0 cos(ωt) = Re[F0e
−iωt]. (6.63)

We here define the susceptibility χ(ω) as

∆Q(t) = ⟨Q(t)⟩ − ⟨Qeq⟩ = Re[χ(ω)F0e
−iωt]. (6.64)

On the other hand, from eq. (6.61)

∆Q(t) =
1

iℏ

∫ t

−∞
dt′ ⟨[P,Q(t− t′)]⟩Re[F0e

−iωt′ ]. (6.65)

Now we know that the right-hand sides of eq. (6.64) equates eq. (6.65). The right hand side of (6.64) can be written as

Re[χ(ω)F0e
−iωt] =

F0

2
[χ∗(ω)eiωt + χ(ω)e−iωt]. (6.66)

Similarly (6.65) is developed to

F0

2iℏ

{[∫ ∞

0

dτ ⟨[P,Q(τ)]⟩ e−iωτ

]
eiωt +

[∫ ∞

0

dτ ⟨[P,Q(τ)]⟩ eiωτ

]
e−iωt

}
, (6.67)

where τ = t− t′). By remembering ⟨[P,Q(τ)]⟩ is a pure imaginary, we compare the above two to obtain the following.

Kubo formula� �
χQP (ω) =

i

ℏ

∫ ∞

0

⟨[Q(τ), P ]⟩ eiωτdτ. (6.68)� �
Here we add a subscript to χ, which shows the relation of response P → Q. Equation (6.68) is one of the formulas

called Kubo formula, which give linear response functions[3]. This can be viewed as a terminus ad quem of the linear

response theory initiated by Nyquist and by others. The Kubo formula has been applied to a vast field of science with

fruitful results. It should be used probably forever in science. On the other hand, there are various different formalisms

in linear response. We need to select one of them according tot the character of the problem[2].

6.4.2 Fluctuation-dissipation theorem

Equation (6.68) is a Fourier transformation from (time) to (frequency). At the same time it is a response of a physical

quantity Q to the external field in eq. (6.60). The correlation function ⟨[Q(τ), P ]⟩ represents transfer on time (τ ) axis to
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the susceptibility *1. Then we define a Green’s function for physical quantity P , Q as

G±
QP (t) = ∓ i

ℏ
θ(±t) ⟨[Q(t), P ]⟩ , (6.69)

in which we restore the symbol for time as τ → t. Here θ(t) is the Heaviside function defined as

θ(t) =

{
1 (t ≥ 0),

0 (t < 0).
(6.70)

We also call G+
QP (t) as a retarded Green’s function, G−

QP (t) an advanced Green’s function. Then eq. (6.68) is a Fourier

transformation of G+
QP (t), and can be written in the form

χQP (ω) = −G+
QP (ω) = −Fω{G+

QP (t)}, (6.71)

where Fω{· · · } expresses the Fourier transform of · · · to ω-space.

A Fourier transform of a correlation function of a perturbation and a response:

SQP (ω) =

∫ ∞

−∞
dt ⟨Q(t), P ⟩ eiωt (6.72)

is called a dynamical form factor. Here we can show the following as in Appendix 13B.

SQP (ω) =
i

1− e−βℏω [G
+
QP (ω)− G−

QP (ω)], (6.73)

where β ≡ (kBT )
−1. The left-hand side of eq. (6.73) is a Fourier transform of a correlation function and the right-

hand side is a susceptibility of linear response. Such formulas that show linear relations between correlation functions

and coefficients of linear responses are called fluctuation dissipation theorem. Of course fluctuations and energy-

dissipations are different physical quantities. The theorems are not saying that they are the same but that fluctuations can

be expressed by coefficients of linear response, which are parameters of energy dissipation.

Let {|n⟩} be a complete set of eigenfunctions of H , then

G+
QP (ω) =

∑
n,m

⟨n|Q|m⟩ ⟨m|P |n⟩ e−βEn − e−βEm

En − Em + ℏω + iη
. (6.74)

6.4.3 Random Phase Approximation (RPA)

We consider an external magnetic field

B(r, t) = B(q, ω)ei(q·r−ωt), (6.75)

applied on a Hubbard model

H =
∑
i,j,s

tijc
†
iscjs + U

N∑
i

n̂i↑n̂i↓. (6.25)

We write the local magnetization density in unit of −gµB as

S(r) =
1

2

∑
i

∑
α,β

δ(r − ri)c†iασαβciβ , (6.76)

*1 Green’s function was invented by George Green (1973-1841). As you probably used in the electromagnetism, it is frequently used for finding
solutions of differential equations. A Green’s function generally expresses an effect of some local cause to an away point. It appears in various
formalisms and the name “Green’s function” is now also applied to general correlation (transfer) functions. I should note that according to
ref. [4], the naming “Green’s function” is strange and we should call it “Green function.”
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where σ = (σx, σy, σz) is a vector with Pauli matrices as elements. Accordingly, Hamiltonian(6.60) in the present case

is
Hext(t) = gµB

∫
B(r, t) · S(r)d3r = gµBS−q ·B(q, ω)e−iωt. (6.77)

Here Fourier-q components of magnetization Sq are defined as follows.

Sq+ = Sqx + iSqy =
∑
k

a†k↑ak+q↓,

Sq− = Sqx − iSqy =
∑
k

a†k↓ak+q↑,

Sqz = (1/2)
∑
k

(a†k↑ak+q↑ − a†k↓ak+q↓).


(6.78)

In comparison of eq. (6.77) and eq. (6.60), the quantity which corresponds to P is gµBS−q . On the other hand, the

response is also magnetization and in linear response, that is gµBSq . Hence the z-component of dynamic susceptibility

is

χzz(q, ω) = (gµB)
2 i

ℏ

∫ ∞

0

dt ⟨[Sqz(t), S−qz]⟩ eiωt. (6.79)

Similarly, considering non-zero part after taking correlation function, the transverse component is written as

χ+−(q, ω) = (gµB)
2 i

ℏ

∫ ∞

0

dt ⟨[Sq+, S−q−]⟩ eiωt. (6.80)

Let us calculate χ+−(q, ω) in the following way. We take a k term in the expression of Sq+(t) in eq. (6.78). The

corresponding Green’s function is

G+
kq(t) = −iθ(t) ⟨[a†k↑(t)ak+q↓(t), S−q−]⟩ . (6.81)

Henceforth we omit + to specify “retarded.” The time derivative of this Green’s function (equation of motion) is

iℏ
∂Gkq

∂t
= −iθ(t) ⟨[eiH t/ℏ[a†k↑ak+q↓,H ]e−iH t/ℏ, S−q−]⟩+ δ(t)ℏ ⟨[a†k↑(t)ak+q↓(t), S−q−]⟩ . (6.82)

We divide the Hubbard Hamiltonian into the kinetic energy term Hk and the on-site interaction term Hint, and calculate

the commutation relation in the right-hand side as follows.

[a†k↑ak+q↓, S−q−] =
∑
k′

[a†k↑ak+q↓, a
†
k′+q↓ak′↑]

= a†k↑ak↑ − a†k+q↓ak+q↓, (6.83a)

[a†k↑ak+q↓,Hk] = (ϵk+q − ϵk)a
†
k↑ak+q↓, (6.83b)

[a†k↑ak+q↓,Hint] = (U/N)
∑

k1,k2,p

[a†k↑ak+q↓, a
†
k1+p↑a

†
k2−p↓ak2↓ak1↑]

= −(U/N)

∑
k1,p

a†k↑a
†
k1+p↑ak+q+p↓ak1↑ +

∑
k2,p

a†k+p↑a
†
k2−q↓ak2↓ak+q↓

 . (6.83c)

There are terms with four (2+2) operators products term of annihilation-creation operators in eq. (6.83c) representing

the interaction, to which we apply mean field approximation. That is, we replace two of the four operators with the

average of them in [· · · ] as

−
∑
p

a†k+p↑ak+q+p↓ ⟨a†k↑ak↑⟩+
∑
k1

a†k↑ak+q↓ ⟨a†k1↑ak1↑⟩

−
∑
k2

a†k↑ak+q↓ ⟨a†k2↓ak2↓⟩+
∑
p

a†k+p↑ak+q+p↓ ⟨a†k+q↓ak+q↓⟩ . (6.84)
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Mean field approximation to such dynamic quantity is generally called Random Phase Approximation(RPA). The

naming means a quantity with a phase factor (exp(iθ)) of randomized phase (θ) should vanish.

In eq. (6.84), a difference between an average on ↑ and that on ↓ is taken in the second and the thrid terms. In the

paramagnetic states, they cancel each other, and the time derivative of Green’s function in RPA (6.81)is

iℏ
∂Gkq

∂t
= (ϵk+q − ϵk)Gkq(t)

− (U/N)(⟨a†k↑ak↑⟩ − ⟨a†k+q↓ak+q↓⟩)
∑
p

G(k+p)q(t)

+ (⟨a†k↑ak↑⟩ − ⟨a†k+q↓ak+q↓⟩)δ(t). (6.85)

Taking Fourier transformation of both side we get

Gkq(ω) =
fk↑ − fk+q↓

ℏω + ϵk − ϵk+q

[
1− U

N

∑
p

Gpq(ω)

]
, (6.86)

where fks = ⟨a†ksaks⟩ is the Fermi distribution function. Summation over k gives

χ+−(q, ω) = N(gµB)
2 2χ(0)(q, ω)

1− 2Uχ(0)(q, ω)
, (6.87)

where
χ(0)(q, ω) =

1

2N

∑
k

fk+q↓ − fk↑
ℏω + ϵk − ϵk+q

(6.88)

is the susceptibility of non-interacting system per site normalized by (gµB)
2.

For the calculation of above χ(0)(q, ω) we calculate the following. Here for clearness of expression, we adopt ℏ → 1,

the unit of wavenumber is taken to kF, the unit of energy is taken to ϵF. With 3D Jacobian, the integral is written as

1

2N

∑
k

fk
ω + ϵk−q − ϵk

=
1

2
ρ(ϵF)

∫ 1

0

k2dk

∫ 1

−1

d(cos θ)

ω + q2 − 2kq cos θ

=
1

2
ρ(ϵF)

∫ 1

0

k2dk
1

2kq
log

ω + q2 + 2kq

ω + q2 − 2kq
. (6.89)

From a mathematical identity∫
x log(ax+ b)dx =

1

2

[
x2 −

(
b

a

)2
]
log(ax+ b)− x2

4
+

b

2a
x,

Fig. 6.4 Boundary lines of Kohn anomaly expressed in
eq. (6.91), and four regions separated by them in the upper half
of q-ω plane.
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Fig. 6.5 Plot of the real part of χ(0)(q, 0) in
eq. (6.93). The derivative diverges at q = 2.

the integration can be performed as

χ(0)(q, ω) =
ρ(ϵF)

2

1

2q

{
1

2

[
1−

(
ω + q2

2q

)2
]
log

ω + q2 + 2q

ω + q2 − 2q
+
ω + q2

2q

−1

2

[
1−

(
−ω + q2

2q

)2
]
log

−ω + q2 − 2q

ω + q2 + 2q
+

−ω + q2

2q

}
. (6.90)

In (6.90), when the arguments of log is negative, the susceptibility has a finite imaginary part that leads to damping.

The boundary (Kohn anomaly boundary) is given by

ω = ±(q2 ± 2q). (6.91)

Figure 6.4 shows these boundaries on q − ω plane. They divide the upper half plane to four regions I∼IV. In regions I

and IV, the imaginary part is zero. In region III, the imaginary part is

Im[χ(0)(q, ω)] =
ρ(ϵF)

2

π

4

ω

q
. (6.92)

The real part is for ω = 0

Re[χ(0)(q, 0)] =
ρ(ϵF)

2

1

2q

{(
1− q2

4

)
log

∣∣∣∣2 + q

2− q

∣∣∣∣+ q

}
. (6.93)

This is plotted as a function of q in Fig. 6.5. At the Kohn anomaly boundary q = 2(kF), the curve shows a divergence of

derivative by q.

From eq. (6.87) the RPA on dynamical susceptibility of Hubbard model predicts appearance of magnetic order for

Uχ(0)(qmax, 0) ≥
1

2
. (6.94)

Here qmax is the wavenumber that gives the maximum value of χ(0). In the case of qmax = 0, as can be seen in Fig. 6.5,

chi(0)(qmax) → ρ(ϵF)/2, then naturally this agrees with the Stoner condition. On the other hand, when qmax ̸= 0, a

magnetic order with finite wavenumber exists. This corresponds to spin density wave (SDW).

6.5 Self-consistent renormalization spin fluctuation theory

As we have seen above, the mean field (HF approximation) theory based on the Hubbard model has various problems

both in principle and in comparison with experiments. On the other hand, although parameter tuning may be included, it
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explains some aspects of experiments such as the Slater-Pauling’s curve. It is impossible to discuss trends of researches

from a single point of view. However a way to view the flows of research on magnetism is that there were two ways

to go after the HF approximation. One is to look for different ways from HFA by simplifying models, by considering

extreme cases and the strong correlation is taken into account more seriously. The other is improvement of HFA to solve

the difficulties. The former has produced many interesting results on mathematical physics and conversely experiments

appeared aiming at realizing such mathematical models. A big success of the latter is self-consistent renormalization
(SCR) spin fluctuation theory[5]．

Since it is difficult to see the mathematical scientific direction in the remaining one lecture, I would like to briefly

explain the SCR theory and finish it. Many textbooks on mathematical science directions and strongly correlated systems

have been published during the last quarter century[6, 7, 8, 9]. If you are interested, please refer to them.

(To be continued)

Appendix 13A: Derivation of integral equation

We define the interaction representation of ρ (ρ(I)) as

ρ(t) = eH0t/(iℏ)ρI(t)e
−H0t/(iℏ) = U0(t)ρI(t)U

−1
0 (t), U0(t) ≡ exp

(
H0

iℏ
t

)
. (13A.1)

Here, ρI = U−1
0 ρU0, [H0, U0] = 0. Also

∂U0

∂t
=

H0

iℏ
U0 =

1

iℏ
U0H0,

∂U−1
0

∂t
= −H0

iℏ
U−1
0 = − 1

iℏ
U−1
0 H0, U−1

0 (t) = U0(−t).

Then from eq. (6.55), the equation of motion for ρI(t) is

iℏ
∂ρI
∂t

= iℏ
(
∂U−1

0

∂t
ρU0 + U−1

0

∂ρ

∂t
U0 + U−1

0 ρ
∂U0

∂t

)
= iℏ

(
−H0

iℏ
U−1
0 ρU0 +

1

iℏ
U−1
0 [H0 + Hext, ρ]U0 + U−1

0 ρ
H0

iℏ
U0

)
= U−1

0 (Hextρ− ρHext)U0

= [U−1
0 HextU0, ρI]. (13A.2)

From the condition ρ = ρeq and Hext = 0 for t = −∞, by integrating both sides of eq. (13A.2) with (−∞, t],

ρI(t)− ρI(−∞) = − 1

iℏ

∫ t

−∞
dt′[U−1

0 (t′)HextU0(t
′), ρI(t

′)]. (13A.3)

The we obtain

ρ(t) = ρ(−∞) +
1

iℏ
U0(t)

{∫ t

−∞
dt′[U−1

0 (t′)HextU0(t
′), U−1

0 (t′)ρ(t′)U0(t
′)]

}
U−1
0 (t)

= ρeq +
1

iℏ

∫ t

−∞
dt′U0(t− t′)[Hext(t

′), ρ(t′)]U−1
0 (t− t′), (13A.4)

which is eq. (6.57).
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Appendix 13B: Fluctuation-dissipation theorem

We change the order of Q and P in

SQP (ω) =

∫ ∞

−∞
dt ⟨Q(t), P ⟩ eiωt,

to write ∫ ∞

−∞
dt ⟨PQ(t)⟩ eiωt =

∫ ∞

−∞
dt

1

Z
Tr{e−βH PeiH t/ℏQe−iH t/ℏ}eiωt. (13B.1)

Now we use mathematical identity that for operators A, B, C, Tr{ABC} satisfies

Tr{ABC} = Tr{CAB} = Tr{BCA}. (13B.2)

Then ∫ ∞

−∞
dt ⟨PQ(t)⟩ eiωt =

∫ ∞

−∞
dt

1

Z
Tr{eiH t/ℏQe−iH t/ℏe−βH P}eiωt

=

∫ ∞

−∞
dt

1

Z
Tr{e−βH e(i/ℏ)H (t−iβℏ)Qe−(i/ℏ)H (t−iβℏ)P}eiω(t−iβℏ)e−βℏω

= e−βℏωSQP (ω). (13B.3)

Namely we reach

SQP (ω) =
1

1− e−βℏω

∫ ∞

−∞
dt ⟨[Q(t), P ]⟩ eiωt =

i

1− e−βℏω [G
+
QP (ω)−G−

QP (ω)]. (13B.4)
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Lecture note Magnetism (14)
13th July (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Let us go into self-consistent renormalization (SCR) spin fluctuation (SF) theory, the entrance of which we finally

reached last week. As mentioned in the last lecture, SCR-SF theory approaches the problem with improving the approx-

imation not taking completely different ways. The theory then gained great successes[1]. We have used two weeks to

reach the entrance. It is impossible to introduce the details of the first paper[1] in a single lecture. Here I would like

to introduce only the framework of the theory along with resumes like [2, 3].e Those who wish to know the details are

requested to refer to monographs of this topic[4, 5, 6], and to original papers *1.

6.5.1 Weak metallic ferromagnetism, paramagnonr

Kawabata, one of the founders of SCR-SP theory, says a strong motivation of the theory is the finding of weak metallic

ferromagnetism like ZrZn2, Sc3In, Ni3Al[2], Also in the textbook[4] by Moriya, who is synonymous with SCR-SF

theory, paramagnon theory by Izuyama and Kubo[7] is introduced as a preliminary form of SCR-SF theory. Let us

then consider paramagnons, which are spin waves in non-magnetically-ordered metals with strong effective interactions

between spins. Such metals are considered to be marginal to ferromagnetism (anti-ferromagnetism). Palladium (Pd) tends

to form ferromagnetic alloys with non-magnetic elements and is considered to be close to ferromagnetism[8]. Helium-3,

which is not a metal but has a nuclear spin, can also be mentioned. It is long since the magnon (paramagnon) system

of superfluid helium-3 was found to cause BEC[9, 10]. In high-TC cuprates close to anti-ferromagnetic order[11], also

in iron-based high-TC superconductors[12], existences of paramagnons have been confirmed and the dispersion relations

etc. have been determined.

We saw in the last lecture that in RPA, which is the mean field approximation on dynamic susceptibility, magnon states

may be magnetically ordered ground states. This suggests that spin-fluctuations may be considered as excited states in the

magnon-system picture even when the ground state is paramagnetic. It also suggests that the existence of such collective

excitations may greatly lower the energy of excited states compared with those in static HF approximations. In spite of

such signs of improvement, the simple RPA does not solve the problems of mean field theory in temperature dependence

of susceptibility etc. This is probably due to ignoring spin fluctuation in finite temperature thermal equilibrium state.

Then in the paramagnon theory we consider the spin fluctuation in paramagnetic state.

Hellmann-Feynman theorem

First we prove the following general theorem. We consider a Hamiltonian with parameter p

H (p) = H0 + H1(p) (6.95)

with normalized eigenstate |p, n⟩ and the eigen energy En(p). A change in an eigenstate due to an infinitesimally small

change δp of p H (p+ δp) is expressed as a linear sum of the original eigenstates as

|p+ δp, n⟩ = |p, n⟩+
∑
m

Cm |p,m⟩ . (6.96)

*1 As far as I checked, most of textbooks written in English, do not even refer to the SCR-SF theory, whose logic is even difficult to be followed.
They usually introduce the simple HF approximation, then shift to DFT or GGA, in which the approximation is improved. These ab initio
calculation may doing similar improvement for the HF as SCR-SF though the details cannot be known.
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If we assume linear approximation Cm = cmδp, from

⟨p+ δp, n|p+ δp, n⟩ = |1 + cnδp|2 ⟨p, n|p, n⟩+
∑
m ̸=n

|cm|2|δp|2 ⟨p,m|p,m⟩ ,

the condition of normalization leads to cn = 0, that is, within linear approximation in δp, Cn = 0. Namely, within linear

approximation of δp,
⟨p+ δp|H (p)|p+ δp⟩ = ⟨p|H (p)|p⟩ = En(p). (6.97)

Then we can write the shift in the eigenenergy as

En(p+ δp) = ⟨p+ δp, n|H (p+ δp)|p+ δp, n⟩

=

〈
p+ δp, n

∣∣∣∣H (p) + δp
∂H (p)

∂p

∣∣∣∣ p+ δp, n

〉
= En(p) + δp

〈
p, n

∣∣∣∣∂H (p)

∂p

∣∣∣∣ p, n〉 . (6.98)

We can thus conclude
dEn(p)

dp
=

〈
p, n

∣∣∣∣∂H1(p)

∂p

∣∣∣∣ p, n〉 . (6.99)

This is called Hellmann-Feynman theorem.

From this theorem, e.g., the free energy F (p) of the system of Hamiltonian H (p) can be written as

∂F (p)

∂p
=

1

Z

∑
n

exp

[
−En(p)

kBT

]
∂En(p)

∂p
. (6.100)

In eq. (6.95), H1(p) can be an interaction Hamiltonian HI of interaction constant I . From Hellmann-Feynman the-

orem, we can introduce the interaction with varying the interaction constant as I : 0 → I . The correction term for free

energy is given as a function of I by

F (I) = F (0) +

∫ I

0

〈
∂HI′

∂I ′

〉
dI ′. (6.101)

From the above, we consider the contribution of spin fluctuation to the specific heat. Here Hubbard model in eq. (6.29)

can be written as

H =
∑
k,s

ϵka
†
ksaks + U

N∑
i

n̂i↑n̂i↓ = H0 + HI . (6.102)

As in the transform of first term, an operator at lattice pointRi is Fourier-expanded as

cis =
1√
N

∑
k

eiRi·kaks. (6.103)

And as in eq. (6.83c), we write HI as

HI =
U

N

∑
k,k′,q

a†k+q↑ak↑a
†
k′−q↓ak′↓, (6.104)

where the interaction parameter is I = U/N . We also change the notation in eq. (6.78) a bit to

S+(q) =
∑
k

a†k↑ak+q↓,

S−(q) =
∑
k

a†k↓ak+q↑.

 (6.78)
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From fermionic commutation relation, with exchanging the last two operators in the sum in right-hand side, eq. (6.104)

is developed to

HI = I
∑

k,k′,q

a†k+q↑ak↑(δk′,k′−q − ak′↓a
†
k′−q↓)

= I

∑
k,k′

a†k↑ak↑ −
∑

k,k′,q

a†k+q↑ak′↓a
†
k−q↓ak↑

 . (6.105)

Wavenumber q, over which the sum is taken, transform q → −q+ k′ − k results in k+ q → k− q+ k′ − k = k′ − q,

and similarly k′ − q → k + q. Then from eq. (6.78), we can write

HI = I

∑
k,k′

a†k↑ak↑ −
∑

k,k′,q

a†k′−q↑ak′↓a
†
k+q↓ak↑


= I

∑
k,k′

a†k↑ak↑ −
∑
q

S+(−q)S−(q)

 = I

∑
k,k′

a†k↑ak↑ −
∑
q

S+(q)S−(−q)

 . (6.106)

Next, in paramagnetic states, HI does not change with spin inversion, thus, we add the expression of ↑↔↓ and divide by

two to obtain
HI =

NeU

2
− I

2

∑
q

{S+(q), S−(−q)}+, (6.107)

where Ne is the number of electrons, {A,B}+ = AB + BA represents anti-commutation relation. In eq. (6.106), sums

over k, k′ produce Ne and N respectively. The latter is because the sum comes from that over Ri. Accordingly, the

variation in the free energy due to introduction of interaction is given by

∆F =
NeU

2
− 1

2

∑
q

∫ I

0

dI ′ ⟨{S+(q), S−(−q)}+⟩ . (6.108)

For usage of fluctuation-dissipation theorem, remember eq. (6.74):

G+
QP (ω) =

∑
n,m

⟨n|Q|m⟩ ⟨m|P |n⟩ e−βEn − e−βEm

En − Em + ℏω + iη
. (6.74)

If we use the lower half of complex plane by replacing η → −η, we obtain a parallel representation for G−
QP (ω). From

these two, we can write
G+
QP (ω)− G−

QP (ω) = −2iIm[χQP (ω)],

to further obtain
SQP (ω) =

2

1− e−βℏω Im[χQP (ω)]. (6.109)

We also rewrite eq. (6.80) as

χ+−(q, ω) = −(gµB)
2 i

ℏ

∫ ∞

0

dt ⟨[S−(−q), S+(q, t)]⟩ eiωt. (6.110)

Let |n⟩ and En be a many-body eigenstate and its eigenenergy of Hamiltonian in eq. (6.102), then the imaginary part

of χ+−(q, ω) is given by

Im[χ+−(q, ω)] =
π(gµB)

2

ℏ
∑
m,n

(ρm − ρn)δ(ω −∆Emn/ℏ) ⟨n|S−(−q)|m⟩ ⟨m|S+(q)|n⟩ , (6.111)

where

Boltzmann factor: ρn =
1

Z
exp

[
− En

kBT

]
, ∆Emn = Em − En.
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Multiply both sides of eq. (6.111) by coth(βωℏ/2), and integrate over ω to obtain∫ ∞

−∞
dωImχ+−(q, ω) coth

(
ℏω

2kBT

)
=
π(gµB)

2

ℏ
∑
m,n

(ρm − ρn) coth

(
∆Enm

kBT

)
⟨n|S−(−q)|m⟩ ⟨m|S+(q)|n⟩

=
π(gµB)

2

ℏ
⟨{S−(−q), S+(q)}+⟩ . (6.112)

Then we can write the variation of free energy in eq. (6.108) as

∆F =
NeU

2
−
∑
q

∫ I

0

dI ′
1

2π

∫ ∞

−∞
dω coth

(
ℏω

2kBT

)
Im[χ+−(q, ω)]. (6.113)

By applying the RPA formula in eq. (6.87), the above is approximated as

∆F =
NeU

2
+
∑
q

1

π

∫ ∞

0

dω coth

(
ℏω
kBT

)
Im{log[1− 2Uχ(0)(q, ω)]}. (6.114)

For calculation of specific heat, only temperature-dependent parts in ∆F are necessary.

coth
ℏω
kBT

= 1 +
2

eℏω/kBT − 1
. (6.115)

In the above, the first term “1” in the right hand side is the zero-point motion of paramagnons and ignored in the calcula-

tion of specific heat. In eq. (6.114), we need to consider the contribution of χ(0)(q, ω), susceptibility of non-interacting

system. In (q, ω)-plane shown in Fig. 6.4, the largest contribution is given in region-III, in which we can expand χ(0)(q, ω)

as

χ(0)(q, ω) =
1

2
ρ(ϵF)

[
1−A0

(
q

kF

)2

+ iC0
ℏω
ϵF

kF
q

]
. (6.116)

Here the expansion coefficients are

A0 =
1

12
, C0 =

π

4
. (6.117)

For the simplest approximation we use this expression of χ(0)(q, ω). Let α ≡ Uρ(ϵF) be the interaction constant, we

reach

∆F (T ) =
N

2
ρ(ϵF)ϵ

2
F

∫ qc

0

q2dq

∫ ∞

0

dω
2

eβω − 1
Im

[
log

(
1− α+ αA0q

2 − iαC0
ω

q

)]
= −N

2
ρ(ϵF)ϵ

2
F

∫ qc

0

q2dq

∫ ∞

0

dω
2

eβω − 1
arctan

[
ω

q

C0

K2
0 +A0q2

]
. (6.118)

As before, for simplicity of representation, unit of wavenumber q is taken as kF, ℏ = 1, unit of energy ω is taken as ϵF.

qc is a cutoff of wavenumber. Here expansion in region-III is effective only for finite q and the cutoff is indispensable and

is around 1 (kF). And K0 is

K2
0 =

1− α

α
. (6.119)

We further apply low temperature approximation ω ≪ 1 and arctanx ∼ x to obtain

∆F (T )

N
= −2π2

3
ρ(ϵF)(kBT )

2 C0

2πA0
log

K2
0 +A0q

2
c

K2
0

, (6.120)

from which we know the spin-fluctuation contribution to low temperature specific heat is proportional to T . Then if we

write

C = γT, γ0 ≡ 2π2

3
k2Bρ(ϵF), (6.121)
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then the coefficient γ is

γ = γ0

(
1 +

C0

πA0
log

K2
0 +A0q

2
c

K2
0

)
, (6.122)

where γ0 is the temperature coefficient of specific heat of electron systems without contribution from spin fluctuation.

Equation (6.122) tells that the temperature coefficient of specific heat logarithmically diverges as the condition approaches

Stoner ferromagnetic criterion α→ 1, K0 → 0.

6.5.2 SCR spin-fluctuation theory

So far, Hellmann-Feynman theorem and fluctuation-dissipation theorem are used to obtain the expression for free

energy of thermal equilibrium with dynamic susceptibility. By applying RPA to dynamic susceptibility, the effect of spin-

fluctuation is included. However, at this stage the theory just describes low-temperature approximation of paramagnetic

states. A problem here is, as is always the case of many-body problem, the effect of spin-fluctuation should be reflected

on the spin-fluctuation. Hence this simply cannot be applied to ferromagnetic state with spontaneous magnetization. For

that we need to consider self-consistent equation as in the case of Heisenberg model.

Then, here, we consider the free energy in the presence of magnetization M . The free energy is given as the sum of

free energy F0(M,T ) of non-interacting system and the quantity in eq. (6.113) by

F (M,T ) = F0(M,T ) +
NeU

2
− bM −

∑
q

∫ I

0

dI ′
1

2π

∫
dω coth

ℏω
2kBT

Im[χ+−(M, I ′; q, ω)]. (6.123)

−bM is the Zeeman term. Here, as a notation, the magnetization M and the interaction parameter I are specified in the

dynamic susceptibility χ+−.

As we saw in the GL theory static spontaneous magnetization M is given by extremum condition of F as

∂F (M,T )

∂M
= 0. (6.124)

This can be viewed as magnetic equation of state.

We restart with eq. (6.113), which does not contain any approximation. In HF mean-field approximation, integrand of

the second term in right-hand side is replaced with the one without interaction (I = 0), thus the integration with dI ′ over

region [0, I] is replaced with simple product of I .

∆FHF =
NeU

2
− I

∑
q

1

2π

∫ ∞

−∞
dω coth

(
ℏω

2kBT

)
Im[χ+−(M, 0; q, ω)]. (6.125)

From the Hubbard model in eq. (6.102), we consider the quantity:〈
∂H

∂I

〉
I=0

= N

N∑
i

⟨ni↑ni↓⟩I=0 = N

N∑
i

⟨ni↑⟩ ⟨ni↓⟩

=
N2

4
(n2+ − n2−) =

N2

4
[n2 − (2m)2] =

N2
e

4
−M2. (6.126)

In the above, small characters n, m are the numbers per sites, and

n+ = n↑ + n↓, n− = n↑ − n↓, m =
n−
2
,

where the unit of magnetization is taken as gµB, the spin is 1/2. We take eq. (6.126) multiplied by I as the I-proportional

term in (6.125). Then we can write formally

F (M,T ) = F0(M,T ) + I

(
N2

e

4
−M2

)
− bM : HF Approximation

−
∑
q

∫ I

0

dI ′
1

2π

∫ ∞

−∞
dω coth

ℏω
kBT

Im[χ+−(M, I ′; q, ω)− χ+−(M, 0; q, ω)] : Correction. (6.127)
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As is in paramagnon theory, we apply RPA(eq. (6.87)) to χ+−(M, I ′; q, ω). Then the integration with I ′ can be

performed and the result is

F (M,T ) = F0(M,T ) + I

(
N2

e

4
−M2

)
− bM

−
∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
kBT

Im[log{1− 2Uχ(0)(M ; q, ω)}+ 2Uχ(0)(M ; q, ω)], (6.128)

where we write
χ(0)(M ; q, ω) =

1

2N
χ+−(M, 0; q, ω). (6.129)

We obtain the following magnetic equation of state by calculating magnetization-derivative of eq. (6.124) in eq. (6.128).

∂F0

N∂m
− 2Um− b− 1

N

∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
2kBT

Im

[
2Uχ(0)(M ; q, ω)

1− 2Uχ(0)(M ; q, ω)
2U

∂χ(0)(M ; q, ω)

∂m

]
= 0, (6.130)

which is given as an equation for magnetization per site m =M/N .

Here we formally define magnetization per site in paramagnetic states as

χ =
∂m

∂b
,

1

χ
=

∂b

∂m
. (6.131)

We also write susceptibility per site for non-interacting system as χ0. Free energy of the system with Zeeman term

F0 − bm gives a magnetic equation of state as
∂F0

N∂m
− b = 0. (6.132)

By applying eq. (6.124) to the above with transposition of b, we obtain

∂2F0

N∂m2
=

1

χ0
. (6.133)

Then in eq. (6.130) for the case of paramagnetic state, substituting the above gives

1

χ
=

1

χ0
− 2U

− 1

N

∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
2kBT

(2U)2

× Im

[
χ(q, ω)

∂2χ(0)(q, ω)

∂m2

∣∣∣∣
m=0

+ χ2(q, ω)

{
1

χ(0)
(q, ω)

∂χ(0)(q, ω)

∂m

∣∣∣∣
m=0

}2
]
, (6.134)

the last part of which is calculated as follows. Equation (6.87) of RPA and eq. (6.129) lead to

χ(q, ω) =
χ(0)(q, ω)

1− 2Uχ(0)(q, ω)
. (6.135)

We then apply this to obtain

∂χ

∂m
=

∂χ

∂χ(0)

∂χ(0)

∂m
=

1

(1− 2Uχ(0))2
∂χ(0)

∂m
= χ2 1

χ(0)2

∂χ(0)

∂m
.

Equation (6.134) tells the existence of correction, which is expressed as an integral with ω, to the susceptibility from

the term indicated as “Correction” in eq. (6.127). In the correction, inside Im[· · · ], within two terms in · · · , the first

term is linear in spin-fluctuation, the second is in the second order. Here we only consider the linear term. We further

approximate the first term by replacing ∂2χ(0)/∂m2|m=0 with the value for q = 0, ω = 0.h Then by writing that

g = −(2U)2χ0
∂2χ(0)(q, ω)

∂m2

∣∣∣∣
m=0,q=0,ω=0

, (6.136)
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we obtain the following.

χ0

χ
= 1− 2Uχ0 +

g

N

∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
2kBT

Im[χ(q, ω)]. (6.137)

We further ignore the temperature dependence of susceptibility of non-interacting system χ0. This should be taken into

account, e.g., in comparison with experiments etc., though here our purpose is to see the essential structure of SCR-SF

theory. However, we still have the problem of inconsistency in that application of RPA (eq. (6.135)) to the result of

(6.137) results in a disagreement of the divergent point of dynamic susceptibility ω ̸= 0 and that of static one (ω = 0). In

spite of the progress of approximation, a simple RPA still cannot satisfy the self-consistent condition.

The difficulty is avoided in the SCR-SF theory in the following way. We write the susceptibility at absolute zero as

χ0

χ(T = 0)
= 1− 2Uχ0 +

g

N

∑
q

1

π

∫ ∞

0

dωIm[χ(q, ω)]T=0. (6.138)

The third term in the rhs represents the contribution of spin-fluctuation with q ̸= 0 at absolute zero, namely the zero-point

motion. As can be seen here, the effect of spin-fluctuation enters into the denominator of RPA representation making the

condition of ferromagnetism difficult to be satisfied.

We take this as an RPA modified in the simplest way by the effect of spin-fluctuation. As is in the case of eq. (6.115),

we again ignore the temperature dependence of zero-point motion in magnon spectrum and take the difference between

eq. (6.137) and eq. (6.138). The approximation gives

χ0

χ
=

χ0

χ(T = 0)
+

g

N

∑
q

1

π

∫ ∞

0

dω
2

eℏωβ − 1
Im[χ(q, ω)]. (6.139)

Here an expansion of χ−1(q, ω) around (q, ω) = (0, 0) is possible as in eq. (6.116). The functional form is

χ0

χ(q, ω)
=

χ0

χ(+0,+0)
+A

(
q

kF

)2

− iC
ω

ϵF

kF
q
. (6.140)

(a) (b)

Fig. 6.6 (a) Temperature dependence of susceptibility in a ferromagnet calculated in the SCR-SF theory. The pa-
rameter here is the interaction parameter, which determines TC. The broken lines are by the simple molecular field
theory. (b) Critical temperature as a function of Stoner parameter α = ID(ϵF) calculated by the SCR-SF theory. The
broken line is 1/5 of the result in the simple molecular field theory. From [1].
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(a) (b)

Fig. 6.7 (a) Specific heat in the vicinity of ferromagnetic transition point calculated with the SCR-SF theory. From
[13]. (b) Specific heat of itinerant electron weak ferromagnet Sc3In under magnetic field around TC. The measured
values in zero-magnetic field is subtracted. Solid and broken lines are results of numerical calculation. From [14].

This form requires agreement of χ(q, ω) with the static susceptibility for q → +0, ω → +0.

In summary, calculation of χ(q, ω) from (6.139) and (??) results in a self-consistent solution. The above is the essential

framework of the SCR-SF theory though realistic calculations are far more complicated even for simplified band structure

with many expansion coefficients[1].

In Fig. 6.6, we show the temperature dependence of susceptibility calculated with the SCR-SF theory for a simple

parabolic band structure and the critical temperature TC as a function of interaction strength α = ID(ϵF) (Stoner param-

eter) [1]. In Fig. 6.6(a), compared with the simplest molecular field theory (broken lines), the SCR-SF theory gives much

better linearity in a wide temperature range, which indicates the Curie-Weiss law. Also as in Fig. 6.6(b), the energy of

paramagnetic state largely lowers due to the contribution of spin-fluctuation in thermal equilibrium, leading to correction

of overestimation in stability of ferromagnetic state. As a result, TC largely lowers from the results of the molecular field

theory.

On the other hand, there still exist many problems and open questions. As shown in Fig. 6.7, there is a large difference

between the calculated behavior of specific heat and those in experiments. Studies on these points have long history and

they are summarized e.g., in [5].

Appendix 14A: Calculation in (6.111)

The calculation shown in the following, very often appears, e.g, in usage of Green’s function (calculation of (6.74) is

almost the same). For your convenience, I would like to show a little of calculation in (6.111). It is probably enough to

see
i

ℏ

∫ ∞

0

dt ⟨S+(q, t)S−(q)⟩ eiωt = (∗∗).

This is calculated as follows.

(∗∗) = i

ℏZ

∫ ∞

0

dtTr
[
e−βH e(i/ℏ)H tS+(q)e

−(i/ℏ)H tS−(q)
]
eiωt

=
i

ℏZ

∫ ∞

0

dt
∑
n,m

⟨n| e−βH +(i/ℏ)H tS+(q) |m⟩ ⟨m| e−(i/ℏ)H tS−(q) |n⟩ eiωt

=
i

ℏZ

∫ ∞

0

dt
∑
n,m

e(−β+(i/ℏ)t)En ⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ e−(i/ℏ)Emteiωt. (14A.1)
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Here we add a infinitesimal real part to the pure imaginary argument of exponential function, which is a trick often

appears in Fourier integration over half-infinite region. Rigorous proof is of course possible with ϵ-δ logics. Below, we

omit to write but η implicitly means taking the limit η → +0.

(∗∗) =
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩
ie−βEn

ℏZ

∫ ∞

0

dte(i/ℏ)(En−Em+ℏω+iη)t

=
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ ρn
[
e(i/ℏ)(ℏω−∆Emn+iη)t

ℏω −∆Emn + iη

]∞
0

=
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩
−ρn
ℏ

1

ω −∆Emn/ℏ+ iη

=
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩
−ρn
ℏ

[
1

ω −∆Emn/ℏ
− iπδ(ω −∆Emn/ℏ)

]
. (14A.2)

Then eq. (6.111) is obtained. Here in the last part we have used

lim
η→+0

1

x± iη
=

1

x
∓ iπδ(x). (14A.3)

This equation can be shown from an expression of δ-function as a limit of function:

lim
η→+0

1

π

η

x2 − η2
= δ(x).
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