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Fig. 1. Evolution of the superconducting transition temperature (7;), from Hg at 4.2 K in 1911 to
La,PrNi,O; at 75 K in 2024 [17]. The time scale shifts in 1985, before and after the discovery of
copper oxide superconductors in 1986 [4]. The figure depicts typical superconductors, and
Tables 1 and 2 provide additional information about them. 'a-Bi' denotes amorphous Bi, while
'C(B)' and 'TBG' refer to boron-doped diamond and twisted bilayer graphene, respectively.
Compounds marked with an asterisk exhibit superconductivity under high pressure. Several
important materials with 7, lower than 0.5 K are missing: the perovskites SrTiO; 5 (7, = 0.25 K)
in 1964 [18], (SN), (0.26 K) in 1975 [8, 19], B-YbAIB, (0.08 K) in 2008 [5, 20], 12Ca0O-7Al,0,
(0.2 K) in 2007 [21], and the semimetal Bi (0.53 mK) in 2017 [22].

3



A 1T P 70 AR AR O L S Y PR SO SR 1E O FF 1
WZOWTCEEIR 5. ARIxEnLEIZ—MEmL, m#EoH
[ 72 A U I DO TR BB AE OB D R 22
[REWEZTY BT, BEBREORE EWE R 7O H
SEFMFET D20 OB ET 5. BRI L e Em W Toa
HODD, TOHRTYHEZ LI TN RKREL B2 ABR R I )>
EUVVOEERICE Z T, EBICEWTEEADIZ LB —i%
IS XM Zigim L, BIBRE[16])~DEEE 2L
(ZARLDITEMOIE 720 LIVRWD) . Afaz st
N THY I T2 870 KNS o T [E AL 5238 DS T AR A AR IR
FITHER L TNDELTEBENTHD. DX PikZ R
RELFET TOITIE, EoLLVE W TSR N DRI D87
R RI L B T D72 A9,

AR TIEATEOFE2E CHEEEOE A%, F3RICHEE
HYVE D — X7 R A FE R 95, RO AT A AL
WAL BT D RS RO L ZEN D, $RF-DF
SETZOMOBREREZ, HoFEIZA % OBIREYEE
ROBLRIZONWTEED D, BIREEZILKTHFELOHE LA
PAFIZL TWOEEE T2, 7272 Ui/ NR O T #0k TR
RE O ASZ PR CELINTH0R3 <Gk L7zo8 )
72DT, HE W RHNSPED THHHIOL — Bl LS, Hi
OB BRI B T Dakam X i LW T I f g s
Hz, EHIZEFZBVHT ADLWSEE LR, R TheR,
ZDOIRIZ A Z B EDIENTEEMHIEL QD BED
EBREITEMRMEERE, FFETREIFHREEL VD, 22
TOEEBD DL THASEZ OO BTN DT EEHED.
728, BILLWGRELIZIERE, KRLEDF— =TT %5
I PTICHEESE W EEBED TR0 iR, HEREE
ITEFEDOSWIZWIEEHREL THLHZ DD TRV NEES.
F72, TEARVHINNESL TICBW TR ZEIL -0 T,
ITLFEAD ATRETEAD . RFEBM OGO TRR D
BB RS TRV THS.

2. B DI
2.1. fEsEHFOIRARRE
2.1.1. HHE
BIIPREREAE 122D 7 2 VIS 7 =0
K7 ThHD. 1OOETIREEIZITAY S H HEAZ S D T2
FTCOBEBTFEHANTFIND. IR I2E ENDHE 7 EIT
NUVDFEIZ L7203 C, -8B ML A2 =L ¥ — DK
UWIEIZ2fE S HD TV, i B 7ar T4 7 EE IO,
1, FiX2EOEICEFEEND (X2) . NEOJR 11N EE
STHEimEIEDEE, BB FENOEEIL TR > TnH 7R
CTATEEMNEVICERDE). FERELT, 7T TR
T HLEEN DRV —IEWELD, fEsh T ICIER -7
FEONUR) BIBEREND. JEO R T BIIE 2N LR A8 o
TosCpHliE DY A TII R E /R B2V A S L TR IRV VAR
DS, BRA BT F00 T WA fiflE OB A 13N
VRBNERREND. Tur T4 TEIEDE T EAN0EIT2
DEX, NURTEFEIT R E-> TENTAEFITFEEL
RN (ONURHERRAR) . 1O LIy 2D THEICEK
SHNAECERED. WEILIE TR T 5L, LD
THIEOME 2GR DA E T RITZO 0
HIRBEDUTEICEND . SBIT/SU RIS TlEh i
BT EHELAREERY, 1 DD RIZ2NELL T OE T 25T
BEINDZLIT/2D. FI2Z2ON RO EOEFZ2BINT 5,
FITEEST RV RPLE T O—#E2 5| ZHhZ &Iz,
FNENAERLTIZE T, A=A BT L TERIBEIC
FHESD, CNNEEEA~DOR—E I DRy U T IEAT
HY, ZLDOBFT A ATB N TERRE D K5 2 52

5.

B T G+ 58 T 1R 7 Tl 22 I IR 28 -
T AT E i, FORREILER REMICBW O ROW
BOWRTEL DWW AT MvkE W THEESHA[9]. H5
EEEZLOE AR T AEDRAX —EICIE DL,
2bD IS 723 B BIR MR F DD (F D =3 /LF —Hi[H A
INURIEWER %) . B T _REE O RITERE RS T
MRafLE ETITBROND A, RO RV 2 F2ZE /M TR
FTHZELIIREETHD. —JF, EENEZERH] T R BRI
KkDOREEN LS TR AICETZENTE, HAR2NED
B IREED/a»Oru/aDEIIZE END (ZOEF| S HE
BHEEMELHTIEETHD).

EENE M THNVUFEBIZLIZD > T, BT iEE) =
FX =B BIEI AR I > T, HuxtFEE T
X7 NI RNF—Fr, 72 VI ke ETOREL 5D 5.
FEZEM D1 OOE - ILEB B LR O 1> DOPITHIET 5.
EEEOETHIL, EEMTEFBELZEMBESLTELN
LI, EEEZEM TIXENL =L — YD E T Ok
RED %L (Density of states: DOS) #ErE TR /LFX —FH53 7
HIETROLND. ZOFRINHICHD, TN T—%D
O IENEB) BRI OT X TOHAITE RS> TT 2 /LI
HZETET 5. st D755 T M7 fE s D7 < VIH 1T
K30 LHIEB) BEZE M CERIRE 2%, FEREOT VR IFHL
BEO LGS ORIV, B3 ML TR
Zho. BIREEAE ST N TOLBWE O E KRG 4
G E KR TADIL, ZO7 = AT EICHHE T
ThA.

(a) Real space

(b) Momentum space

EA
Atom

/7
Electron 4

4

—— Er w
— \\
\
—
—o-0-2s N\
\\

oo 0 : >

1s 0(0) Kk wal(a)

p)

Fig. 2. Electrons propagating through a crystal. In real space
(a), an electron (red ball) in the highest atomic orbital moves
across the crystal, forming a wave (magenta wavy arrow) with
wavelength 4 and wavevector k. The kinetic energy increases
with the magnitude £, resulting in the dispersion curve with an
energy spread of W, as depicted in momentum space (b).
Electrons in a crystal can have electronic states ranging from
zero energy at k = 0 (1 = o) to Fermi energy Er at Fermi
wavenumber kr at absolute zero. Electrons at Er propagate in
all directions, forming a three-dimensional Fermi surface, as
typically illustrated in Fig. 3 for the isotropic case, which
governs crystal transport properties.
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Fig. 3. Fermi liquid instability leading to a variety of phases
with long-range orders of specific degrees of freedom. The
central sphere depicts the Fermi surface (FS) of isotopic free
electrons in the momentum space k—k—k-. Focus interactions
include electron—phonon (e—ph), electron—electron (e—e),
Ruderman—Kittel-Kasuya—Yosida versus Kondo (RKKY-
Kondo), and spin—orbit (SO). These interactions destabilize the
Fermi surface, resulting in a variety of symmetry-breaking
phases appearing: superconductor (SC) to charge-density-wave
(CDW) insulator with increasing e—ph interactions; high-
temperature  superconductor (HTSC), spin-density-wave
(SDW), magnetic order (MO), charge order (CO), and Mott
insulator (MI) with increasing e—e interactions; heavy fermion
(HF), SC, and SDW with increasing RKKY and decreasing
Kondo interactions; itinerant or localized multipole (MP) order
and SC for SO interaction. Superconductivity is a common
order resulting from various types of Fermi liquid instability. It
should be noted that while e—ph interactions occur at all times,
other interactions can take precedence in defining the system.
The resulting types of superconductivity carry the flavors of the
original perturbation.
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(c) Mott insulator with the spin degree of freedom

Fig. 4. Cartoon illustrating how electron correlations affect the
crystal electronic states. As the parameter U/W increases
downward, where U and W are the magnitudes of electron



correlation and bandwidth, respectively, a typical metal (a)
with nearly free electrons carrying the charge degree of
freedom in a broad band made from expanded orbitals, such as
the s-orbital, transforms into a Mott insulator (c), with each
electron localized and acting as a spin in the narrow half-filled
band with one electron per atom. A strongly correlated metal
(b) lies between them, allowing an electron with both charge
and spin degrees of freedom to move against Coulomb
repulsion in a narrow band of unexpanded orbitals, such as the
d-orbital. Localized spins in Mott insulators and nearly
localized spins in strongly correlated metals typically interact
antiferromagnetically with neighboring spins, as observed in
the CuO2 plane of copper oxide superconductors.
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Fig. 5. Cartoons depicting how the electrical resistance R
occurs in a solid (a) and how zero resistance is attained (b). In
the normal conducting state at high temperatures above T, a
single electron is easily scattered by a crystal defect (blue cross),
resulting in a finite resistance. At low temperatures below Tc, a
pair of electrons (Cooper pair) is produced in the
superconducting state and is not scattered by a defect unless
both electrons are scattered simultaneously or the pair is broken
by enhanced scattering by defects, both cases of which are
unusual, resulting in zero resistance.

612 AR (1 21 3Pb) & EAREAR (B 21T Au) DFE
SAIEHTRABAPN IS, ML TESKIHIS L7425
DIE, BRI EF-EEHITBRRSND T 4/ 8
DA CTETFPHELSN ORI R D720 THD. Auk



HATPbOTLL EDOFELIEHINKREL, 0 2IREEEBICR
BRI 201F, BTFE7+ /O EIERNIIRE
WRERLTHD. ZORERE S H T HHAAEH D PbIC R
BT = 7.2 KOBREZS 5L, A5V Auld FZERIR
SURIRIE TRSEIZZRB20 . PhlAuDIKIRM IR
BB OF EICIVBINICEZLRY, BRI WA % P
\ZIX 5145 (the balance distinguishes not between gold and
lead, but resistivity can!) .

Superconductor (Pb)

Electrical Resistivity

Normal metal (Au)

jo)
S

.
-

Temperature

C

Fig. 6. Electrical resistivity of a superconductor, such as Pb (7
= 7.2 K), versus a normal metal, such as Au. The former has a
higher resistivity that rises faster with heating than the latter,
indicating larger electron—phonon interactions that result in a
superconducting state with zero resistivity below Te. In contrast,
the latter's resistivity approaches the residual resistivity po at T
= 0, with no drop due to superconducting transition.
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Fig. 7. Schematic representation of Cooper pairing via
electron—phonon interactions in BCS superconductivity. (a)
Consider two electrons, kT and —k|, with opposite momenta
and spins in the initial state. They conduct in a crystal made up
of atoms that are presumed to be positively charged after
electron donation. (b) When the first electron k1 (red ball)
passes through the crystal, it attracts the surrounding atoms via
Coulomb interaction and scatters to k'{. As a result, a positively
charged region forms (a phonon is created) and persists for
some time due to the retardation effect (the atom is much
heavier than the electron). The second electron —k| (magenta
ball) is then drawn towards the positively charged region. (c)
The second electron scatters to —k'|, restoring the lattice to its
initial state (phonon absorbed). This virtual process of phonon
creation and annihilation induces effective coupling between
two electrons, resulting in a Cooper pair in superconducting
state.
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Fig. 8. Basic concept of the BCS theory. For the sake of
simplicity, we consider a two-dimensional electron system with
a circular Fermi surface rather than a sphere and an energy-
independent DOS profile (Fig. 12). (a) Electrons with k1 and —
k| that couple via electron—phonon interactions are added just
above the Fermi circle of free electrons (Fermi gas) [7]. The
pair transforms into a boson with a lower energy than 2FEF,
allowing the two electrons to enter the Fermi circle. (b) In a
Fermi liquid, electron—phonon interactions have the potential
to destroy the Fermi surface. In the thin surface area between
Er — wovr and EF + wo/vr, electrons find counterparts and form
pairs to lower their energies, similar to (a). The electron pairs
are thought to be complex bosons that Bose—Einstein condense
into Cooper pairs at temperatures below Tc, resulting in
superconductivity. The bottom figure depicts the energy
spectrum of divorced Cooper pairs, which corresponds to the
spectrum obtained via tunneling electron spectroscopy
measurements. The DOS profile shows a superconducting gap
of 24 around EFr, which represents the energy required for pair
breaking.
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Fig. 9. B-pyrochlore osmium oxide supercondutor AOs20¢ [42].
(a) The electronic heat capacity Ce divided by T reveals
superconducting transitions at 7c = 3.3, 6.3, and 9.6 K for A =
Cs, Rb, and K, respectively. In comparison, Cd2Re207, an a-
pyrochlore oxide superconductor, has a 7c of 1.0 K [43]. The
two-directional arrow represents the magnitude of the jump at
T. (AC/yksT:), which indicates the evolution from weak-
coupling for Cd2Re207 and CsOs206 to strong-coupling
superconductivity for KOs20s. The data for KOs206 below 8.2
K have been deleted to conceal a sharp, intense peak caused by
the structural transition at 7.65 K, which appears to be linked
to an unknown change in K-ion rattling. (b) The
superconducting coherence length (¢) and upper critical field
(B<2) are plotted against 7c. (c) The small K ion in the Os—O



cage has a distinct anharmonic potential that differs from the
nearly harmonic potential of the large Cs and Rb ions, as well
as the majority of other atoms in crystals, including Cd2Re207.
(d) An illustration of strong-coupling superconductivity in the
K compound, in which a Cooper pair is generated by a strong
electron—phonon interaction caused by large excursions of the
rattling K ions in real space. In the strong-coupling limit, a real-
space pairing image may be appropriate.
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Fig. 10. Evolution of electron pairings from the BCS to the
BEC regime, with increasing pairing interaction, based on
research on the cold fermionic atom gas system [44, 45, 48].
Two red balls on a shaded circle represent an electron pair, with
their orientations mimicking wavefunction phase. Increased
pairing interaction reduces circle diameter (¢), leading to a
smaller pair. In the BCS regime with weak interaction on the
left, large bosonic pairs form at 7, and almost immediately
transform into Cooper pairs with phase coherence when they
overlap at 7c ~ T} in the superconducting state. In the BEC
regime with strong interaction on the right, small bosonic pairs
form at high temperatures below 7}, and grow upon cooling as
the thermal de Broglie wavelength (4m) increases.
Superconductivity occurs when wavefunctions overlap and
share a phase at 7c ~ 7. This evolution, known as the BCS—
BEC crossover, is applicable to any system, regardless of
pairing interactions, and serves as a general guide to high-
temperature superconductivity.
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Fig. 11. Superconducting gaps in momentum space (above) and
Cooper pair wavefunctions in real space (below) for (a) s-wave
and (b) dx’9*wave superconductivity, respectively. The
superconducting gap opens isotropically in the s-wave and
reverses sign across the node at <110> in the dx>—*-wave. A
Cooper pair in real space is represented by two red balls
(electrons) connected by a dashed line (attraction interaction).
The distribution shows the probability of finding one electron
while leaving the other at the origin.
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DOS

Energy

Fig. 12. DOS profiles for Fermi gas in 1D, 2D, and 3D. Zero
energy is placed at the bottom of the band. The inset depicts a
cylindrical Fermi surface (FS) for 2D electrons. The energy
dependence of DOS is proportional to £ and £ for 3D and
1D, respectively, while the 2D DOS is flat.
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Fig. 13. Typical phase diagram for copper oxide
superconductivity, with Laz .SrvCuOas on the right and Nda-
+CexCuOs on the left. The Sr and Ce substitutions introduce
holes and electrons into the parent insulating phases with Cu?*,
respectively, resulting in superconductivity at specific doping
levels. The terms wused are superconductivity (SC),
antiferromagnetic  insulator (AFI), spin glass (SG),
superconducting critical temperature (7c), antiferromagnetic
ordering temperature (7x), and pseudogap temperature (77). At
the end of this chapter, the phase diagram will be compared to
the ideal in Fig. 40.
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Fig. 14. Typical crystal structures of copper oxide
superconductors with vertical direction along the ¢ axis: (a)
Laz.SrxCuOs (La214), (b) YBa:CusO7s (Y123), (c)
HgBa>CaxCusOs+ (Hgl223), and (d) Bi2Sr2CaxCus3Oio+s
(Bi2223). The common CuO: plane, where superconductivity
occurs, is depicted in (e). Oa and Oy are the apical and in-plane
oxide atoms of the CuOs octahedron, CuOs pyramid, or CuO4
square (only Oy exists). The Oa in (c) Hg1223 is rather bonded
to Hg to form the HgO2 dumbbell, resulting in three CuO2
planes stacked and the highest 7. among copper oxide
superconductors.
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Fig. 15. Fundamental structure of the conduction layer in
copper oxide superconductors. In the # =1 compound (C1), the
copper atom is octahedrally coordinated by six oxide atoms:
four Oy atoms in the CuO: plane and two apical O, atoms in the
block layer. In the n = 2 compound (C2), a pair of pyramidally
coordinated Cu atoms are separated by small cations such as Ca
or Y atoms, while in the n = 3 compound (C3), an extra CuO»
plane (inner plane: IP) without Oa is inserted between the outer
planes (OPs).
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Fig. 16. Structure types composed of a Crn conduction layer
containing n CuO: planes and a Bm block layer containing m
cation sheets. All copper oxide superconductors are classified
as Cn-Bm. Multilayer Hg and Ba series compounds with n
larger than 5 will be listed below the table.
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Fig. 17. Six distinct types of block layers. (a) The minimum
block layer is made up of a single Sr sheet (m = 1) sandwiched
between CuOz planes. This B1 block layer is found in SrCuOz
(C1-B1), which has a ‘infinite-layer’ (IL) structure. (b) A
double-sheet rock-salt block layer (B2-NC) sandwiched
between CuO:z planes, like the La20: layer in La214 (C1-B2-
NC). The LaxOa+s layer in oxygenated LaxCuOa+s contains
excess oxygen Os at the interstitial position marked by small
squares between the sheets, which corresponds to the normal
oxygen position in B2-CF in (c). (c) The CaF: structure type
double-sheet layer (B2-CF) is found in Nd214's Nd2O:> layer.
(d) B3-NC, a triple-sheet layer of rock-salt stacking found in



the Hg, T11 (single sheet), Cu, and Pb series of compounds. The
middle sheet contains varying amounts of excess oxide atoms
(Os) at (1/2 1/2 1/2). (e) B3-PV is a triple-sheet perovskite layer
composed of BaO—CuOs—BaO, with Os at (1/2 0 1/2) and (0 1/2
1/2) in YBaxCus3Oes+s. (f) The rock-salt layer, Sr(Ba)O-
[Bi(TD)]202—Sr(Ba)O, also known as B4-NC, is a four-sheet
block layer that occurs in the Bi and T12 (double sheets) series.
Excess oxide atoms can be incorporated into the interstitial
space between the two Bi(T1)O sheets, which corresponds to
the oxygen position in the La>O2+s layer in (b). The majority of
block layers in copper oxide superconductors are classified into
these six types, with the exception of Pb2213, which has a five-
sheet B5-NC block layer (Fig. 16).
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T NHEETS.
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172, 72720, BARE OB RO AR E E DO CuO2H 735 S
NAHZETRET 72O T, Culii 23U 7= EE 2D S fthd3d
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FRITBER LW EHRRBANLEILZZEN ML TNDS., —
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132]. — 7, Z oI B W THEERBZ557-012, B
PN BFE LR E AP TONDLIER DD, FlZ T A RO
LV Bi2223 (C3-B4-NC) B2 B L 32729121, Bid
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FEMEDNMEWGE AL 2L, T2 ELRONS. EREan-7
—HEEEIIERL T, BREEE RO DIIEHLT
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4.2. CuO:[DE T IRHEE
4.2.1. Ty (EMRBE) Mg
RAHOCWH A4 NF3E TIREEICHS. 6D LA
A AZEDINEARRICEN SNDEE, RN —2TT—%)
B R AERDS | I OB 55, e EAZOIERG B d—
VBRI DO ARKE FIZI D55 (K18) . de2#il
TE OB BB LI N D4 DER LA A 0pD 7 TENTAR Y,
ZD2pHE LRV A REAETER TS, — 5, THANEIZ
HDOLIT LB I A A L FE ST DERTREND. thikD X
N (4.5.180), 28D Be D FRE GRS S {L A A
¥ DIFEN R ER A B R A .
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Fig. 18. Basic energy diagram of the CuOz plane in copper
oxide superconductors. When a Cu?" ion with a 3d° electron
configuration is placed in an elongated oxygen octahedron
composed of four in-plane O, atoms and two distant apical Oa
atoms, the unpaired electron occupies the highest dx’>—? level,
as shown to the left. When the dx>—” orbitals are connected to
Oy's 2p orbitals to form a square net in the CuO:z plane, they
form the extended band shown on the right. The electron
correlation U divides the resulting dx*>—)* band into two narrow
bands: the lower Hubbard d band (dius) and the upper Hubbard
d band (duuB), with the former fully occupied by electrons
carrying localized spins (red arrow) and the latter empty. A
charge-transfer insulating gap forms between the broad,
occupied Op 2p band and the empty duns. A doped hole at the




top of the Op band has an antiparallel spin (magenta arrow) that
is tightly coupled with the Cu spin in dius, resulting in a
Zhang—Rice singlet (Fig. 19), which is responsible for
superconductivity.

Cu(OpulUfitEETr—7LLC, ZhETESLAFIZIY
BNTIE RIS 728 D ACuO2 1 TS (X 14e,
19) . ZZ TIiXCuD3dx* 2 HiE L Op D 2pHILIE D IRV MR ALIZ
Yo TR B BIE S EH PNIZIE MY, TEDOBNA SR E AT
5. EOH¥SE BTN EAT 5700 (half-filled) , 185 O
PG U R I3 A R IRRER AR5, UL, Sev g 22
RNZEACIAD HIT23dE - OIEVWVE AU, D FVFEICY
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(BeVORESEL D) IEITHRLUT, kO T/ w/—R
N Rduasd EEBNU Rdumsd 72, dunsD AN EEFIZ58 41T
EAH SN TRy 72 BEL[28]. 7272 LCuO T FEBR 1T F
v MR IR TIE7e<, BB EHGERIEICOEIND. disd
dunsDFRBNTEESR D2p SURBMLEL, =RLF —F vy
130 2p&duns D IZBAL 28, BTk IXEE R DB ~D
BB Z L.

SERIC A SN2 duislIZ B O REAE 1208 FEL,
CuO2H XA U N IE 1 BN A T2 2R TR IR &7
% (%19a) . B EHCuURE U ICIE, ZDRDEHELEIT5
oA HE BT LD VB A WA TR E AR AAE DM =, %
DREZIZ1500 KIZ K 5S[134, 135]. BEOEI AL ATT v -
AT, 5RO CRBEMEARBA 2N E U D, flif7e2
WILHR TIEFELE DT D ITHE KR ITEE Z 572028, CuOs
AR @ U7 R OB R ST E CIE, 1N O SRS
FADN R ELSFE LT AIRIRICI T, M2 A AR %
180 CROREME R IREERR - N A U D . Z ORISR ER S IRE T
13300 KFEEETHO[136], JO2EIFREE DIRE L2 >TEHIRK
WRBF AR T8I0 R%. ZOEBIRE O FIZER T
FAFA DFELE D7D B,

422, CuOfi~DAR—/LR—E2 7

CuOa il 2R — /L& AL NREZETHE, BB TIED
LINTCWE FENEAEALENXH . R—7 &N fcdh—
JUECu 3dTIE7e<0 2p/ 3 R iz b5 (1X118) [137].
FZE TR AR T I (X19a), FER AR —1iE1>D
AL A B A TERIRIC T 5L TRENS. BRFER
— LB AL 1 REL D, TIHHAE L KN IR &
FTHIELIT/2D. Cu 3dE0 2pBLBEITFIER IC KRR ERVED
D72, EDOEEAZWAR BAERITRRENER THY, #iA
B UM OMBASHAA BEAER LD ETHRW. FERELT, il
PLF O H 4 AEEHEBICBWT, Zoi[iE AL 07
WX BERRIREZ R T Ly MIRRBIZH D A7 L TRV, Th
22 NDOHLGHSF. C. ZhangtT. M. RicelZ[KA T, Zhang—
Rice singlet (ZRS)EFF5S[138, 139]. KR — 7k CHilR L
DELRAREM 2 E T 50138 F O 8RBT 5E
RBF—NF )T TS, KATR A7 IH 72580 B E TR
RO, BRfEAE O HBEEZADELDZRSTHD.
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Cu d spin

AE =8J -2t

Fig. 19. Schematic representations of the CuO: plane with Cu
spins in the dx’? orbital that are coupled together by the
antiferromagnetic  interaction J and arranged in
antiferromagnetic order, as well as what happens when holes
are introduced. (a) A doped hole on the O 2p orbital encircles a
Cu spin. The O hole spin (magenta arrow) has a stronger
antiferromagnetic interaction with the Cu 3d spin (red arrow)
to form a Zhang—Rice singlet (ZRS). (b) Two ZRSs (blue
circles) move independently in a metallic state, each losing 4/
bonds and gaining kinetic energy fer in comparison to the
insulating magnetic state. The total energy change (AE) is 8J —
2tetr. (¢) When two ZRSs are paired at nearby sites (blue oval),
the magnetic energy loss is reduced to 7J, and the kinetic
energy gain is reduced to fefr. Thus, when J is greater than ferr,
the energy gain induces an effective attractive interaction
between ZRSs, resulting in the formation of a ZRS pair, which
then transforms into a Cooper pair in the superconducting state.
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T95[140-143]. AFFRIZH0.02H7-0 TIHKL, fRDVIZA
B DRERTTAKICT o H B F RS LA 75
28 (SG) DB D[144]. EHIZR—T7F5&, 0.05 THE
A (SC) MHBL, Tud— B LR35 A — L Rpo
0.165720TTeo = 39 KO R EIZEL T2, pe =026 TIHZ
5. poDLEANET A —R—7"(UD) 3k, AlEA— S —R—
7" (OD) Ik LS. UDIRIZ ADNDT R — DT 47 13p =
18 CRELT HANT A T RIE ML P DB K% (4.8.2
8i) . ZD1%130.40F CTIHBEE (BZEICRDELTHTIE
FEBRIR L P AR O FARE SRR BE A Bl D[ 145).
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Fig. 20. T—p phase diagram for La214, assuming p = x [140].
At p=0.02-0.05, an antiferromagnetic insulator (AFI) phase is
converted into a superconducting (SC) phase via a spin glass
(SG) phase. Tt reaches its highest point at 7co = 39 K and po
0.16 before vanishing at p. = 0.26. The 7. dome's left and right
sides are referred to as the underdoped (UD) and overdoped
(OD) regimes, respectively. The 7. dome dip is caused by an
electronic instability at p = 1/8 (see Section 4.8.2). T" represents
the temperature at which various measurements detect
anomalies, also known as the pseudogap phenomenon.

ZDXHRARNFID TR — LDRUL, WE D T DiE
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Fig. 21. (a) T-p phase diagram and Cooper pairing for copper
oxide superconductivity based on the BCS—BEC crossover in
cold atom gas systems, as shown in Fig. 10. In the underdoped
(UD) regime, to the left of the optimum hole concentration po,
a large pairing interaction caused by a fluctuating but relatively
rigid antiferromagnetic spin background keeps 7, elevated.
Preformed pairs form at 7, during cooling, followed by BEC at
Ts; a preformed pair is represented by a circle with two
electrons (red balls); they are out of phase above 7B, as
indicated by their random orientation, but in phase below it.
BEC superconductivity occurs in real space below 7c ~ Ts. A
small ZRS (d°h) pair is expected just below Tp, as depicted in
(b), but an actual Cooper pair below 7. can be longer,
measuring around 57 unit-cell length (= 2-3 nm) in the plane.
In the overdoped (OD) regime to the right of po, the
antiferromagnetic spin background becomes weaker and
diluted, making pairing interactions less effective and
decreasing 7. BCS superconductivity occurs in momentum
space when larger d-hole (d®) pairs, as illustrated in (c), form
below T, and immediately overlap to one another to be in phase



below T ~ Tp, producing Cooper pairs. Higher doping above
the end pe suppresses superconductivity, leaving a normal
metal state (Fermi liquid) with unpaired d holes moving in a
paramagnetic background.
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Fig. 22. Tc versus n plots for various compound series (Table
1) [96, 160, 161]. 'Hg', 'Bi', 'Cu', 'Ba’, and 'La' refer to a group
of compounds that typically contain Hg1201, Bi2201, Cul212,
Ba0212, and La214, respectively. 'Tl1' and 'TI2' are TI series
with single (B3-NC) and double TIO sheets (B4-NC) in the
block layers, such as T11201 and T12201, respectively. The Tco
for the Hg series remains nearly constant at around 105 K until
a large number of n = 16 [160], as indicated by the arrow.
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Fig. 23. Uemura's plot of the relationship between 7c and uSR
relaxation rates extrapolated to zero temperatures. The latter
scales to ny/m”, where ns and m" are superconducting carrier
density per unit volume and effective carrier mass, respectively
[163]. The arrows represent the estimated 7. maximum
positions for compounds C1 (triangle), C2 (circle), and C3
(diamond). The boxes show how the ns values at the peak
maximum differ from that of C1 for the same m". The
corresponding p values per Cu in the CuO: plane are also
provided, calculated based on the crystal structures of the Hg
series Cl, C2, and C3 compounds, with uniform hole
distributions across the CuO2 planes.
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Fig. 24. T: variations with decreasing p in the TI2 series of
compounds [170]. For each compound, Ap represents the hole
concentration in comparison to the as-grown sample prepared
at 880-890 °C in an oxygen atmosphere. To determine p
changes, oxygen loss was measured in weight during annealing
at 350-600 °C in an argon atmosphere. T12201, T12212, and
T12223 have partially visible 7. domes, with Ap = 0 at the right
end, slightly right of the apex (OD), and slightly left of the apex
(UD), respectively. T12201's half-7. dome is more than twice
as large as La214's.
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Fig. 25. (a) Tt versus p plot for selected compounds: La(Sr)214
with p = x [140]; Bi2201 [174], Bi2212 [174], Hg1201 [175],
Hgl212 [176], and Hgl223 [176] with p determined by
chemical titration; T12201 [170], assuming that Ap = 0 in Fig.
24 corresponds to p = 0.41 based on NMR experiments that
show (T./K, p) = (72, 0.27), (42, 0.30), and (0, 0.41) (open
circles) [171]. The ‘C5 (NMR)’ plot depicts the Tc—p
relationship derived from Cu NMR measurements for each
CuO: plane in the C5 multilayered systems of the Hg and Ba
series of compounds (Section 4.6.2; Fig. 34) [166]. The ‘Y123
(NMR)’ plot is also based on Cu NMR measurements, which
selectively observed Cu in the CuO: plane [173]. The ‘Bi2212
(ARPES)’ plot uses the ARPES dataset [172]. The dotted line
on the left side depicts a possible 75 line with an 850 K slope
(Fig. 37). (b) A normalized plot containing the majority of the
data from (a). The red parabola fits the La214 data,
disregarding the three points near the dip at around p = 0.125:
Te/Teo = 1 — 2.10(p/po — 1)?, which corresponds to Presland's
relation (Equation 6). Other 7. dome curves are displayed for
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Bi2212, Hgl1212, and Bi2201.
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Fig. 26. Tco versus po plot. The data is presented in Table 1. The
marks' shapes distinguish C1 (circle), C2 (triangle), and C3
(square), while the colors distinguish the material series. The
plus and cross signs represent electron-doped C1 compounds.
The error bar shows the variability in p, between studies. The
thick grey lines highlight chemical trends in the Hg and Bi
systems.

X262 kk ~ fcﬁ%ﬁw WL TR DT Teo b po D BIFR A E
EDTZ. poDPTENZIBIT D EBRIVR A FENE DD, B 21X
Bi22127Ci0.172>50. 27D IV FEFHIZ /34 5. £ Th7a
BBisk, HgR TIE, nDHENINEEHITpel T EBITHE X HIH
MAAMEIZR TEND. DT =L 2RELT, T3 EW
EE P KEL, FFIT T 100 K%ﬁzé%/a@po&iozo%ﬁ
25, ZOMEBNIHER 7 By hO/RBLEEAL, 22 TCLIZp,
=0.16Z R EL THRIEL-72C2, C3Dp, =024, 0.26EH575
T5 (X23) . FERLL T, TokpodSIEOFBEEZY SZEITAL

MNTHY, La214 % T DT/ Teo = 1 — 82.6(p — 0.16)>DBIRIL
2= =R O T W SRS ND.

4.4.5. R—/VRERELEEEDMD TeopoT —
(TR — VIR E & D DT80 D FEBRFIEO R LE
FEMEZ R T 2L 018, poSVE AR T T D2 %R T 72



DIZHIEICHW =T — 2 OFE L BINOT — 2 &R/ $ . &
T, MDY VEEFRIC/2 DD T, BRI WFEH 1THE AL
TREITHEA THHUZL,

fe{b iz o i FVO DAL & (Chemical titration: CT)
WX DCuD B AT iZp DR EIEEL TH A THH[174,
177]. SRR O ARG A R (VAR L, iEEl oY
U LB EINADE, SUEMAZ T EE{ES AL TCul A3k
L, AR BL0NERET 5. AU a2 52T A hilg 7
D LERESHRIC IV E T HZE T, JLOHAF > Ok
Q2 + p)ERDDHIENTES. LaissSrosCuOs DAL S E T
AL SN EROMEIT2.140THY, /3T 7pxb K< —F
T B[178]. FFET _REFERIL, A CORLIZEIIZ, KW T
=25 K&H OLafE#iBi2201Dpe730.12TdHY, La2l4L0 A &
(RN THD[126, 174]. RaobHIT 2N E T T3 VR
IFEREVpab DO A1 Z L L72[174]. CTIZZEDOAhIZE
Bi2212, Bi2223, Hgl1201, Hgl1212, Hg1223|Z 3 X7z (3%
1, [¥125). 72721, CTIZ T RETIE72<, CuOyifi LAFMZ#il )3
EENLEA (FIZITY123) IV EBE DM LSS
=iz, 2, BIRTIZEDOME N ELY D
aliovalent TLEDFELE F TlE, Cud ik RAELDDICEE
DLFEL72 5177, 178].

DAL EGR EEE L TR M BT 32RO U —
JVNMIENTIC KoM E AT s LIE LI VB 7=[97, 123, 179-
181]. ARk~ [mI4T BRI, R IS BIR R X A 7 & b
AT, HgRTIZR E D LB TN LR DOFFAE FCHIREEHR
DONLES S B REFEELRD DI EEFREE T 5. Fe, —
WA HAS EREH I KRB L B E L E LTS
N, SRERE D TIIZ DB RO NS E L THDHZEND
M ARFEO T7 5 BB CREMEGERATIZEL CWAEE 0
2. By R AT BRI I CHg RS B WO Ttk E IR
Haniz (K1) FET REWRO—2LL T, ILARBITE
ERWVEUBHE AT THAZHIEIL, 7ot &HhiE7
[P REBREBREE L Cpaik LI R, TepD /TRy 77
RAGRAAELNZ[129, 176]. SHICHBHIEV T HOCl, C2,
C3IZHIL T, po ~ 020022 THHZ xR L. FFiC
Hgl201 Ti, @ T = 98.0 KD B o b 41 ik %
Hgo.97Ba2Cu04.059(CO3)0.00ss LT TE L, p = 0.20%4572[129]. =
DEIDIHITHgH TIXCH T (F721ELCOs53 1) DHg WA ME
BASRET #ES, 2N 2B B USRS ECT B OplEIE
FL—EF5[182]. ZOIH @G E OREER EIXIFEAL
IThNnELT, pOIREFNIRELND.

FEK ST CuO: M NES TD3Cu NMREBRN G-
FAR T RDAE U E Sy D IR TOMKART) D p &R
RIZHDBZ L% T, paik 57 DR

p = 0.502K%(RT) + 0.0462 8

ZEUNE[122, 166, 183-185]. FHBIZEALE 2 —F@ 3L TlE
Presland D 6% E L T IE L7242 (p = 0.492K(RT)
—0.023) 2SHWBITZD[166], Afa L TIER8% H5[122].
ZDOpIRETFRILIEFITA AIZ0, 8AEITEY Lot
TRV EIZEETD. BN —7 Tl T.LL EOKLITE
FEEALET, MENICKPRIITZEWRIEE &b, — 7,
R — 73 C U SR B A B D 38 2 OB v > 7B K
(4.8.2.2f1) DFEEDT-, KX BEE IR EZLL TR
TWA 5. fERELTHEEAMICEIR TOMBSHNGILMR,
ZZ CORBDEFEMEITE RN — 7 e R TRV EE 2B
5[122].
NMRZEER)>HC1DTI2201 (T

80 K), C20OBi2212IZx%}
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LCELNTZpold, F1E1410.278, 0.25THY, Eit0.1640
LD REV, EHIINMRERRDHE i 7092 B2 HCutr
AN KBTI TELZEAFIHL T, Y123DCuO2lfi Dp
ZIRIREICFH T2 Z LA HES /2D, po = 0.223F B 07
([X126) [122]. [XI25alZIEINMREBR DR ES T, ZJE %
BAREARDp, = 02312 1LHES D TepBIRIVURESNTND
(4.6.2f) .

ARPES EBR IZBUHIS -7 = LA DO RESISEMER
5 E RAELS[172, 186]. Bi2212 TIXHIEF v/ 3—H
DZEDYT =— LD RN pa 2L ST HEEBR T
N7z BoN - TR —AiZPresland D/ X TR ZIZFHELTHD,
0.02721F E R — ANz 7 hL7=b DT~ 7= (X25a) [172].
APRESZEBRIZ IV I E FIETHLD, EBRITTH R %
WHELF 5701 TEDRIZROLND[53]. BT, /hE7R
RV MBS AR — 7kl ME A A
T DN, RERT o AIED N RIFARL 2D E R — 75
TIEZEH> T2V, fEREL T, ARPESIHIEKR — 7T,
NMRIZE R —7 I CERENMED SV iE FiEE RS,

R— AR Ra RO — Xy VAR BRI E 75 & O 5 B G
ENDHLpA L HIZ[140, 187-191]. LoL, b0
HENZ Y 0p% 52 50MI 06T LH BT, Ebicl
XU C & MR R AT 2 R 3 2 e E 725, Ry
MHRDTZplITUDIK TILZE DL L MEZE 5-2 523, ODIK T
IZZEDTIEZ2V . La214IiZ3W  TRu B3RO 7-plZUDIK T
NI —BT 528, ODIE ClIRENNT, SHITH =
KEzLTLEW, HONTIELW REEH YA 5 2 72\ (140,
187]. Bi221200UDREFTIX, Rubdbo b L LV piEE 525
[126]. E£7/-La@E 2LV T332 KIZ EF-L7-Bi2201 (Bi2Sr>-
«LaxCuOy (x = 0.4)) TIE, RuHpo= 01503541, ZiUdTe
DI La214DAEIZITVN192]. — 5, TI2201 D ODFRELT
Ru»6 RFEG > T2pDZEALIE, 4.4 381D XK24 Tk ~7- 35
A OROT-ApEF JETH[188]. ZD LA IZRuHUDI
TOIpDIWEELE 5252 01%, 43281 TR ~_728912,
R =8 7 LI — /L OMEE S UDIKORL 17> 50Dk D
IR AL T DTG THEEZBND. fERL
LT, A=A T — X DIHENOT—pRR O 2R E552 L
IXREETHY, MRRIITIER DL I LS.

YL EDIDNT, ptRIEIZITRE # 7 EBRA N M & E LD
3, & FEOE ML EFEL T BERSSKR T 22810k
v, A CHEEmm L7 Telp DM OALSE R S Tz, IkE
TIE, 448 CEEDIER T REERFFEL TG0
T D7D, TeodB3 LW pe DAL FAH A 2 R E T D BN 275 52
T5. ZWHIMEBRREZATOEIMMEFEIZE > TRbEID T
WZETHD.

4.5. (AR TeZRD DD ?

Teolpo DAV FAR M %2 SCBLT 22 DD ER &L T, TH A
FOHE|LZ L SLZRSD 22 EME (45181, FIZODIK
T, BEOTUH LR AR (4,528, UDIL CHRER
BRI ICERALEY. EBBLINETOMZICE
WTHRHSN CERERTHLN, ZZTEHE S bE T
BAMICHERL, ToBLUpe DWW E KR A BR300
HH 2D, MA Tl EATHEIOEREL T, BImE)E
DEINETOND. ZONRIFTHR— NV =128 T 53K
TCHBARE R D22 EVEL BIFRL, TH SRS R LR DR
WAL T-H. ZOMICEALTUILE R E O FERE RLE
T, 47280 AR E T OB LZITB O i
T5.



K21 DE FFHX THEELZLINS, R—F LIBT3
AR T pIZ BT 2T i > T EF T 2133 Tho.
— 5, IRREE S 7 75T RO RREE L L6128 11 H3INEL
2o TN TN, polh BT/ ETAX I IZE U 5. 4.45)
TEEDTHER 7 7o b (M23) & TeopoBFR (X126) 1F, EIV
TcoﬁUZD§<@$~/V§f)\'@?§r5ﬂ5:&%%ﬁﬁﬂlﬂ?j‘ D
FOE W TWELOMEIZE, 0 TN NP0 ERD. &
DIZTeo DR A (X122) 3B HIZCI TR D Teo BFHID
EVIHEER, nkEHIZTL,D TP SN ER S Tpedd KE
<Y, C3ZMA LM N HERTHI L ERT S, Zhb
BT A E IR, KH-E - gL TIRESN
T-TE SR FE OB THAI[193]. M OITTESEEFE 0L N
FRR Oy A MIBHDAR— M T HE R T v /LA R
L, EOENKREVIEIZE B Tk b D WL E 712
LUz, DEVR—ADBOp A M TelEE, Teokpoddmi<
TR AR 3% . W20 CuO:ifi D FE IR IR B % I E
L, TONEDFRNEE Teokpol FH35.

4.5.1.1. TERFRFENROWEKAE

X150 I91Z, CIOCuR 1 ETiz2oD0.%, C2Ti
—J7 D, C3ITIZOPH1-D, IPIF0.Z /=720 . Lo TCuO:
KT 200X DIAI /NS D1TTTHD. HL
TESRBRZENT,D FREEL Tl FIF 2% Ret 27eh
i, KRR T I91Z, 0D EE %112V C,
C2, C3DNEIZ, EWW TeoMFOHIDDIZHKRES 5. — 77,
[6 L Cn T Cu—OalHEfE (d(Cu—0a)) 1T TE DRI I AL,
T 57259, C1OTI2201 £Hg1201 D d(Cu-0a) 1% % 1LE 11
2.722 A[128], 2.79 A[194]T&HY, La214D2.4 A[195]& Lt~
TIEDDNTEV(M28) . Lo TTI2201 EHgl2011Z /NS TH
BERFNRDT-0, IVEW Twrb DI TS, liHDTR
—AETeLAK27DC2, C3DR—LD LN, XER—T7 1%
FTIENR>TNBEFRHRIND. ZOENRK22TRZCLTE
FAHRERTDIELDEDO—RIEAH. — 7, HAEFEE]
DUMNFRIZ2NC2 T A(Cu—0) DIZH DX DA} /NXL
C3ITIEIBDIPDFEENR IS/ NSRIESL &R L2577,
H 72 22 (ZHg1223 D OP D d(Cu—04) 1£2.82 AL K E V) [123,
196].

TE AR R ST B CHLBREV I E RIL, \H{EDTA
BYAMIENENFRCIL A > %D D CLD SrCuOsF2+s
(F214; T. = 46 K) [197], Ca>-Na.CuO-CL (CI214; T. =26 K)
[115, 116, 198] T 5. THREFRELLL MliOfEAA T
HDHZEND, La2l4DBE D2 OB LA A LT,
CuO I xF T DEFE AT/ NSWNT T THD. fEREL
T, HEDTF21413La214 X0 E\W Tzt . LLCI214D Teo
RS, THRAA VRO T R TO T DB R AT
AT D2 LT TER. RD452E1R B IH(2, Zhb
OYVEIMLE T HIRR — T TR L7057 & DA ARG R
DEEHEE NS, HEDNICR14DOSTMERIZH VT, B
WR7R A — DML S A [199].
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Fig. 27. Schematic representation of the 7c—p relationship for
the C1, C2, and C3 compounds in the absence of randomness
effects, demonstrating the apical oxygen effect. The 75 line,
proportional to p, represents the BEC temperature in two
dimensions. The T} curve, which generates hole pairs, shifts to
the right as the apical oxygen effect decreases from CI to C3.
The Cu—O octahedron in the inset illustrates what happens as p
increases, particularly above po: as Oa. approaches the CuO2
plane, a hole at O, (h") moves to Cu, causing Cooper pairs'
characters to change from ZRS to d-hole pairs. The change
occurs at higher p levels in the order of C1, C2, and C3,
resulting in a higher 7co at a larger po.

4.5.12. THRBIENROR—E 7 IKFNE

IEVENZE AR N N el A N P Y [ e VY iRV 0 T A D
X5, C1dLa214 [195, 200], TI2201 [128], Hgl201 [194]iZ
BIFHCuLOBLVOMEEREDO RN —E L TR AFIEA X281
AT EOT —HH RN kA > #ORE
AT AR 7 [T SEBRRE Fe o 5 -5<(C2, C312h
LCiE, BESRMBIRBRO T — 2R RS 725720 . pDiffaxt
EAARIZRTI, Hgh Tk — /L BZ2{bo B 22E L, imE
BB A ROsD (547 3 g(0s) & FW=. VAR (A=A
1 THY, BRDMEOI T ICEDEBRD 2T, p =
2g(0s) 705, EEIZITZEI) TRV ZDIZTTNNAEL DA, &
—IVEIALD B L LI D125,
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Fig. 28. Doping dependence of the Cu—O distances, d(Cu—Op)
(left axis) and d(Cu—Oa.) (right axis), as determined by powder
neutron diffraction experiments for (a) La214 [195, 200], (b)
T12201 [128], and (c) Hg1201 [194]. In T12201 and Hg1201,
the occupancy at the excess oxygen site Os [g(Os)] replaces p,
which may scale with 2p. Each figure's lower inset depicts the
corresponding 7¢ variation.

EOWEIZB W THA(Cu-0a) TR — /LR —T L L4 1T
BT 5. ZHUIECuOHE DR — LB 2 5L D IE
BAHICAEMEZL D0N 5 EHFELNLTHTHD. La2l4
Tldx = 0.38ETIZ1.3% AT 5. ZDLXd(Cu-Op)b [FlFE
FED1A1% T2 W T 50, WiEOR—E > ZTIRFMEIZIAS
MZE2 D, d(Cu—Op)idxt EHITHRANT KR ELBA LT,
fafn4 A A2~ T OIS LT, d(Cu-O0u)lTiflb-<nE
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ZOHABIBAT L. ELLOR—E UKD
PoT-NTERIDINTH A, —7, TI2201Tlxg = 0.005T
BRIz f A — L &Ll EIZHY, 0.028 THRISENHAD. &
DFENODIK (Ap ~ 0.0461Z5%F 5T %) IZF U Td(Cu-Op) I FiE
EAEBAL LI NDS, d(Cu-O) I T DR T LEHIT/NEL725.
Hg1201Tldgn30.04-0.23& KRESEILL, Ziuap ~ 0381
KIELUTTR — ADIRIE k% 13 —35. 22 Thd(Cu-
Op), d(Cu-0)EHIZHFAW L, d(Cu-0)iFFFIZpLh £ T
BRI T RS, Ko TEDWHE Thpor i 2 5L 0.23Culii -
WIS <MER A R TEND. BLEOFEERFEIL, 0.0
Cu~DEGENTAR T DB EEBERDIEETRET D,

45.13. ZRSOARZEL

TE SRR DN TA AT B X ZRS O 22 EME I BAfR 3
HEEZ HIAH[193]. BT 2L, 0.2 BEIL TWVDIER —
T TIEAR— LR 130, EICWTZRSEED S, @R — 71
THREMED DAL H720.83CulZ Iz 2T, K27
OFFANK D IO HCUIZF | X F LS. K18D TR/
X —HAY I T LTIFHEET 000D FFEKIEITED, 18
KA Zdius/ N RS B30, OpD2p/ S RS T35, R EL
T, dplREEDIRES TR —/IRBE~DAHLE D % 503 K&
IRV, EREXT YT X —Pph—hbdR— L ig~L
WmAZEACT D, DFED, R DOpR— /LA G TeZRS (dh) 1T
REFEAL, dBTEICA 3G T AL U E R 720 dA— 0 (d)
NEEAET D, K28D LI poa i 2 CODN 2RI ZCulZATfF
<D, pA—/VEVHITVMLEIZH DA — VIZE & FHED
NADTEHTEAD . R— U I EIZRS) DA — /L ~D Rk
254k % ZhengH 3 KL URybickiH (2 D% PU B M LR (NQR)
BLOUNMRIER THELH T 5[201, 202].

DL ED B LA LI X27 O BAR R 72 M X 2 kD TH LS.
R =W T, B Dp L THIN3 %3t
EOBECIRJE Te# 2> T EF-T5. 0,22 2F>CITI,
TRWNTE SR E RO =012, ZRSHHAR— L ~DRITH
DIRNVR— VBT, dR—/ICuAE Y HHE AL T
LEHN=0D, ZHTRUVWZRSE L TROEBEMERE X 7 7
TR EFELLID, 5l HOEFENEEIC DD ITE
TR FEREL TN T, TIIZCEEF T BN TR I
HEEZEZLND. —F, Q&1 DOULNEF-720)C2EC3DOPT
1%, KOREp TIOBITNILZDT-60, T m Rk —7" ]
(CRBENL, KE2po TRV TN EFHNDZ T/,

O FF 272 \C3DIPTIL, ZDXH7RTEH pFEFEIZ L AHZRS
REZEALDEZ D722, TeIZi> Tl EH- LT 2
7259, L L7adin4a 3 2818 KO LIZBIL Tl ~7= 8912,
CuO [ DFR— /L&D 2 HET 2 /LIMERLHME T L CTd-plR
RN R L, B AIITIZZRSD DA — L ~D AT ILRET S
N, N CHRIRZh ALY, B2 8558 FLAE F Jerr
NSRBI L. FERELT, 0.0 DA EFRIEE
(2, T BIOTIIRNTER U139 Cho. TH SRR DR
X, ZORAKIITRBATE2 LD/ NS — VIR E TR 3
1PLE2D. TDH, TR =DM TIXdE—LT (Ebb
INEVHE) DIBIRENIEZD. SBIZH| NNFFELET, N
EIR0 I — R—=XT IR ST, Z<OdAR— /LR BIEIZ
FEEDIRFEL 2D, ZHUTIE T DT 2V JRIRE R END.
CZBITDE Tl L, T b ER —7 R ETIANHZET
S D= N_T EHERCETFER THD.

PLEDISNTHEZ LD Teo, poD 7, BILONER—7 5T
BUIFATDENL, THHEBEETE DR 5 W) fE S AR S DR
\ARAET DZRS DL EME, D FEV G| 1% 4 I 3 I R
NPT T RDOEEMDZEIHDHES 25D, C1HC3I~E
TH p RN BN INEL IR D T LT E Y Teo, polSERT D,

N



FREZLIL, ZRSAETHAAR— /LT H 190D B ARKK 72~
TV TR e Z BT B THY, EBohr— =T
2095, FOENIAR— AR AT DI LT,
ZRSIFFAAL 23721 CIHS RN oD IS SRR N v 7
7o REXVEIR D, 5l IR RERAR—/LVEETIHO
DIVRNZEIZHD. T EARINIIpIZ LI T D200, &
DER D ETIVEIRBDOGELIRD.

452, FH LARARE

THEPRDHE)—DOEERERL, 7oy 7 f@o{bE
il KT DT X AR AR THD. HHAAZITICUO:
T [E A OPEE Tl < OB IR T T 5728, B0
ET LRIV I=T U ICEDIAT Z XN EETHD. Ll
RRMMB33E T LI, EOLHIRBEOYWEITEH I
fFEEED, O TO2DBEEMNIE[3|IZHB VW TURSITZL
N, LIXUIEERBRICBLIIS a2 R 3% EClETC
BNV ERD. By MERIKIZR—7 L TR kiES
FHT DI, BT T L TIXEOX YU 7 Rb L1455
20, REOME TIIHLEL EOX VT EE VLTS
[27, 28]. LB EARD IRV R T —r AR A
YEHR MBI CEY, MafxdRBEIC B E T 5 X972 % TIHFRIC
ZOERERICB N TTIH AR AR RN E /2 HET
FEN5[203].

SRR LB EIZ BT DT T X DR ADBRIL, Zh
EFTICHL DO EFICIVIER I TE72. Attfield b 1%
La2142DLat A MEHLh F A KR 4 72 TR IOV TIAN, Te
MW H DA AINT A—5 (B D AXIZA~ v T ITH
KT D) ITEBIL T FNDZe% R UZ[87]. K, NHS
IZLa214, Bi2201, Bi22 122 ICB W CRIEED EBREZITV, T
FEBUNED T H DR AEWS T LI TN BEE I L5
THZLAERLIZ[88, 89]. Lo T v/ EDELNN A LA
THEE/LER THAHZEIMEWRD. 72721, Zhbo5E
BRIC BT D AHIM 20 BT Rl B I Tt 7= 42 )8 — i AR 55
FEEI IV D LARER — 7RI B O TS D Z &I
FET5.

ARETIIRINCT o LR AOBGE B 7-1%
(4.52.180), T2 Z LRANE D IHITCuO [ DFETFIRREIC
WL B2 DI HOWT, R T VE AW TEREKRNZ:
AA—=TH B2 5 (4.52260) . FaEIIER — 7T
RN DEB B A~DEA LA B L (4.5.2.36), ZDT—pltk
~DEBELZHUD (4.52480) . BT DR FEOY)
BT EEBEL LD (4.5.2.581) . —XOBIRERIZEITD
FTUH DRAIRLE, R BELNC LD 7 — N —% e L
BZRT D0, ZZTIEENLL FICRFRT v bz kb
XY UT N7 OFER, BRNARER— VIR AT HE0
VNRENEETHLH LR T 5.

452.1. UK DRADEH

2L DS LB EARDILR — T TIET o Z LR A
IZRDRE— Mok 2 THRMELRBIZ DSBS NG, 71
Tu—7ThoHERN F/NVBEMEE (scanning tunneling
microscopy: STM) EBRILE FIREBO AR —Z w42
LRI LT, Bl IEBI22 120K R — 7 Tl, £93 nmfE
DB IR N IR R E DO~ RNy 7 AF T E-> TS
[204-206]. [FAIEED AR —ED3CI1214 THEBLHISNDH[199]. —
7, La214/Z 815 5%Cu NQRFEER TIE, E#LF 1A MIiT
U O 2 FEFE O 8T 0N B A LS X L CELIS U5 [207,
208]. SHITMKR — 7 O R SRR E O A ST
72[209]. HEEHIE W TE LD, 7V — b HHg120112
BNTEZD, %Cu NMREBR IR —MEDOIFELEZ AL
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L72[210].

Cu NQRAZ LD HES & 5 50 L8l ) 112 8 0 D Ea 4
A)BL (Electric-field gradient: EFG) D RKEX|ZH - TR ED
D, JIFTIEE DEED7EWETRR]TE 5. EBRTHELND A
NIV, REFR O R TOH D DOE 5D
HiH e, ZOREIT AR TP EAHEFGD K EX
DENE L THEND T2 AR — D LRI L 22 DD T
H5. La214|ZBIFBEFGH i D2 ORI, SR L7 m
v/ JEDSrEE AN DREED LG &L, T4 LEHRO
FERLL THA L ACuOL I N DR — VI FE D R — 7245 Fi &
ENTVEN, BEOFENIEH THLIENRENT
[208, 211]. A—/L DRI nmFREDREED /T IRIZ
2o THEY, ZOH A REBi22 12O STMEER S EH 727K
— VB DA — VI —E§ 5[204, 205]. RICEST, &
TRBEIZ3 nmFRE DA — VDA —ENFIEL, ZiuT
UDIRIZ BT HCuO i (B D ThHEE 2 HND.

WOMND R TV RITE THDHAL RS ARSI
TR EARTE 2 RIZUD T/ EL, polh ETIEIZ100% 12
7R BMEE N RSHHB[116, 140, 188]. b D FEEBRZEFITUD
FEEDNER A I UOSRARE L 2 > CUVRN T LA TRIB T 5.
— 5, UDSK CROBMAMERRF B L OVBIRE LA T 5D
OB NBLUHISND D, ZTOHIEICH T Z DR A BER
TBHEEZHND. La214lZBUWTCAFIESCOMIZ ALb b A
v 7 A (SG) ([K20) 1ZBHSNTELIUZ L > TAE D h) &
PIESIEHICHFE LSRR THD. BiA PPl Ciditk
DA4B2HINTFEED D,

4522, Tyl BOHERMIZ YT H AR ADIEAE

SR TII E T T oy BoAA4 GG TN
W, Bl 21X La214 TLa i 1 & [E XL 2 72 Se2 R 1-1E, R
TR BRI AR T L )V ZARE JE O CuO2 N HIIN 5
T D, ZOIH7R L FRBE IV TEEE 7L, HDHAE
b IV ANIT T H DA T DRI ND. MED
BRIEEIXZHSEIETHY, FTRAOH HZ RLF =5
WSS, o et —ICE T X AELE DA EBE
5. ERtE OB EIRE TIXEOREN T = F I THE
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ZAUTER T2 & BT 25O RES (Rt R) 1T
KFET 5. FEES O RETIUTRITROSNTHE — LA
TSI, INSWIGEITII AR — 70D, BB DG AT —5y
Hi L I ENDDITERE - DRFES LI E DB THD.
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FREETBHTEAD.
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b, TN = 0.02 (K200 X CTliffikik L 4 g o
FU), 0.05 GE{RE O HBLAENK) , 0.10 (ESERER) (239
5. —RUTZOTUH K Aiid ) — ST EE . RIS
2.5%(p = 0.05) TIT/E FOFEBICE BT 72 <HEFED, &
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Fig. 29. Cartoons illustrating how random chemical
substitution in the block layers causes uneven distributions of
substitution atoms, resulting in inhomogeneous electronic
states in the CuOz plane. The La214 stacking unit, (La, Sr)O—
CuO2—(La, Sr)O, randomly arranges Sr atoms in block layers
above (sky blue balls) and below (blue balls) a 20 x 20 square
CuO2 sheet. 1.0%, 2.5%, and 5% Sr substitutions are assumed
in (a), (b), and (c), yielding p values of 0.02 (AFI termination),
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0.05 (SC edge), and 0.10 (SC), respectively (Fig. 20); there are
8, 20, and 40 substitution atoms near the CuOz plane, with some
overlapping. The magenta circle depicts the spread of a hole
wavefunction y around a substitution atom, which may
correspond to the localization length in Anderson localization.
The broken circle displays the area covered by a 2 nm
superconducting coherence length (&). At p = 0.02 in (a), the
substitution atom is sparse. At p = 0.05 in (b), the substitution
atom is sparse in circle X, medium in circle Y, and dense in
circle Z, illustrating an uneven distribution. These three typical
areas can support antiferromagnetic insulators, competing
secondary orders, and superconducting states, respectively.
The difference in (c) at p = 0.10 is less significant, suggesting
a more uniform distribution. Extended hole wavefunctions
eventually overlap, creating a uniform metallic and
superconducting state.

4.52.3. KR =71 B 1) DikiIs—4 B

SRR LB S ORARIXE BNV =X vy 7
ZhOFy Mk THD (M18) . IELELICLIEmIRS B
DOARIRAE R AR ~DE ME O F] & L THISMIIZ V20303
FNHILTWDN, TOMDIZFEAEDWE, B2 IEVO3 T
T & B AR I TR S S R EMER LD IS
EHELEZ HNTNA[27, 28], VORLFAIREI2BIARESIC
KEIR I TAR =TGR E PR 2R Tt d, 72 IR
WZEOTEORBE AT LHMEMEEEO T, FFHIL 0T
L EREATE (2 OREIRIZEEN 25 T TR RIS LD LA
BTNV —DEBICHY, 7o AIFE AR EEEIZERL
720N [212]. SRER LY ClE SRS AR AR BRI S 2.
Ty MEBERH-7T-E L THZEOEEBIRE XK 1000°C O @S
BB AEAY. —F, R—E o7k A& B ~DE v & E T
T4V arha— LD MERET AR FLHHN, K
—EUTNNTE LT H DRAPEELI LB BT
AURZRB72 28], BLEOYE B\ TR 27 4V ra
c— U2 L DEy MaB A R Z &R EE A5, 72720,
J)—U R =7 FIETHHER _HEE (EDL) AN A e
LD A TIETRED S L7V [213].

Anderson il gh THUCIE DN 572 1 - I B RIS s R LA
B CRET A AR LTZ[214]. ELALD K&V E A
IR =7 &N EOF XD T IEIARRABRIC N7y 7 &N CE)
T3, FOENEZ T, HOTRAX—O T BEIE G 22
TIILO CEBMREIZH 57 5. ZOIH ko b4e R
~DHEFE %A MottiX Andersonfinfe LR OY, SRER{L D7 41
Jarha— kb4 B b Andersontiifg ThHZ LA ETHE
L7z[27].

SR D L5 72 AR B TR D B AL Tl i s
REDENCEL DR =L 7 20T 5. La214 TITRHE
DAFIR—E 7 EEBITIHEBEL, 2%DFR— LV E TR
#4745 (X20) DiFAndersondinfE & & 2 HND. Hufk iR tE
HWICB A EERERIETIOEERIEIL, T Z D
XA L5 TRIET 58 7 I M FF 4% Variable-range
hopping /=B 12 HED[140]. AHE DI SR 7E L 7= BhES
BIIRERREOIENVELD, TOMEE T I3hy 7 LA
DOLFET DM, Mot BE TIET X COEFDNREL T
BIREIRD, R—E T LELICREEPHE KLU CRETDHE
=, WEBEAENERDE > TEBEE A AL, Andersondis
BN S.

La2141281F22%D e ik — VIS 1S, BHR 70T
K LRT 2 VTN T T SV E T OB R DLy
DR/ NESNZEE BT 5. p=0.020[X29aTlE, FilZ2IX



2 nmD LA EH DWW ENBIEUT A VICERG T, NI
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VU MRENEIY, KR T TR TOR—A N Ty TSN
TRIETS. fEREL TRARERIUAFINZ E LR pE L
725, ZZTOpiX /I VB THY, EERCENT AR — L&
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ZEEMAREITR U, BHFHDAFIN AR — LR =7 TLAEL A
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7=DIEDR B2, 7V — 2 72CuO2f D R—/ Vi B B 28
XEDY, AR — S TAFMICAT T Db DTSN
% ([X38a).

R—E> 7058 A Tp = 0.05([X29b) (2725 L, EHLH T
S DAY —MED H 3L~ TLD. Bl D I RBE AR —0
EVNTIE B T MM ORHER KT T 5. BinEae—1L
VARE =2 nmD RO HNITHFEIET DR — %25 219,
BiATIZE o CEM NI E ENHE B 1258 (R — V50 2388
FIHR D, fHIX T 72K, ZTIEZ V. JiE Tldp =
0.02L [AREIZAR— NI T 7T SN TAFIDE TN A,
BB TITI BB S A0y EARD Ao CR— VIR ERE ) E
(CENXEIDZENTE, RFTIIZAFME/ZIZSCHREH T 51
ERW, ZID2 O DARREL IS T DRI ML ERRF N
FAETH7201F, ZAUIH MR ERY ICENDZ L1275,

—J57, p =010 CIIEM AL ZITE W TH KZE1372<7/2 5
(B4129¢) . N2 T, BN TARER — /W KD RN R D3
BRI A O FE D, fERLL UEMEEN /S —alL — g
VNI T BRI IR N D 4 B AR S A R S
B, ZOINIR = TP R T L DA
IR S, EOCub RICERERICHDHEMRILT LN TE,
RIIH 7B B IOV OBIEREEICBITT 5. L
oI, 2 mOBREat— L U ARERER LTI
X LA ZE BT T, La2l4DKR — 7o i 5 J&
7o FACES. [X29b (p = 0.05) [T ESICSTMBI SN R
¥)— 34 2 FER 95 [204-206]. 2 TR ZAHEFENH 4R
~DOBEAIET 4V ar ha— W LDy Mag Tl
T LR AL D AndersonfniE THH.

4524, IR—)VrTo T ERTIRY IR TR — A

La2 148X D AFIHEIE Tl X COR— /LR R T
YUXICR Ty T ENTENT T, MR RIRIEEICSH D, SHI
R U REASIU 29D KO 72 AR — 708 T-IRBEIC 72D
LX, —EOR—V (FEIRZIZE D) BENTH L1278~ T
SREEBIOEREICTE G T5. SHIR—E 7 NiEA
THEZEHEBIZA-TH, AL a <& E R T,
MR T X VAN Ty T ENT-FE THRIZEICF 5 LR
WIR— L MELET 200 LAV [87]. B2 1EBi2212Cl,
R R EGR B IZ L DRuD, botbbLWpE2 LS
NBDIZXH LT, IVRERELNES DBi2201 TIEEAGLMMC
INEOPIEREHND[126]. — 7, Fujitabid, KoV —272
Laf®&#4Bi2201 G i DOBi2201 L LN TEW T = 35 K&H D),
BEULa214D i K — 7 3 F O EHI TR B A i L T
disorderz i A L7z —#HDOFEEZ HWT, /IFNARR—T"5&
EEBRCENT DX vV T BOBURE R IR, T ToR
— MBI E 5T 5 AR LT2[89]. BB +4372 DR
—IFEETIUE, BR—7 1 Choy 7S Cunizk—L
LT, BIREICFET500EB 265 (7272 LEL
NORKENRTITZEI TRV LW FERELT, 7
U DRAZE BRIV T TR R =TI BV TEE
T REMEEERD.
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PLEDBZIL, TR —LEMOSTRTIARDBIARE )T
12724, BLAIUCEDHBE— NIy T ORERTHDLZ LA RR
3%, T8 AFXANEOLE, KR —T I CIEENT 58—
VDD X3 NI pr0/NELI2 D, INESVPIEEFDFE
IIRE. p I B4 BT 2pD % E L CTHEK &, XI300D4H
U R T KRB — 7 7257255, Te'Hhifk
WA I FD, BRSO TR
SED B3 THARM R TR IZH#lT 5. HHAAZIUTI R
WIS E T, p Al L, eBI RN R 25137
Th5. TR — =7 TIXLA 5L, Tl —
THDT, ZOBEHE T BN FEER BRI SNA TR — LD/
I DIRTRY 7R ST 532812725, FiR 7 ay MT
RONDTEBIREX v 7 5 FEn DO O B B£R1E, uSR
EBRNPENNTWER—ILDHE R THNLIEIZHETS
[163]. X27cDELIND/NZWHE12011Z I DT R — A,
27aDLa214L R CEARMNINL S B2, K— L0 FEX
(2725 TWD. [ARRDIERIFRIR TR — AE 7V — 72 2 JE %
THEHENS (K34) . LLEDLSIT, EBEDOERT —2%
PR DITIIT U H DARANRE BT HZENRA L MR
B, ORI DBN, INE T2 NN—P L EFEUHNTE
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Fig. 30. Schematic phase diagram demonstrating how
randomness alters its appearance. Nominal p does not equal p°
which represents the actual mobile hole concentration; p” is less
than p, especially at lower doping levels, due to increased hole
entrapment caused by random potential from the block layer.
When plotted against p, Ts", which is proportional to p°,
appears to be zero at first before rapidly rising with p,
approaching the 7s line. AFI survives as p increases initially,
even if p is finite, because p° = 0 when T = 0. After AFI is
replaced by AFM but before SC appears, a window with an
inhomogeneous hole distribution emerges, as depicted in Fig.
29b, in which various secondary phases or phenomena like
"phase separation" may occur. Then, e develops along the 75"
line, eventually resembling a parabolic shape as observed in
La214 (Fig. 20). Furthermore, randomness effects cause
conventional pair breaking effects to lower the 7c dome top, as
indicated by the vertical thick arrow.
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ARSDOZnE LI LD TAR T2 O xHi8E5h B2 L 5[89].
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Nov 7 EBIERIL, MBEMICTE FiF5. —J7, 2O
ZECRBHE BRIED TR R MR R E BV R DT
BN AT THEE LT X212, "=V T T OB LZ 1H12<
VW R — 7 R O TN RS ISR LT D& RS- [87-
89]. Lo THEMNIZT U X ARAIZH KT DREEE N EZ - T
WHEEZBND. TOFEREL T, K30DIEE T A& KH]
DI, F—N TV FICLDENFT VT EOW D %E 8
L7=Te"fre, =7 LR F 32T o PSS EIR
AR (AR 205, TR —AEIEBITIE T DI &7 5.

4.52.5. TUH DRANBEOYE TN

K29 DR P IF E DERERA LR B TH S v 72
NEZHZETHDHN, EOFEMIIYE IR DITE R
VN T BRANRORE S B L OB F — T
FHENIKIFESIZE > TEHIITND[88]. FoH LKA
NRNT T v 7 fEi i L E TR OFSE, (L&, CuO2E D
B R T35, SOICTHAERE R LRI, nlo REK
F3 51259, K3 R T X912, C1OCuO0:H IE
ETFINET BT oy BN D RN T S D
PUEICZTS. CQ2TIE— DT ay 7 @D IinbE s,
C3TIXAEEDOPIZEe N AP B E Z 1T 12\, TP
OPsZzHEA CTT vy 7 @b TWAHIE, EHIZOPSIZAF
ET XY T DR R IV T o Z DR T
VX IUNDIRES LD, FERELTIDIEIZ, ToH LRAT)
BI395F0, S V7Moo IR IVEEK 2D, K31dD Lo,
FNT DTN — AR NDTEAD.

(a)C1 _Block layer

o)

Fig. 31. Schematic drawings of how substituents or excess
oxygen in block layers affect the CuO2 plane for (a) C1, (b) C2,
and (c) C3 compounds. The dotted half dome represents the
random potential generated by them. (d) 7¢ curve evolution in
the low-doping regime, where CuOz planes become clean from
C1 to C3. As randomness decreases, the initial 7. curve may
shift to the left and eventually converge to the p-proportional
Ts line in the ideal case.
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B9 5R— /L EETIZEBIND. AFVAFMAR LB =38+
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IFEAERITRELZRLRD, T H16ET105 KTIRIE — &L
725[160]. ZOFEFEILCuO M Z LI B DA — VIR FEIZ B
BT 5EEZHND[166]. — T TeoDIELDEHRIKF LR
2250, ZHUTIFIERUREICHH0P TRE{RENEZH7-D
Thb,
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FTRELE LT A DIC MR ER Ty Ve T
VAT, Cl, C2, C3, C5ICBWNTED LI A—L43EL
NEBINDIDETRIL TALY (K32). Tavr@hbo4
= VLG Brpe S 7 1y 7 JE R O n L D CuO2 1 O E DT
fieAa énéwé. LT — G B RSN D K ESpsD
AEMCTHELZT vl BNLD7—aL RT3 % /LR,
B R 5 ) ORI S B L TR — Vo Bl a ik %
LIRE 5. dIZTEENT-CuO LB IZRBIT AR T Ty L
124/dET2D, ADfEIZnEpsl
FHE CITHgR OFE G T — 2 &2 W, BarliimEo
FFEIZ BV CTOPDTE SRR NS DFHERT v v L [183],
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C1 Hg series
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Fig. 32. Calculated hole concentration, normalized to ps, for
each CuO:z plane of various Hg compounds. The horizontal axis
represents the distance d along the ¢ axis from the block layer
center at the HgOs sheet in the B3-NC block layer (Fig. 17d)
for C1 (blue line) [194], C2 (green line) [181], C3 (black line)
[123], and C5 (magenta line) [220]. Each curve is calculated
using the formula 4/d, with A set so that the sum of p values
across all planes equals ps: 4 = 2.3822 (C1), 1.4856 (C2),
1.1637 (C3), and 0.8983 (C5). Each curve's inverse triangles
represent CuOz plane positions. In C3, the broken black curve
represents the counter block layer's contribution, while the
height of rectangles at the OPs and IP positions represents the
combined p values provided by the two block layers (0.35ps
and 0.30ps, respectively).
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Fig. 33. Distribution of holes across the CuO: planes of (a)
Hg1223 and (b) Hg1245, as revealed by NMR experiments on
samples with 7. = 133 K [122] and 110 K [166], respectively.
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The total hole supply (ps) from the block layer with — ps charge
is determined by adding the NMR values, p(NMR), and then
used in the electrostatic potential calculation. In both cases, the
calculated hole distribution, p(calc), is consistent with p(NMR).
The yellow shading illustrates the nearly even and uneven
distributions of holes in C3 and CS, respectively. The NMR
experiments also determined the electronic states of each plane,
as shown on the left: simultaneous superconducting transitions
at 133 K in the OPs and IP in Hgl223; a superconducting
transition at 110 K in the OP in Hg1245; and a superconducting
transition at 85 K, followed by a transition to AFM at 55 K in
Hg1245's IPs (IP1 and IPo).
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Fig. 34. Phase diagram derived from NMR experiments on
seven C5 samples (Hg, Ba, and Cu systems) with varying
doping levels [166]. The experiments distinguished between
OP and IPs (not IP: and IPo) and determined their hole
concentration and ordering temperatures: In  for
antiferromagnetic metal (AFM) and 7¢c for superconductivity
(SC). The data is combined into a single phase diagram as a
function of p in each plane. The red and blue circles represent
the OP's and IPs' 7. values, respectively, and the triangles
represent the IPs' 7x value. The open circle and triangle at p =
0.157 and 0.169 represent the SC and subsequent AFM
transitions, respectively. They may occur in more doped IP:
and less doped IPo, respectively (see text). It's worth noting that
their p values are the averages for IP and IPo. Because of the
thick conduction layer, the AFM order extends to the hole range,
reaching a higher p value (0.15) than in C1 La214 (0.02). The
T. dome determined for OP and IP (IPi) appears to be
asymmetric, with nearly linear expansion to the origin on the
left and a relatively rapid drop on the right.
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IV HUE T D AHVA N RO BN T B fe 72 & B FH OFERL T
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Fig. 35. Schematic representations of the electronic states at
optimum doping for (a) C3 and (b) CS5, as shown in Fig. 33. A
pair of encircled arrows represents a BEC Copper pair made up
of ZRSs, while other arrows depict Cu spins that are almost
antiferromagnetically ordered (straight up and down) or
fluctuating (inclined). At 7c = 133 K in (a), three CuO: planes
form a thick superconducting layer. When C5 is cooled to Tc =
110 K in (b), the OP superconducts, but three IPs with fewer
holes remain in the paramagnetic metal state, separating the
superconducting OPs. Jir and JeL are couplings between them
via IPs and a block layer, respectively. When cooled further,
IP1 becomes superconducting below 85 K, while IP transitions
to an AFM at 55 K (Fig. 33). (¢) A quasi-2D antiferromagnet
with a large in-plane coupling J and a negligible interplane
coupling J°. When cooled to a critical temperature that scales
with J and is reduced by 2D fluctuations, a plane’s magnetic
correlation diverges, resulting in elongated coherence length
&(AF). Minor J° interactions can result in significant coupling
(&J) between nearly ordered spins within &, leading to 3D
long-range order at the critical temperature.
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Fig. 36. Calculated hole distributions over OPs and IPs for C3,
C5,C7,C9, and C11, with pg =1 and a simple structural model
with stacking distances of di = 4.7 A (between the block layer
center and OP) and d> = 3.2 A [between OP (IP) and IP]. The
circle on each curve represents the plane's position, which is
normalized by the c-axis length. The calculation predicts that p
at OP will continue to decrease as n increases, as shown by the
green dotted line, which contradicts the observed convergence
of Tto to 105 K in Hg compounds (Fig. 22). For large n cases,
the blue lines depict the most likely hole distributions across
the planes as a result of modifications caused by carrier
screening effects near the block layer. The magenta arrows
represent possible changes after corrections that reduce holes
in IPs while keeping the OP's p constant at around 0.2, resulting
in a constant 7co value.
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Fig. 37. T—p plot based on ARPES data for the C5 Ba
compound [186] and NMR data for the Hg series of C1 and C2
[225], as well as C3 and C5 (OP) (Fig. 34) [166]. The NMR
data points show an initial rise of 850 K (blue dotted line),
while the ARPES data point for C5 Ba IP; yields a larger slope
of 1400 K (blue dashed line). The initial slope may become
steeper as it approaches the clean limit, which corresponds to
the ideal 78%P line predicted for 2D BEC superconductivity at a
slope of 2300 K (blue dot-dash line) [226, 227].
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Fig. 38. Hypothetical phase diagram for ideal copper oxide
superconductivity. The horizontal axis represents the mobile
hole concentration (p"), not the nominal p. (a) assumes C3 with
conduction layers made up of three CuO2 planes (no apical
oxygen even in OP), evenly doped with holes, and coupled via
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minimal interlayer interactions across a clean block layer (BL)
to maintain 3D long-range order. As p° increases, the
antiferromagnetic insulator (AFI) vanishes immediately with
one hole or after phase separation due to small tefr, the
antiferromagnetic metal (AFM) disappears around 0.1, and the
superconducting (SC) phases emerge, peaking at p* = 0.25 and
disappearing around pe = 0.4. The green area to the right of the
Tx line represents an antiferromagnetic fluctuation region that
causes ZRS or d-hole pairing below 7, followed by Cooper
pairing to BEC superconductivity below 7. ~ 78 in the UD
regime and BCS superconductivity below 7c ~ Tp in the OD
regime. All copper oxide superconductors share the same 7s
line, which is assumed to have an 850 K slope based on Fig. 37
or a steeper slope in the clean limit, but the 7, curve varies by
material. n alters the phase diagram in (b). Because of the
robust 3D order in thick conduction layers, the AFM region
simply expands with n. The SC dome, on the other hand,
reaches its maximum at # = 3 and shrinks at » =5 as n increases,
because only isolated OPs superconduct. No more changes
occur for n > 5. It should be noted that for » greater than three

and with uneven hole division, p* represents hole concentration
in IPs for AFM and OP for SC.
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Fig. 39. Phase diagram for electron-doped copper oxide
superconductors. For C1-B2-CF Nd214, an AFI phase exists up
to x = 0.14, followed by a portion of the 7. dome with Tco = 24
K [235]. In contrast, C1-B1 IL(La) exhibits a 7. dome with a
higher Tco of 40 K at a lower doping range of x = 0.05-0.12
[237, 238], which is similar to hole-doped La214.
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Fig. 40. Combined ideal phase diagrams for hole- and electron-
doped C1 compounds. Their 7cs commonly rise first along 75
lines following AFI/AFM suppression with doping. The 7B
lines share the same slope and are proportional to the number
of mobile electrons (n.") on the left and mobile holes (p") on the
right. As previously mentioned for hole doping, the 7}, line on
the right gradually decreases as ZRSs increase, then rapidly
when transitioning to d-holes (d®). In contrast, on the left for
electron doping, the 7, line decreases faster because the
antiferromagnetic spin background is simply diluted by d-holes
(d'%) as n." increases, causing T to fall faster. At low doping
levels, random carrier trapping shrinks the apparent 7. dome of
Nd214 to the bottom left (broken curves), similar to hole
doping in La214 and Bi2201. When randomness effects are
properly taken into account, nearly complete electron—hole
symmetry arises. This ideal phase diagram will be compared to
the experimental one in Fig. 13, which has been widely used in
previous textbooks and should be replaced.
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Fig. 41. Schematic phase diagram for dirty copper oxide
superconductors [102, 254]. A few nanometer-scale mixtures
between the antiferromagnetic insulator (AFI) (AFM is usually
hidden) and the superconducting 7. dome (SC) can appear,
along with competing states such as spin glass (SQG), stripe
order, and various CDW phases accompanied by lattice—spin
order. The two broken lines represent crossover temperatures:
the pseudogap temperature T* on the left side of the 7. dome
and the one between strange metal, which has 7-linear
resistivity across a wide temperature range, and Fermi liquid on
the right. The dash-dotted line represents 7!, which is the
temperature at which superconducting fluctuations develop
with existing pairs starting to share their wavefunction phase.
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Bi2212 D ARPESIZ fLO VD E 53 F ¥~ 7 T 5 [265, 266],
enhanced Nernst signal fEIk D I BL[267]/2 E N E T HN5.
72720, ENLOBRNEE IITABRIZLSENHY, s
DIFRZS DL TUEEmN DD, LnLed s, Ty HE
R Tl raAd —N\—ilETHHZ LB 2 DL, FE
7'a—7 OFESCBIRIRFFZRISU T, B OBNSIEE
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BB ATREMEL B V. 728U, miRTRbNSZL
ORI T RXTLIZERTHEARL TIWEAY. —7,
X v VBRI EEIVL B A LBfR T 2501
R2 560855157, 266]. AR EHEF AT OTR/LF —
A7 — VDS Pigim RS DR R 7> TS, W
ot X, TLOFEITERMICHDHETLL TWDHES->TE
WEAS,

TIT R TEILOAEETHY, B EFE I3 2
THRETIIRNWZLICEE TS, BEETLET 5L, THT
BECH =S #ix i FE L0 &1 T3 CIITAFMET DT DAL
RIVZCDDIRE THY, T,EWAEIEWEE b (X
41). T, CIEXTRIC L DAL DD 7 E N ERI S
[263, 264], TS TIZT RILF — AT NUICHRIEX v 7
NEEIRDX v T R IREDM B S L D[266]. 2D/
A — R =R E AR YN KB Cilin T DI ENEE LD,

4.9. SAFLDEEEICBAL TR —F

INFETEL ORI DIBIR SRS T RS, a7 8
FUNDAFZES L CETZN, WLSONOE IR o
MoTzLa2 14N IR ZES I, [REWEME | LA 72 ST
/- FOE—DOBEBELT, A—LBENEBRIICHD T
WSTHLARXIZE LW ER I B NS, D RITEEE B4
JBIEHE DI Bamfi Ak, MR — VI, —
DRBELS TR E DFE R, pO#EHEE RAELDDNK S T
72N B AT, 0-0.4D EWFEEPH TR — VB A ICE 2
HIEMMARETHY, EFHKOITIT &I A D N—T&5.
DRIV TN —EROFEFH LA —T X720 (Bl 21,
K24DTI2R) . FH=OBEKRELT, FILTINNERHEEN
LIV WS, SRBHE S LI R B Th D72 < DT
FENRSMEL, & BNGEET A RFEEO ERPETH
AT ONIZZEN BT O, BRI KBRS 5B RS 7T g
THHIEND, BMERCAE ARLEZ DWW TEERI AL
7o B3 H T BOELSEER D3x (p) A I L TR T
[153].

% R 39FEA R CTH IR L B RS | 2 B 3 Dtk
DR LW H O — 20X, BLEOMEICBITHT7 % L
RADF L) FHEPTE oo LIZdbbHE ). Vojta
D3 FEHE L7 secondary effects' SIXESIZTI DT Z ARAT)
RTHAI[104]. EHEY)E L RSN TE-La214723, EiT
BHIBEWRD— D Tho7=Z 8%, SR B imEmzeic L
S>THEBTHoT-. SHICEE RS MBI FHIHBI2212
ROV CEEREFREL LT STMSCARPES EFR M TH L
7208, TNHHGRELES T HETUH A x A% L ET R TH
B, LIPLEND, ZOFEEB+HITEH#HINTOBEEFE W
o, BIREOARE Z RO SH7-0120%, Z7V—2 T Teo
EHOREFTRDREEN, EHEROBESH R —T&5
TV T EDOFIHNIREOLN D72 EFREL 2. ik 7 my M
FnmH L THLN T EE R R R THH[163]. Hik
WA IZ 72> TIT DAL= % R ODNMRXCARPES J2 5 1.,
T MR RN RO B2 HCu0: % X BIL T, 7V —721P
TAREW W2 B E 4 2 LB LT[ 166, 186]. Sk
(BB O BEORMIIL, FNOOREN /2T — X% &
AL, thDTBE, TR R TORE LA EEITHRGTILT,
AR E D2 LaskdbNS.

EFIIAREN 2 T-pRBKZ8D I HAM THLHL1E
U%. BCSHERRMERAURAZ B Z BT D E M2 SR %
BAMIL L C AR T LR R, 74 /o BB T
SIINZE DT — /R =T R EW O il 7o iig (X7) & 5 %
HIEITREN LT IH 1T, TRAHESEE TR ORBIREIZE FIERIC
B g 03551379 Thsd (X19) . B IERZBEME 720



[104)EIFBIEE UL . BARIT— RAEHETHLN, 2
KEAEZTEHFREL CLERE, EBiTEMA RIS
NRZTLDELDOTHS.

Hg 1223 3Bl fL CRANRRBR L B R B IR ThDH L
BN, D E A7 T ay g E VT, Hgl223
DOPCIPLY, THRIAR N RLT L H DX A Fea 21T 12<
WCuOr a2 HE LT, ED3MDCuO2ifi N B2 HInE g 12
AR — NV EEN—7 T2 LIXREECTHD. ZDIFkE I
(2, SRR L TIIB I 2L BICE W TII D RN a &
BRT%. K38IZEB WV Tper KEKL Tl EIFAIT1E, &—
N =TI XD T,DIR TSN v 7 BB LS. Ty
FEIEDILR A AT HENNE DN DN TUTF6BE TELEL LS.

HitFC UL ERTICHE T E - To AR E T — A2, 7L<
R EHF %5 TpHg1223 T o 72EB 2 D5 NH WD s L
2V RFTIE, INETICE RS NS b s8R
DT DWERAFEEZFEFLL T, Hgl223 3 i DT b o &
V) EREFEEZTAT DDA 2L TE/-. L)
L7eNBEZTRFEESINTWDEERER N2V ELIRGZ:
W A AR WL L TE, 22 TOBLEOLE I E MY
TR RMaR®HY, SRR DT A LT 5 RAESNCWbHE
EU7=\0.

AT TR LB REICHOWT, BEENZINE T
LW EL O FE 245 BSOS £ CETB ARIA A—
ZIICE W WA LD, REBLO BB ROEE
DK INZHF CEZTRWVEGREEN LD IHIZHY, £
NoEEDINTH BN TELONTGNBR. T
LAKHIFEE N B GO EOREREZIRDIRY, ZOROR
BT 5005 HETLHREICARNRRNIZZENTHD. —
FHoLRAEE DT, FRIZRVIELWEENSH DI
PIZEEZ DL, MOENT Rl T 25T E
P&, 72120, 22 TR ELT IR L FE 2L
S>THSRCTHHZEERIED LT,

5. BRx B EMIE L HE 5B EE G

AREETERER L BARE LIS OB 2 e 2B
T5, FXERTIEMBSIN QI EICET 280
Va—%52%. ZNENOHFEMER L LIIRNERDOT
ORI D2 L2 TR TR T F2ITERER L LIS+
DORRER A FLD T, TN ENOBRERDTAZ
&<, BRI HEEDNLET, DX, MofEEZND
DOFEPEIRENELDHN TN,

FRAE R L7 — R — T B TR D B L 722 B A5
O HBEELZORFBIORESLE ORFHICL pHEINS.
HHEORIEN KO HE, BFFOXAT Ny 5EE, ST
I OFEEE A /Ny EEL TH 2D 8I28D, T ToO#
RIS D (£3) . EOHATHHAWLLII TR
WEBI HELTZHEIE, B TELND. BCSHEREILE 1%
BT O T T DR T ORENO B HEEZE 748 T
FIEAEASI AL U THIRLE. S5 25 H M EICIXE
H & ORI Th D, AL« B - 1l D33 2%1F
HI5H[268].

AL DRRFLEZDFELE ML L TR 288121,
AT OSARR L 2 EBHIC S OME N IBI TS, — 7,
EATOHBEL, —RIC7—o AR NeVA—F —
(10,000 KLL E) D K& R R FX —ZEFHGLZEMN0, &
TAED 7= DO EL THL<HBIEH S TE2[269, 270].
EHHBEEICBEL X, #ReFEE2 STt Cldpiig,
BB EALA Y CIERdELEOHNRICES T2 B HEMKIE
THAXELGERHY, TORRFEBEETHFELE DL T
HrEEnD.
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Table 3. Classification of various superconductors based on the
Cooper pairing mechanisms, whose characteristics are
summarized in Tables 1 and 2. Some of the compounds listed
may be relevant to the mechanisms, while others are uncertain.

Degrees of Relevant order and Potentially related
freedom fluctuations superconductors
Phonon Normal phonons Al, Pb, MgB,, C(B), H;S
Structural instability | Nb;Sn, V;Si, B-KOs,04
CDW NbSe;, 1T-TaS,, Cu,TiSe,,
IrTe,, LuPt,In, CsV;Sbs
Spin Antiferromagnetic Copper oxides (Table 1),
order CeCu,Si,, Celn;, CeRhIns UPt;,
(TMTSF),PF¢, CrAs, MnP,
LaFeAs(O, F), LaFeAs(O, H),
(Ba, K)Fe,As,
Ferromagnetic order | UGe,, UTe,, URhGe, UCoGe
Spin liquid k-(BEDT-TTF),Cuy(CN)s,
(Sr, Ca)14Cu,404,
Charge Charge order (BEDT-TTF),l;
Valence CeCu,(Si, Ge),, B-YbAIB,
fluctuations
Valence skipping BaBi,_Pb,0;, Ba;_ K BiO;,
(Pb, THTe
Dilute electron gas Li,ZrNCl, Li, HINC1
Exciton insulator Ta,NiSes, NaAlGe
Orbital a-FeSe
Multipole PrOs,Sb,,, a-Cd,Re,0,,
La,IOs,
Unidentified Sr,Ru0,, BaTi,Sb,0,
Na, 35C00,°1.3H,0,
La,PrNi, O,

5.1. B, LT LBEE: B ST U4

HDHAHBENT — =T 5| NEAR T — 722
RUZ DWW TIRANCfRILED . SABR L D L 72 @O TP =%
T 7R X ABE O I LIELIE L o FT
BEOBFFARNELET D[271]. 7—3—XT VT DI
72 DM AEAERITE 722 R EALL CHRE 4 S8 AR 20|
L, UIXUIZBEEFAFHL T5. LL, Th0sT X568
AITE GV ERIRBEEITEZ S0, BRI D
> TR % H M O K FEBERLT (long-range order: LRO)
RETEAAWIREBICHLO RN EIND. K3IRTE1Z,
T HE T AR 28T X IR SRR CCDWRLF 3,
BRI E NITEE & 702 A 7 DRERFRFCAY R
IR EDBFIRENELD. XXV TECE R Do ba
—NVIRT A= B E L CTNLOIRIEE I 528N T
E, ZORLXZHANELCIED H B ELRFOLTRETE
TREENHB 2812725 (K42) . B AA, EDLH7:
WEIZHE T EERNS - CTEl DRI B0,
ZIZTIEENE ERIDRHS 7R B R R E 3
BEBEZD.
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Fig. 42. General phase diagram for superconductivity derived
from a relevant long-range order (LRO). LROs in
ferromagnetic metal (FM), antiferromagnetic metal (AFM),
charge-density wave (CDW) insulators, and others can be
suppressed by increasing a control parameter, such as carrier
number or pressure, with the ordering temperature 7iro
vanishing at a quantum critical point (QCP). Above Tiro, there
is a crossover temperature 7", below which a short-range order
emerges. Fluctuations within the temperature window can
cause electron pairing, which results in Cooper pairing below
Te. Superconductivity occurs near the QCP, where the dome's
T. is highest due to the most intense fluctuations. The top inset
cartoon depicts ferromagnetic fluctuations that cause spatially
and temporally variable regions of nearly parallel spin
alignment in a matrix of randomly oriented spins. The bottom
inset illustrates how Cooper pairing works with ferromagnetic
fluctuations: the first electron (red ball) creates a
ferromagnetically spin-aligned region that immediately attracts
the second electron (orange ball) before disappearing. Note that
the QCP scenario assumes variable fluctuations in BCS
superconductivity rather than BEC type.

I —R— T B I OERPFIIE AR ORI E Tiro Ll 1
WICHNDIEOXICHD. — R O2WAREERS T, TirolTfED
AN ER A B RR AL L7 IR 2 H R L, E AU ASEERE
M- ZE A AE R TH IR A ARV IR T ZOEFELE D REIN
Tiro CHEHLL TRRFFHHIRANE G AR ITIE DN DA SR E L THE
B NEID. TEZEFELE DN EZ IO H IO AT — /N —
REEELED. B2 TR P OSE121E, K420 T
MBRD I, AE LV RNTG RTINS IR O # BV IRRE
(IEMOBALET) 226, T LA DO TiroE COREFFHIC K
WCAE S DA E N B AHRE i 72 R ET iRk (IERR O L )3
HIR) N TE-VHZT-0T 5.

D RFTRRFFREI O AR - TH IR Z B L CE RIS
D HE N B| NDIRTERDIRR 720155, KTDT 4/
DOGELERRIZ, 1DHOE R ELHEE, HVDOE T OAR
> DIMEDN B LR R P — B ESIL, sz
L CHHZDRIZ20 B Ot E e E 125 2 FHE5 (X
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24 THAR) . ZO ISR 7238 RENER A DAL -
HIRZEL CEBICHEINRE IMBED, SRR E
BT D7 — /= _XT TN A REEL 70D, OB SO
OBRF OGS RIS BIE T 2R F ORELE M5 &7
5.

FOZILTLLEM R DO LITROZ2. BRF DAY
7RE OB IF A HEICH R T DEAICE, M EET
L ARENC LD & O DNAEZFERD[272]. 2 be—)L
IRIA=H DB B TFREOE PR T HEX, BT
DPRRRAEEREIICTIH 5. £ IIEBIRE NIl 58T
HY, BTS2 (Quantum Critical Point: QCP) EFEIX LD
[232]. Haxl R E TR D728, @ OBFELX IZ LD MR
TR, BFREDENEBLCEIDEAREND. Hl21E
JEAE, R MEEEANED DI U RIEO KEL =51
TETHBEZIZ, BIEET0 CTHAIEBIEE LK TS
5. ZOLEANTBNT, FELXHEIITHEEBERO E O
BIRHT, HHBNIHIAND. fERLELTQCP TR KDFED
ENELHZEITRD. bL, ZOBLE NI — =T DOR&
LTEHE, QCPICHR DT AL DFREER —ANELD.

B TEFFHIZIILRODNE E I W ENEETH D, @2
BT DRG] TAZENEELL, o HRELE
NSSTHZHWEL T2 720, — 77, 35T EALRO
I NSTABEAERZEIRL, @O TAZITRE O 2070 . QCP
BIREDO TR — ADOMEELIRITFESE OFESCRICES
THET AT DI2A9[62, 272]. QCPY VA 1XBCSHIZR
REIZBWTELTHRELE D REXETOMREFRTHD
THY, TT 5 T 5BECH = EITITWY 45 1T 72
WZEIZHEE T 5. 47381 Tl 7259512, SRl
DAL — 7 IBECH =S58k ICHY, AFMODQCP TId%
DIRNRTHEE D= DI TMEL, R—A 71X E R —7
B DpolZBND.

5.2. HEERLENEET 4/ BRE

WE DT 4 ) BREICB VTS, BE TS E 2%
DN EEL CEnafflsns e, ZDQCPIT
BETHEBEWTNEOND. ZhuEEiEBg 2o &4
T/ DEFNTE =N RN, ZOYTNT 4 )0 LB ORE
BRI BT ThD. 7+ /v DTRLF—IK T 29 E
T T AR EAER OBESEN TR _EIZEL. H<hoFESiT
E7-NbsSn (7. = 18.1 K) °V3Si(Te = 17.1 K) 72 E DA15%U4 Y,
ABYTIE, TOHBHE WD R RN~ LT YA MR
(LD G- 1B 7 A S R (CBAR T DR E N 22 e RIS
ERTHE AR RICHLEEZ SN TS
[273].

Bk TTEFRITITT A IHDRAT 4 IR KT 5
B AREREMEDRDY, FE& OB B O
(CDW) Bk LIZ LIRSS, T E R E T 515
HNER SRV AR EMAFIE L TEEL Ao
TS, B LR IR EAR THHNDSes | 159 KIZCDWHRE 27
973, ZAUA30.7 GPadD [ ) TS TC2.5 KOBRERIZ
725[76]. FE2RTCRICHFAEDO BN %\, 1T-TaS20CDW
FIZEICEmfEn, 5 KOBEEIZ®ENS[274].
CuTiSe2 T13220 KD Teow A T A EAHDOCDWAHA Cutf
HZ—J—L—aNliBE R —7THllsi, x = 0.08T
KEDT: = 4.2 Kb OBREMIZE-> TR b b5 (X43a)
[275]. IrTe21%250 KIZCDWi#EFE A /R L, 3.5% D Pt-for-Ir{&
B2 XA HQCPTT. = 3.1 KOMIENHER T 5[276].
B-Nao.33V20sClE135 KLL FDCDW (F7213CO) #1723 E )T
MMz 5, P=8 GPaTT. =2.3 KDOBIZE NS NA[277].
ZOMIZHZLDEBEILEWIHIN RENS. HlzIE, T



#1490 KO CDW R I JE A8 D LuPtIn TlX, Ptd
60%%Pd CEHLTHZLTQCPIZEL, FZTL.DBEE R
K (1.10 K) 23 AB45[278].

VIR0 = AIENTES A CERD AT ARG T 2NET
HIFBIEEIRAV3Shs (A = K, Rb, Cs) 1Z20194E 123 RS-l
LRIV R THD[279, 280]. Bl IZCsib A DE, 94 KT
CDW#%, 2.5 KCHBIrniE A/~ 7. IO\ L) 48 TcH%
GTRbEKAL G GBI B W T /o 2L —%1 D)
DTelFHI0.9 KEKL, TeDAb A 7 % Hli7Z2 8 14 18 A
1’E}fﬁ VA THIATHZLITEH L, 7= IEmDORAT 4

WCEDR R CDW AR EMEBRENE AL, 22T
ijfl/r7/1/ﬁ{ﬁ%fﬁ( A (B2~ T7 e B B Bedx® 2 + idxy%
HO) NFEBLTHEEZ LN TND[281]. EHIZHLIRIENZ L
WEDHIMZEV TE— B F LRI ER LT FEHD
R — 2% 7R97[282]. ZOBMER BRI EBIGIZIZCDWELFIC
R T 25RO X LB TS DO NRO Y IV R A B
B|a Bi- 3 L5 2 5TV 5H[280].
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Fig. 43. Collection of phase diagrams for various types of
superconductors. (a) Cu intercalation suppresses the CDW
phase of TiSe:, resulting in superconductivity at 4.2 K [275].
The figure shows the 7. values multiplied by ten. (b) P-T phase
diagram for CeCuxGe: [286, 287]. The first SC next to AFM at
ambient pressure is caused by antiferromagnetic spin
fluctuations, while the second 7. dome may be due to charge
fluctuations [284]. Because the smaller Si adds chemical
pressure, the CeCu2Siz at ambient pressure (AP) is
approximately located at 10 GPa in the Ge compound [288]. (c)
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Double 7. domes form in LaFeAsOi«H: when
antiferromagnetic metal phases of LaFeAsO (AFMI1) and
LaFeAsOosHos (AFM2) are doped with electrons and holes,
respectively [285]. Ts is slightly higher than 7x and represents
the tetragonal-orthorhombic structural transition temperature,
which can cause orbital fluctuations in addition to
antiferromagnetic ones. (d) 7c domes appear in the CeMIns (M
= Co, Rh, Ir) solid solutions around the AFM CeRhlIns on both
sides of CeColns and Celrlns [289]. (e) A typical phase diagram
of Fe-based superconductors, starting from AFM BaFexAs: [62,
290]: hole doping in (BaixKx)Fe2As> on the right and electron
doping in Ba(Fe1-«Cox)2As:2 on the left cause superconductivity
at 7c = 38 K and 22 K, respectively. The original figures used
SDW instead of AFM. The shaded area around the SC-AFM
border in (¢), (d), and (e) represents a phase mixture; however,
the author believes it is the result of elemental substitution-
induced randomness rather than intrinsic. In the BaFe:As:
systems in (¢), only the Co-for-Fe substitution causes a mixture,
but the K-for-Ba does not, which could be attributed to the
former’s greater randomness. (f) Ferromagnetic spin
fluctuations induce SC in UGe: [291]. The Tc values are
multiplied by ten.

[FIERD2 D LD TR —2%H D FHEXIE, [ /0REHE
L CCeCuGexl 2B T ([X143b) [283, 284], KFEEDREH L
L CLaFeAs(O1.H)IZH 6415 ([K43¢) [285]. ZiHiEX
DOFX DA RS O2 T Nz 7-E 5K
RS IND. OFED, BIREAHOLEL T R e H R FIE
L, a2 ha— LT A—=Z DALY AN H2FEEE D
FIIBERER 1 DD RIAFIET D E O— M A 72 S
5. TDO— SR D7 5 ) THIE, i IEFEN
LIS D B A ISR F o 7o Th D T REMED
. T4 BRI EOWEIZHERIVI DO T, ZLL
SROMEREN LT DT A B T-5T 72 bIE, ¥ 7 VTR — 248
KX B R REE S 2 5.

53. AE U HHEEZFIHTA8EE
53.1. SOBEMEAE U AELE

ARG A L 52 DQCPY VA TINH RGBT 26 <

OEHIN S TND[271]. Wzi CeRRUREDETT
FREGDEWE RSP E RIS TER
[77, 292, 293]. Z=Z ClX/RTE ﬁé{tﬁm%ﬁs%oﬁmﬂe@fﬂ‘%
D, TN EMETCRT D IER Rk DOJLS S TespE
Z L CRKKY A AAERICEDFE O L. Wi ORI/ NS
WEEIZIFFE T RK R TR 2ICREL TEE O RTERK
KEBEFZRL, REWEXIWMEAHEI BT LN - T
LRV DAY B FE P (spin density wave: SDW) IR TE
WAL T 5. EBITIRRNPKRELpDE, (REE TN )%fxt
CEBORBL TR T — A M L EDIT R RN
725 (K3) . ZOUTREAZ ) —=2 T IR DIZHO N TR
FEFFIIIE 2 CWEQCPIZEEL 7214, FEWGME 4 B IR Re oA T
9% (DoniachfH[X[294]) . ZDLE, fEFbs plE & —FHiC
BEL TREIZEH G5 T50, REEOBRWE 251275
COIZENEILLRY, ZOALE RITZE HETD1000£%12
H705. BOVE T REMEINDFTLLTHS. EWVETRICE
T HQCPIT % Tlx, SDWEKFF O S MEFEL X 2/ LT
T IR E B D[293].

1979 F T I T3 R ENTZE W E 7R B s8R
CeCwxSial LFEREME DB A JBIKAEIZHY, 0.7 KTHERE%E
RY[295]. LONL7R 235 Ge-for-SifE#alZ LA KB E (A0



{LEEE 1) OFE R, BEA TN ROoRigE M 4 J8 FE 2 B AR
WZHEREL C0.8-2 KEA FIZELALD[77]. — 7 CeCuxGex T,
Tn = 4 KOAFMZ £ IO L= 12T = 0.6 KOMR
HNE NS ([X43b) [286, 287]. ZHH D F2 L xR A%
ZBIFDEREIEAE AR E O EEANME A TRRIB TS, &
WZHLBRRNZ Bl S b SHARBEDRIMZE02%E B O
TR — 2% R L, 254268 Tl A B EhiE I o
REZBIR T HEHE 2 HITNDH[284].

Celnsl i FE TN = 10.2 KO ARG IZS, E )
INEEBIZINEA L TP = 2.65 GPaTQCPIZEL, DT
£3120.19 KOBURER — L0 8L 975[296]. CeRhIns Tld 3
JE D Rt 4 B AR (In = 3.8 K) 231.7 GPaDJE it
2.1 KOBAREFIZE > TRDOHND[297]. BT 2
CeMlIns (M = Co, Rh, Ir) E#E AT, RMEAZ FITIAD

2 S GRIEMEAR O AN AR EAR S BLALD (1X143d) [77, 289].

243 T 72851Z, CeColnsidx>~ 2&@7~/\~—m7
=hb, *%*ﬁ%@&%%a‘é}i%@m PEFE D X R ERIC
UNRUN50]. Ko CHAMS :tAFMUDQCPjEfE%&EEEbﬁ“Lé
LU B35[X34dDAR KT B DO FRIRG AT HETZ A9 . D FEDE
OYENZH KREMERES T RN HY, D TIIAA I
ST FNDH, RMLE TIIAHO PRI L SO
FHEADMEBR LT > THEA TRFF ThHDAFMDS S8 A 2 i X
Haz 7L LR CE D, —J7, USRDOUPH T FamENE 4 8
FB(Tn = 5 K) MR CHEAZEAR (T = 0.54 K) 12T 5.
ZZ T D7 — 78— T RS NH[50].

ZNHDEWE T RBERI TR R B A NS
D, FRIRIMDEDTIIEN. ZOEH T D F L7225
FAEMEAR EAER NI LS. dE T L& T I3
THREOFEVICENT L CTHFEET IO EEMAEATET,
s+ pIEEE T I SNVHRKKY BE A AAE A 13 He ik iy 55
V. F%&LTTN, TEHIEL, FIREEEOE R ITIEM)e
VY, UL, (KW R — R — )L LR B RE 3
\ZkE &2 7o B TG AR T2 DICH R L7205,

DD RN AY L F O E BAREARIZIX 9y TR
HRLAE LM HD. BiE T i#’l/kn %réa{z%
{RD(TMTSF)2PF62312 K CSDWAHA~D#EREEZ /R, ZOHRE
FADSE N LIS T0.9 GPaTTe = 1.2 KOMBREARA
BA5[298, 299]. #E TIICrAs/YNH JE265 KLL T T ik
M B LD, 0.7 GPaDMETT. = 2.2 KOBIREZ/RT
[300, 301]. ##)E, 290 K CoffettiifE 2~ 3 MnPI, 2 GPa
PLEDESEUINTAY V72 A BB 2 SRR MR
RBITRATL, B FRFDNE LT 58 GPaDQCPITf%121 KO
RS 2R T[302, 303]. ZALHD @WK 13dE
F RO RERRBEMEFE AAE R Z ST 203, Teh &N
RV DIISERBEEAE AL E LB T OB VBTN &
RS N5,

20064123 REN[304], ZNLIEZLOWE N RHS
TE7-Fe R MBIAERIT BN E WAL, SRk L [F
RICHEB R T.OMEKREEZ RS . I XA
LaFeAsOEBaFerAsl IV E TN = 150 K, 135 KO3
M4 B THDH[62, 63, 290, 305]. BiE (AL FIERZ it L7
LaFeAs(O1-<Fx)X°LaFeAs(O1Hy) Tl%, O*%F, H A4 T
BT HE R — 7L BRI 23 B 2 5, i
TT. =26 K, 36 KDO{RENBLILH[285, 306, 307]. FFiZik
FHTIR2OOBIBER — LPNBRIE, @SR—7Dx = 0.5
ITEHIZ R (AFMI) L B2 DA BlS 2 H 55, 99—
D R BEENE 4 IR AR (AFM2) M“fa“é ([%143¢) [285].
BaFexAs: T, (Bai.Ko)FeAslZB 1T DR — /LR —7 1285
CTAFM (SDW) FRFF 23 il S, 50%K—7"CT. = 38 KD#A
fE RN HEL 5 ([X43e) [308]. &5 IZBa(FeiCor)2As2 il
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FDEFR =712, 20% R —F 12T, = 22 KD TR —L703HL
N5[309]. Lo THIRR LR B L FARIC, RFE~DE
FATR— AR =TI I BRSNS, difRieh o
EEREVITRAERAFITIEAR<KAFM THAHZEZHY, Zh
LB W E AR D7D & & 2 BbiLs. REFESAFIE 7R
DHIZE OIRVE TAHB ISR L LISMTIZ R DDy T
A%

ZNBEA LB OB EHEAE I SOBRBMEA Y AR E
WEELEZ LN TUVA[62, 305]. LNLARNRS, ZiE-%
NURICH T HHETESE OB EML IR SN TV 5[63,
310, 311]. ZZ TR T O dxy#iliE 8 L OVE M IHEIR T2
dyz* dzx#aE 237 = VIMERLIT PRI E L, ’fﬂﬁﬂt%@%f@
722 P ETE SR D B R U R & EE TR MEZ R TR IR RE
dyz#3E L dzx ¥l ORE IR AR D LT 2E 1RO ﬁﬁ?fﬁﬁ
FAEL, HZEB9ZTH N D411 RIS RFR 25 25 1B 7 S A~
DI ZS. K43clZBWTIND DL EIZHDTNZED
IR E A R T . ZAUS MRS R EMEIC LA DT
1372, B RDORLZEMENTERNTHLZOEFR~T A
JERRE LR N A[62]. ZOMRERR I BRI AL LIRS
EICEHEELEZOND.

eIl S T8 KO M RE 2/~ T a-FeSe D UT {712
FCRRBEPEANIZ 222537312, 313], BE O H A B4
HREELEDOFHE N RBRIND[314, 315]. 72721, KTV@EWT.
DOERAABARER CTIX T NSORBEE R L, BN T
BRI CEEAREE R B4 LIIREVR[62]. #ETES
L RBEMEAE ARLERNZNE NI, FRVEIE L CE)
WTWDDEEAY . HLLITHE BB OS> THEAHIND R
BIRRFELE N AREN S LN, 20 B LaFeAs(O1-
HNCABNDHE T NVTR — LI E OEHEI R IR S B (2 B
THEZZLID[285]. BT E LLOMAED A R E
AT A0 AFT A LN TE[316], HEIT55E60H
DIEAY. — 8, RORBIEE T 4/ BRI E N E di, st
FBARE L2 DD AT, W HROBIEE LB S
BpL/ns.

8RR IBAEE D F 15 D TelFSmFeAs(O1Fx) D55 KT D
[317, 318]. KSTUH I a7y r4—%50.187 DL, Mo

(222 DF BAEFIZEWENS50 KE72 5. HERNT, LaFeAsO

\ZX 2B TIRAERH RO e RO BRGNP EAE A/ERIES50
KESI TV D[319]. F7-BaFe:As: D P 7 ELIEBRIZZ
%2700 K& RFES -72[320]. 4t OWFIEIC L0 BIR SRS
HHDDNZ720, TOWERIFIEOERMENHED X, SHITEY
TEASFDIZODTTR DO DH LI,

5.3.2. FREEMEAE L ARSE

FREGIE AL ARSI SN BB RE TN O DT
AEEMNTB O THRESIVTCWD[T77, 321]. TRk L s
DIAFIT <A HPbMo6Ss[322]°ErRh4B4[323]DPb, ErtrA
Nt TR ICER LW E TS S CE. F,
(Ce1-xGd:)Ru2[324] X°GdSr2RuCu20s (C2-B3-PV: Y1237
1y 7 JEDOCukRuT, Ya2GAIZEH#) [325, 326)10H A.HN5.
AT ClEGAdD FTEAE 173, %4 CIERuO:E O /EdE
TR AR, BRI FE E R, CuOq i CREZ5.
ZNHDOWE IR R L FRREE 2N ZE W AT Z2 53 TR
SNLUTIRDEES IO A 2, TREMEARY AL E DB R E A~
DHEHIIRHATHS.

20004F I RS &N 7-UGe 1 3 H [ES2 KTt 4@ 1
Z05, ZOMITES) THHIETL6 GPaTIHA 5[291]. %
DOIURE AT, ERSE ) O FHiT 0O G iE < e A8 N
(20.8 KEfe i & AT R — 208 85 ([K431) . £/, UTeal
BtE 2 IRREIE R 2 72 72U S, BEALT- SRR ME R L B



T OO NTe= 1.6 KDBRELZFHRL T HERBEITND
[321, 327]. =DMz H FE CTHZE % 7R 9 URhGe (Tt =
0.25 K) [328]4UCo0Ge (Te = 0.8 K) [329]8 A tH&ENn 7=, Zhb
DOUZ SR E Y TILBRENRUDSTE N R THY, £
DIRIEMEAE AL E DT B 5T 52E 26T
W5, OFE TR EFERIZ, ZIHDTULE T o/h&S7
SRR BLAE A2 OBl IR B £5. fEDNT Tl TR 23,
5 RRBARERI T = — 2 EEN B, W FE D
BLRROIFZE RS L 705 T B[65].

FRRGE B AR T SRR L FE 720, T D AR HAFE
CHMEMEZNDHAERLLT, AL TEIE TII74L, *Heid
TRENE[FARD AL 3EIIKEEICH O ENEHR T 5. £
DR EIRFFBIIES I LB ED I S, ©eLAE
EALTHZETHS (2438 Tt 7- FFLOB R E LTV
%) . URhGe TlI B afsr F O MR E A2 TORLYS THH)
SN, 9-13.5 TIZH 0.4 KITE—2%8 D TR — A0
B9 5[330]. 2OV Mo NEEE IO RIZIT RO
WHRTHY, MRS LD A 3 EIE B E D FF
MChHs.

53.3. ALK

AAEE R AT AFEIZLROE I RS2V . SR REE
HAEHTHAC U SR RITHEAMR T T X7 DR — VR
FFatdtels, 25 TRWEELHL. —AREET—78T5
T DR T A AE U Z B E, BB AR W0 ik
AR BAE R 2 IR IC 7= 32 81X TE RV, ZoXo7 5%
T Z AN — a1 5 RITEMER A S A2
DLRORTFY F V70 A SRR SR BB A 410 80].
BRZAE BT HENIROB AL R TITRI & 1D
THMDOY, Mt FHETHAE Y OME DD TIIRO LI
RO TR ARIK PIRREDS IR b,

A R N T ARG T 2 e B R ISR S
. 215 THEALA T BV TAE VIR IR BRSO R
FRSEGRSALCETZ. B2 T E k-(BEDT-TTF)2Cu2(CN)s
VT HCBRI R % 72J = 250 K& b DREMEIRZ 25, = AT
BUBREM¥PHN7IA P L —v a3 vIick) A VIE32
mK E CHRIF(LE 3, AvviEiRREBICET L EI NS
[331]. Z#iC0.4 GPaD LS ZHIMT % & T. = 4 KOEIE
BABNS D, ZOMRERK L A v viRIEOBRIZ X
{4322 TR\ [332].

AEARIBR D —D>DOREEDS, SRR s B A% 12 B

L Cfi#17=Resonating Valence Bond (RVB)IRHE THH[333].

RVBIREEIZAL L L 7 Ly M7 OENQGHOENLRHE)
M7 RBEL RIS, F2IZEA SN2 DR — v iE v
T T H@BEWZ HHR— LT L7 T Ty D
W2k E A1), BECY —/R—XT Lip o Tl AZ FHL 95
LIELHN TS, AE LY U T Ly b7 DAL 114«»%
—X vy T OFEEERT D, AL R RRREZ T
WZMo@:‘/‘/ﬁ“v\yw\"7®~ﬁ@;ﬂf/7&vo<UJ@LT
AT T Ly M T2 ERHY, ZEF vy 7 (AE
Fro ) B DRV —EAEZLELTD, AL Ty
T DRESIART DOV AZDPNEN (B DRV 1FE KX
2B, AL Xy A IIR— o ISV F O THBEEX v
I NRAT T HEMFFENDTZ0D, BV TIIREIRAE Xy
TN HENDHI LT,
= /1/273:17<$%%0>Jir“4k I EAE ARIRESHL[80],

rF—=r" 7 iéﬁh%#ﬁ;@ﬁéﬂé LLAG, 22T
TERRENDAE L v Ty h_TIEREL, A Xy 71T
FEFITNSN)Er L5 (long-range RVB state) . 9RAIC
FBAREX vy 7 H /N &0, EBILIZEL TH |\ BEE I
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[T ODDRNTEAD . 5280 TltiL 7= AV3iSbsD B RE XV
DF T ATt OB CDWARZE BN T Th -7,

PG R E IR AL U By T2 H T HAE ARG 5
THBMLEL L CHEMICHF RSN CTE IO 0 T8 72 FF
DAL U TH —THDH[156, 334]. 2ARD AL /2 [ iEMsgMESS
ERE RIS R D E, ZOHEERAEIX X 44aD I IZBED 59
INEIR AV Ty T O ERA DY 75 (short-
range RVB state) . .o C7 AN —Tal REFERIZAE
WARD ARSI, A v 7 I3 RN BLAE IO K
TXE/eD. FERRITK44dD Cu0s1H & D HREE L ) SrCu203
(ZBWT[335], TARIBVO KERAE T ry 7 DN EBLHIE N,
AT — BT HT DM D HITZ[336].

AT —~DIR— VR =T T AP Z D0 % B 2 Thr
FI[156]. MEDAR— 18 ANIF3ARDIR R ETE T, 2{ED
n“\~/1/75§%Glil'z/uf“/\“'fG:f£5&6JT“L:t7L£<5J@?ES‘iT°?ﬁ
To ([X]44b, c). @J@Iz/vﬂ?—%l IZEo TRT BMEDN,
== T LT I2I » CENT IZBECH (m 8 A4 25
9 5[156]. ZdDDagottobt iéi‘ﬂa@ FEX19D CuO, i TOH
TV T ERBEIZRICTHS. Cuozﬁtméb\aimbiﬁ
SRR R ClEZe< A /{szz \ZHDHZEE. 2L, R
— 7 ENTZCuOEI D T,LL T DR EE i«x?@ﬁi@/\bﬁz}%
72HRVBAY’ /{ﬁzﬁik?ﬂﬁﬁ‘_&%fé?é[%ﬂ AV TH —
BARE TIEHLELE/NS2 T U T Uy PR RTINS
TV AR AR ISR RBIC BN T, AR— LT RAE LT
ZEZHZ DLV BRSNS, BB DN
LT W (FEEDERELSTZHH THD) .

Fig. 44. Superconductivity on the spin ladder [156]. (a) A
snapshot of singlet spin pairs captures the spin liquid (short-



range RVB) state of a spin-1/2 ladder. Pairs form primarily on
neighboring spins, resulting in a large spin gap on the order of
the antiferromagnetic interaction J. (b) Two separate holes lose
six J bonds and gain kinetic energy of two zerr. (c¢) When a hole
pair forms nearby, the loss is reduced to five J bonds, resulting
in a J energy gain and one fetr loss. At temperatures below T,
the resulting hole pair is assumed to be a BEC Cooper pair,
yielding spin liquid-induced superconductivity. (d) The spin
ladder in the Cu20s plane is found in SrCu20s [336] and (Sr,
Ca)14Cu24041 [156, 338]. The antiferromagnetic interactions
parallel and perpendicular to the ladder were estimated at J; ~
2000 K and Ji1 ~ 1000 K, respectively. When an
antiferromagnetic correlation develops along the ladder leg at
temperatures much lower than Jy, the magnetic coupling
between ladders in the zigzag Cu arrangement at the interface
is effectively cancelled out, resulting in the plane being divided
into a series of independent spin ladders. Thus, the quasi-1D
spin ladder emerges from the 2D Cu20; plane as a result of
dimensional reduction by frustration [339, 340].

ORI SBRER LS T DD D3 EE2 IR T4
% 1t #) (Sr, Ca)1aCu24041 T 5H[156, 338]. Z DO W& 1%
SrCu203 & [Al 4 D Cux 03 1 & £ (1X]44d) . Cu203 1] 1 8 ik
(LW BAR AR D CuO [ 22 A B T IZ BNV A A, %
BN T H L CTORE S b AR L2 T
FTHS. i HWZEHEIE LRI B2 LR 1
BLS CTHHIZEDO LT, AIIXTIRILDOAE R
LCIEAHEY. BT 2 HF I DIAZKHE T HIREE (2000 K) &
FEERTHMEIRIZEB W T, &5 1m0 ORENMEF B A3+ 4
FWIEBEICE> TRETHEE, BTV EEIC
BUIDBEAEERIIEDIIITHHELAS. fEREL T
F-REOFEE NN TIRITDAE L TH — DR %~ 9 19
(272 5[335]. ZD I FEEEDOHRE A& T LB IR WK T D A
USRI T T AR — g BRIk BT A
7T AN — 3 a Al KB R ICIL T (dimensional reduction
by frustration) EFEON, k4 72 E RIZEB W TIRIR TAE
Rz A REEY AR B DR & 72 5339, 340].

(Sr, Ca)14Cu24041 D Cw203 I 1 L AL  F ¥y 7 HH DALY
TRIRIRBEICHY, HENNTAE L TH — R THHZENHEI DS
N7=[156]. LoL, =R =712k & @b ChRimiE %
IRERIoTz. I, BOEBIZESICE NZEINT 52812k
012 KOBIEEZ % RLUT-[338]. =D DEFEAFTEIC
HEOLLT, REROBREEEICIOM RIS E Ch DR
ALV TR, BRI AL AR EEIZH 573,
R— > 7R N HIINC IV E 1RO BRI I NS0, 1
WICHEN K DOIDNETHDH[156]. BIRD L IZCux030H 12
BUIDAE L TH —%, $877 10O SORIENEAR B 23+ 43 o8 2
THIETHELDLD, R— VIR Z /WL CRESHE
BEDORELMZ D20, R—t' 71k TR TN ES
HHENTEFORBITRbNTLE). ZOEKRIZBWT
Cw0s 1 CH T DR E A FEBL T 2D IIARE IR Dt
LAWY, (S, Ca)1aCudOs DABARE I ZIFFT 1R TTMEE N
BT HCwOEIZFFA DBRIEDLE, Eid7 4+ /R
BNTWDETIRENS.

FOMIZHLaCuOas AL L T — DI MA G T 573, 78
— VR —=7I2d &R THEBEE BRI S ol
[341]. K D—2EL T, 1RITLRITHSBND T H LR A
ENZETF NS, 1RIC T2, 3RITDOIIICIAEET S
SRR, E D KBl TR 8 SAZ MW L C B 172
TR DR ANRE LT 5T 725D, 1IRIERICIERE 7, PR
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ANV T WA EF R b b DN, EERITH Y e
FEE R LIRS T,

A TH —IZII2AR L EO R EFFOYE L LTS
[342]. Sr2CusOslECuOa i & 3 A S (BT L C A EE L7
CwsOsHNHIRY, 3R AL L FH —L725[335]. SHIT£L
D e ZFF O B dh KM E L CBLAIS L, ARRIED TR
WZEDARTE A —ZSrCunt1 02 BFFHZEINTEDH EH
FBEND. BLERENZ EIZAE L FX — D FE R BE T R OA
BOMAIFITISUTEN TS, BEOLXIAL Xy 7R
BAE (AE U F vy 7 DOREEITEDOEDOENNE LS IR
%), TETIEHL Ty S L AL H[155]. LR D2 AR
R RN SIY Ry L e b Y AR NIy o APl RSP  DA M G174
[343]. ATy T OREIZT2ARE LD/ NS T2d T 5]
INIFFEY, ZDOTITENDE LIRS, 1R ITTRITHEA D
RN AR A LA TR IS NATZAH. BD
A AL TR I B TS O CuOr i Tdhd. CuOqH
WZEDEPIT, BLEOLR B T E L0 E W TN EBLT5
AlREMEIEHD. A TX — B R A R R T I ETD
VTR, Z 0D BLfl 72 BECHER (= A 1 Tk T,
ETAEFEBRT 0L LRV, AR TR (L%
DD RIZIBTHWERB D EFEND.

FOMMDAL L X ¥y T RELT, ALV EFEIDIRIT
R THDHNIVT AHPETHD[344]. L, LT U EHE
HOMIRTTME AR - Iic ek canid, Ar
TH —REFRRIZA VT X vy 7 PBIEEX v 7 12D
DEARBRENGEL N L. (REMR LT
W' CTHDHNIZ %G TrY2BaNiOs[345]1°F DL O (L&
RN T DRGED RIS,

5.4. RO HHEZRHTL8EE
54.1. ERFEHOE

BAFELE X< OBIRBEEDT- D O AT e L
THIESh T, B0 —a AR LT 58
FHZEHE O 3 LF — 24— 11310,000 KIZh & 5[270].
Littlel X 1R e mE S AZMAEIE L THMmL 0T W T2 3R
WEET IV (K452) 5 2, M5 T- O ta R 325
TV TR AR R LT2[269]. 2 MR EIRICIX IR TE
TRNEHAFEL, TR BLTVWMABH A2 BT 2m'E
T WA NCKDFEBL R RELHIFFS NI, & B3HED LD
TRV I ARTZITELI TRV, Gingburg 3 5K (55
1K) Lm0 R B R TN - & BB A5 2 ([X]145b),
&8 8 OB TSGR O R S S DR —
W, BBIBICT— =T AR B IO D ]
BEMEZ 5 2 72[270]. SBITEF YU T B EE2 AT 58 Rk
WZAECAE T—R— T (XU b)) D595 B8
WEERLIZ. INLO IR IRRIC OV TY, AMERSE
BROGREILE 52 28813150 TUR, LittleX°Ginzburg
DET VL, SR b5 LA iR RS A~D T 7'rn—
FLELTHBENTZLDOTHDHN, SHERb<CZ D% DL
KRR AL CHiS - A - C, FOZ ORI
ke Db —HTHAS.

EAFEOE CRE T LI N TV DWW T2 R T oy 1
M8 Ko-(BEDT-TTF)l3238%. 135 KCCDWHIZR T fF O 1k
FAL L Z > CTHEZ IR L7220 578, 0.2 GPadD — i)+ 71 DE]
IMZEDT KOBIE N ND[331, 346]. T DEIFICITER
BRFFOIHNZ D BTG E D& 508V RES U TN 5H[347).
LU 3000 THEBERIZ RO E AT WD, JESIZ
LOE T THEEROHESCT U F AR AN RICLDLE
TFIBD BN OB KL BE T DUENRHHTEAS.
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Fig. 45. (a) Little's superconductivity model based on charge
fluctuations [269]. The polarization of molecules attached to a
1D conduction path causes two electrons to pair: the first
electron (red ball) polarizes the side molecules while passing,
then the second electron (orange ball) is drawn to the induced
plus charge. Cooper pairing occurs when a polar region is
formed and absorbed. (b) Ginzburg's 2D model of a metal—
semiconductor interface for the charge fluctuation mechanism
[270]. Similar to Little’s model, a hole created in a
semiconductor near the interface can cause two electrons in the
metal layer to couple. (c) A pairing mechanism for dilute
electron gases and excitonic insulators. The shading represents
the distribution of electrons or excitons (electron—hole pairs).
In the dilute electron gas case, near the image's center, the first
electron scatters by pushing surrounding electrons away via
unscreened Coulomb repulsion, creating a region of lower
carrier concentration that attracts the second electron and
causes an effective coupling between them. When it comes to
excitons, the first electron breaks them and scatters, leaving a
region with fewer excitons to attract the second electron,
resulting in virtual coupling. These simplified interpretations
are similar to those given for the phonon mechanism in Fig. 7.

5.4.2. fliEEEh

£l R AW BV TEZER —EW, Yb¥*-Yb*, Ce*'—
Ce"" D IDN2FFHD L EIRMEL DA A DIV L —
EHLOLENRHY, T TIXBEMEELE (lfkfz®Eh) ER o
RE NS D[77]. Bl 21X 43bD CeCuaGer T, i E
D SRR A JBFE2NE ST T2 b TR N BINL AR
AR CeDFE T D SR AL ABRLE IR KT 5012
RUT, SHIZHEEIZBAND2E B D TR — L3 Ce DSz
FZH KT HEE LI TN DH[284]. F£7=, B-YDAIB4D 80
mKHRE[20]D Yo OMiEHENCBIfR T 5 Z & 23R &
T B[348].

543, NLUAZRFYS
BieTIZ & T b BTSN S U AR T Bl G
ILBAEEOE DO —fFlE LT eSS N TE7-[14]. Bi(TD 1,
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LB TENENI (1) £20135 Q) DA A L7
T, FNEN6s2L6s'DFE TEIEEAS D, TOHROE
REE6s I RLE THINARW-0, iR EI Tl Ly
AR T LTINS, 652T2 D DB T DIERRD T L In/p
Eh, bLINAERENZEIE O IUEBECL T —/3—X
TN BB LR,

a7 ZH A M A O BaBiOs Tl BiA 44 O T 2ol
Bat o0, EERIITZERBI EBIICHEET D, Z0kH
T RER A OB ORI 7L FES L T db
S ICEREZL DL, TNENR/NDOBIO\ HiIEL 72> T
3SIRITTBIIC AR HAT/ X 7 END. FERELT, 682HE 2
TIIREZ2BI O\ HHAIZ REL TENF72<72Y, BaBiOslt
AR L 72D, 65T 1A FF272\ ' Po* TBiZ i oy BEH#A T 5L
(BaBii«Pb,03), /N TET6sTE - MDENT DI/, Hik
EAPHEZTT: = 13 KOBIEEN BT 5[14]. F7e, Ak
DBa1-K.BiO; TIIRE /A THDHBI-0OFy NI — 7| ZELvE
BHHIAERW=D, J0EWT. =30 KOBREALER TS
[86, 349].

INHDOWE TII NV ARF y I BAHEDE DN
(BRI 5 AR REMEN B 2 5ND. L Lenh, #
EEREBIERLZT T4/ ONEED KN AR 40T
breathing phonon&IETIL5) 2%, R—E 712XV 7 MEL
TERAX—% FIFD70, TOMERLE ICLDE T
FIEAEHOBELEZY, ZNNBEEOTE2F5 Thdl
HEZHND. ZNHD I E WL, KW T+ /=R
=T RERADM ST FERTHA). ZOFIDIHZ, ET
RDORLZEMNFL DL, TNEN TN DT 4 ) DA
ZEMGH KT D280, Wi#H DEH 20515 &% N
A NZ N (WL IR IENIIDBENE NI MEE 7D
[29]).

—7J7, narrow gap=ERKDPbTelZI\ T, Pb%0.5-1.5%
DOTITEWRT HZEIZIV BT D8 (T < 1.5 K) I, Tl
DNV ARF Y IR T ABAMHFELE LD Ly
[350]. BHBRTRWNZ 21T, BRERAEO B XHRPUCIFKIR T
T oI B =T HIRDENDROND. ZHULE R DO ITHER)
B (531 Cfib 7= BRI R ERM AT — A M E O EL
72Dy, ZZ TR R EMR 2k 3 2) 1L H A7) —=7(C
BRI 23N TR, B D H HENE IRREIC R R
THIENEZD. LnLehs, ZhHDOBIRB LU TIO N L
AAFy T RIZEBNTC, BMfEOEBRENETL TWDHT
EA BRI OR T REIL A DAL TR,
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iR E T AR T DEMELI T <NOBIEESE
A HTHEL TSN TV A[351]. & SO PRI
ZDTH200 KZ 8z 5 REMEZFa A L72[352]. — AR
T —a M AEAERIMREE T2 L GRS D729,
Z O EITFHHEENN TN, T UTEENNSIRDHERY
V== TR0 BT, RERR B RIET . ¥—
CAERE T MICB N T— BB BRIk N A 5L,
ZZTIRAPREVE FITAEWVICHEN LY ET 5720, &5
BN T N5, BIRFIZZEO BT E T E ik AET
5. FERELT, 88— AERZDL OB 7B fE
FIWVEE 7R GEIR I T BEL 0T <7D, ZOXIORE T A OAR
P32/, BERIPICZ L L TR DB MRS N7 —
=T B OEIRERVHS. K45¢DEHIZ, 1>DHDE
T O —a IEINE TR AE — B L, 221225
HOBTF DB EHEELNS. KM TIEFICKR NI THLE
F-M7—a AR EAERNS, ZO XTSRRI k> THI
FIDAEC LD T IR [352].



FiEE T AOBIREEZFEBL T HESNDHERIR TTE
LT, LLZINCIELiHENCIZ2 1 5 [226, 353-356]. 2

TIE46D IHIZ, Zr (HE) ENJFE 7235 0D BLpk 72kl 024
DO EZD E T LCIE%ﬁDZTZr(HDNCIEﬁ B4,
Zr 4dEN 2pBENBIR BRI VN RAMAE A, van der
Waals JIZXVFERE T2 BEIZ A X —h—L —h&N7ZLi' A
AU DMEEEIZE TR T AR, NURNERRETHD
RS BAR BRI T 5. LkZINCHZ BUWTLI (B 1) A8
LTV E, T 1.5 K(x = 0.13) 7*515.2 K (x = 0.06) (2 E
H95[355]. =HIZ
W2 AR T3 5[226]. #EFRELTH46D IHRTR — LW
REND. SHITEBDOTIZEBWT, Sigby) & Rk X
YT O NBIIES I, THEIR—7FEEHIR T LTl
T35,
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Fig. 46. Phase diagram of LiZrNCl, an electron-doped
superconductor studied using the EDL technique [226], which
may exhibit charge-fluctuation-induced 2D superconductivity
in a dilute electron gas system. T° denotes the pseudogap-
opening temperature, and the BEC temperature (78) has a slope
of 3300 K. The inset depicts the crystal structure of pristine
ZrNCl, which is made up of double honeycomb ZrN sheets,
where transport occurs, and Cl sheets above and below.
Electron carriers are generated by Li* ions intercalated between
the ZrNCl layers, so x simply equals the electron carrier density
which agrees with those calculated from Hall measurements.

BHRIZ D> TR T4 5T032D BECEEDOEHETH
0, TNELIZHIS T LB 2605, KIKN—700.48%TD
Te = 15.9 KOO PAEEND TefrOHZ1E3300 KE720, Sk
b D850 K (X37) DAET. ZOEITFITT U H LKA
HMEDOFENIEDEE ZOND. MRIKVNUREH T 5554
BIE 7R CTHOLLZINCUL T o F DR AD B R 57 T #E<
SO K72 R BE O FE A E DIV AR T v
FILVINTRREIND. D2, IVI)— 7o miEEm B VT
FRIZITVBECHRARE DS, EHICR—E V71K DBCSHRIRE
ANDY ARG —N—INFEH L TNDDTZA9[226].
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Fig. 47. Superconductor map with 3d transition metal (TM)
elements as the key ingredient. The 3d TM has a 45?3 electron
configuration that acquires +2 valence after losing 4s? electrons
in a solid. The d-electron number varies with valence (z — v +
2), as shown on the left of the figure, with the actual number
indicated in blue on the horizontal broken line for each element.
The bars represent superconductors found at ambient
conditions (orange), under high pressures (green), and induced
by intentional carrier doping (lavender). They are a (TiO), b
(BaTi2Sb20), ¢ (a-Ti30s), d (LiTi204, Tis07), and e (SrTiOs-s,
Cu,TiSe2) for Ti; a (CsV3Sbs) and b (B-Nao33V20s) for V; a
(K2Cr3As3) and b (CrAs) for Cr; a (KMneBis) and b (MnP) for
Mn; a (Bai«K.Fe2As2), b (LaOFeP, a-FeSe, BaFe:Ss), and ¢
(SmFeAsO1Fy) for Fe; a (Nao3sCo0201.3H20) and b
(Na2CoSe20) for Co; a (NdosSro2NiO2), b (SrNizP2), ¢
(La2PrNi2O7), and d (YNi2B2C) for Ni; a (Nd214) and b
(La214) typically for Cu. Table 2 details the compounds. The
high-temperature superconductors with 7c near or higher than
40 K are marked by square frames, which appear in late TM
compounds with enhanced electron correlation and moderate
antiferromagnetic order.
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Fig. 48. (a) Ideal phase diagram of copper oxide
superconductivity (Fig. 38a), with the AFI and AFM phases
omitted for clarity. (b) The BCS-BEC crossover image, which
is a left-right inversion of Fig. 10. T¢ nearly equals 75 in the
BEC regime on the left due to a strong pairing interaction,
where T} is much higher than 7s. The vertical broken arrow at
the maximum pairing interaction wo in (b) indicates that 7t (7s)
increases proportionally to carrier density ns. The actual T¢ in
copper oxide superconductors rises along the inclined arrow 0,
as the pairing interaction decreases with increasing p. The Tj
line falls as the BCS regime approaches, and 7 is suppressed
below Tp, resulting in a 7. dome in (a). To increase the
maximum 7t (7o), move the 7} line upward in () (operation 1),
which corresponds to an increase in J and moving arrow 0 to
the left (arrow 1) in (b). Alternatively, move the 7} line to the
right in (a) (operation 2) and increase the slope of arrow 0 to
arrow 2 in (b). This means that the pairing interaction becomes
less reduced as p increases. The third option is to increase the
Ts line’s slope following operation 3 in (a) and arrow 3 in (b).
The left-wing BEC regime can achieve high 7t values, and the
majority of high-7. superconductors are found in the BCS—
BEC crossover regime. Large pairing interactions and high
carrier density could be combined to achieve room-temperature
superconductivity in or near the BEC regime.
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Fig. 49. Cartoon illustrating possible quasi-2D crystal models
for high-T¢ superconductors. (a) Conducting layers with high
light carrier density alternate along the z axis with excitation
layers with specific pairing sources (blue cross), such as charge
and spin fluctuations, resulting in dense and tiny Cooper pairs
in the conduction layer. (b) A quasi-2D crystal’s component
layer, consisting of conduction and excitation strips. The
former can contain carbon chains, other atom chains, or linked
TM-ligand octahedra, while the latter has 1D spin chains,
ladders, and so on. Topological insulators with conducting
surface and edge states can serve as the conduction layer in (a)
and strip in (b), respectively.
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Fig. 50. Room-temperature superconductivity can be achieved
in a clean CuOz plane doped with a higher number of holes with
minimal loss of the AF spin background, or in an entirely
unknown platform with an efficient pairing interaction and a
sufficiently high carrier density to enter the BEC
superconductivity regime.
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Table 1. Copper oxide superconductors.

Compound | Ideal Composition n_| Block Layer m | St. Type Teo (K) | po Comments Reference
1L Sr1.NdCuO> 1 | Sri.Ndx 1| Cl1-Bl 43 x=0.14 e-doping [112]
1L Sri-xLaCuO2 1 | Sri.Lax 1| Cl-Bl 40 x=0.10 e-doping; thin film [237]
La(Sr)214 Lar.Sr:CuO4 1 | Lar«SrO: 2 | C1-B2-NC 36 x =0.20; T structure [413]
39 0.15 Tc dome [140]
36 0.15-0.24 Synthesis at HP O [145]
La(Ba)214 La, .Ba,CuO4 1 | Lax«BaOs 2 | C1-B2-NC 25 0.15 [414]
La214 LaxCuOu+s 1 | LaxOa2+s 2 | C1-B2-NC 38 High-oxygen pressure [119]
synthesis
(Nd-Ce- (Nd, Ce, Sr)2CuOs-5 1| (Nd,Ce, 2 | C1-B2- 28 T" structure; alternating stack | [415]
Sr)214 S1)20; (NC-CF) of NC and CF
La2126 La,.Sr.CaCu206 2 | LarSr:Os 2 | C2-B2-NC 60 [416
F214 Sr2CuO2F2+5 1| Sr2Fass 2 | C1-B2-NC 46 0.2-0.3 Po from the nominal [197]
composition
Cl214 Ca;-Na,CuO,Cl 1 | Cap.Na.Cl 2 | C1-B2-NC 26 [115,116]
Ba0212 Ba:CaCu204(01-,Fy)2 2 | Bax(O1,F)). 2 | C2-B2-NC 90 HP synthesis [117]
105 0.225 NMR [417]
Ba0223 BaxCaxCus06(01-,Fy)2 3 | Baxy(O1,F)) 2 | C3-B2-NC 120 HP synthesis [117]
Ba0234 Ba>Ca3CusOs(01,Fy )2 4 | Bax(Ow,F)) 2 | C4-B2-NC 105 HP synthesis [117]
Ba0245 BaxCasCusO19(015F)> | 5 | Bax(Oi1,Fy) 2 | C5-B2-NC 90 HP synthesis [117]
Sr0212 Sr2CaCu204(01,F))2 2 | Sr(O1,Fy) 2 | C2-B2-NC 99 HP synthesis [118]
Sr0223 Sr2CarCuz06(01,Fy )2 3 | S(O1,F ) 2 | C3-B2-NC 111 HP synthesis [118]
Nd214 Nd2-.CeCuO4 1 | Nd>.Ce.O2 2 | C1-B2-CF 24 x=0.15 T' structure; e-doping [234, 235]
Pr214 Pr2,CexCuO4 1| Pr2Ce:O2 2 | C1-B2-CF 22 x=0.10 T' structure; e-doping [234]
20 [239]
24 0.14 NMR [243, 244]
Y123 YBa:Cu3O7-5 2 | BaxCuOs-s 3 | C2-B3-PV 93 [125]
0.22 NMR [122]
0.25 Even p for the two Cu sites [418]
30 One-unit-cell thick film [400]
Gd123(Ru) | GdSr2RuCusOs 2 | Sr2RuO4 3 | C2-B3-PV 16 Ferromagnetic order in the [325, 326]
RuO; sheets below 133 K
Y124 YBa>Cu4Os 2 | BaxCu204 4 | C2-B4-PV 82.5 Block layer with double Cu-O | [419-421]
chains
Y123.5 YBa>Cus50s-5 2 | BaxCuOs 3 | C2-B3/C2- 95 Alternating block layers of [422]
s/BaxCu204 / | B4 Y123 and Y124
4
Hg1201 HgBa>CuOats 1 | BaaHgO2+s 3 | C1-B3-NC 97.0 0.20 Hgo.97Ba2Cu04.059(CO3)0.0088 [129]
97 0.18 CT [175]
95 0.18 ND™ [423]
95 0.18 ND [194]
98 0.16 s [190]
Hgl212 HgBa,CaCuzO¢+s 2 | Ba:HgOz+s 3 | C2-B3-NC 127 0.21 CT [176]
128 0.22 ND [181]
Hgl1223 HgBa»CaxCu3Os+s 3 | Ba:HgOa4s 3 | C3-B3-NC 135 0.19 CT [176]
133 0.27 ND [123]
133 0.252, 0.207 p(OP), p(IP); NMR [122]
Hgl234 HgBaxCasCusOio+5 4 | Ba:HgOnis 3| C4-B3-NC | 127 [424]
123 0.222, 0.157 p(OP), p(IP); NMR [122]
Hg1245 HgBa>CasCusO12+s 5 | BapHgOo+s 3 | C5-B3-NC 110 0.23 p(OP); NMR [166]
Hgl1256 HgBa>CasCusO14+s 6 | BaHgOs4s 3 | C6-B3-NC 107 [424]
T11201 TIBaCuOs-s 1 | Ba>TlOs5 3 | CI-B3-NC | 45 TIBa .La,CuOs s [425]
TI1212 TIBa>CaCu>07-5 2 | BaTlOs-5 3 | C2-B3-NC 65-85 [426]
T11212 TISr2CaCu207-5 2 | SrTlOs-5 3 | C2-B3-NC 85 Lu-for-Ca substitution [427]
68 [428]
T11223 TIBaxCaxCu309-5 3 | Ba:TlOs- 3 | C3-B3-NC 133.5 [429]
132 ND [430]
T11234 TIBa>Ca3CusOr1-5 4 | BaTlOs 3 | C4-B3-NC 122 [431]
127 [429]
Cul212 CuBa2CaCux0¢+s 2 | BaxCuOais 3 | C2-B3-NC 90
Cul223 CuBa2CaxCu30s+s 3 | BaxCuOass 3 | C3-B3-NC 119 0.22 Average p; NMR [183]
Cul234 CuBaxCa3CusOio+s 4 | BaxCuOa+s 3 | C4-B3-NC 105 [432]
117 0.313,0.192 p(OP), p(IP); NMR [122]
Cul245 CuBaxCasCusOiass 5 | BaxCuOass 3 | C5-B3-NC 90 [432]
Pb1212 PbSr2Y Cu207.5 2 | SroPbOs.s 3 | C2-B3-NC 52 (Pb, Cu)Sra(Y, Ca)Cu207-5 [127]
Sr0201- Sr2Cu02CO; 1 | Sr.COs 3 | CI-B3-NC | ~40 (Bai [130]
CO; +S1:)2Cu02(Cu06)0.1(CO3)0.9
(x =10.4-0.65)
Bi2201 BixSr2CuOe+s 1 | Sr2Bi2Oass 4 | C1-B4-NC 7 Bi21xSr2:CuOe:s [433, 434]
15 0.13 CT’"; Bi2Sr2CuOs+s [435]
25 0.12 CT; BiPbSr2 xLa:CuOets [174]
25 0.12 CT; BizSr>«La:CuOg+s [126]
32 0.15 Ru"; Bi2Sr2xLa:CuOgis (x = | [192]
0.4)
Bi2212 Bi2Sr2CaCuzOs+s 2 | Sr2Bi2Oass 4 | C2-B4-NC 80 [436]
85 0.26 Ru; BizSr2CayLu.Cu20y [437]
80 0.17 CT,; BixSri5(CaixYx)12Cu20, | [126]
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85 0.22 CT; BiPbSr2Cai-+Y:Cu20y [174]
80 0.25 NMR [122]
91 0.18 ARPES [172]
88 Monolayer [403]
Bi2223 BixSr2CaxCusOiors 3 | Sr2Bi2Oss 4 | C3-B4-NC 105 [436]
110 0.25 CT [174]
T12201 T1.Ba>CuOe+s 1 | Ba:T1Ou:s 4 | C1-B4-NC 90 0.1/0.2 0 ~ 0, 5% Cu-for-Tl sub. [128]
87 ~0.25 Ap=-0.25 [170]
80 0.28 NMR; overdoped [122]
TI2212 T1,Ba;,CaCu20s:s 2 | BaThOu:s 4 | C2-B4-NC 110 ND; 6=0.3 [438]
T12223 TlBa>xCaxCusOio+s 3 | Ba:T1Ouss 4 | C3-B4-NC 125 [426, 439-
441]
T12234 TlBa>xCa3CusOi2+s 4 | BarThOuss 4 | C4-B4-NC 116 Tl-.Ba:Caz+xCusO12+s [442, 443]
Pb2213 Pb2Sr2Y CusOsis 2 | Sr2PboCuOsss 5 | C2-B5-NC 68 Pb2Sr2Y0.5Ca0.sCuszOs [113]
SrO—PbO-CuOs—PbO-SrO

*Chemical titration, ““Hall coefficient,

[T

Neutron diffraction, *

ExY

Seebeck coefficient.
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Table 2. Typical superconductors other than cuprates.

Valence fluctuation

Compound T: (K) Related order Tiro/hawo (K) Comment Reference
(fluctuation) or possible
glue
Elements
Al 1.2 Phonon 296 Weak-coupling BCS type [444]
Pb 7.2 Phonon 56 Strong-coupling BCS type [444]
Nb 9.2 Phonon 150 Strong-coupling BCS type [444]
Li 0.0004 Phonon 344 Weak-coupling BCS type [70]
Bi 0.00053 Phonon 120" Semimetal with a low carrier density [22]
a-Bi 6.1 Phonon Amorphous prepared by quenching [68]
Ca 29 Phonon 229" P =125 GPa [71]
02 0.6 Phonon P=125GPa [72]
Nb-Ti 9.8 Phonon Alloy for commercial superconducting magnets
Carbon-based
KCs 0.55 Phonon 235" K-intercalated graphite [445]
KsCoo 19.5 Phonon Fulleride; intramolecular H, phonons [446]
Cs3Ceo 35 Phonon Fulleride [447]
C(B) 4-7 Phonon 2250 Boron-doped diamond; High-pressure synthesis [74, 75]
or thin films
TBG 1.7 Twisted bilayer graphene; adjacent to a Mott-like | [401]
insulator
YNi:B.C 12 Phonon Ni*** (3d%9) [448]
LuNiB.C 16.6 Phonon Ni*** (3d*9) [449]
Intermetallics
NbsSn 18.1 Phonon 124° Strong-coupling BCS type; Martensite [444]
transformation at 43 K
ViSi 17.1 Phonon 245° Strong-coupling BCS type; Martensite [444]
transformation at 21 K
NbsGe 23.2 Phonon 176" Strong-coupling BCS type [444]
MgB: 39 High-energy B phonons 700" Two superconducting gaps [61,387]
ErRhsB4 8.7 T. = 11.8 K for LuRh4B4 [323]
LuPt2In 1.10 CDW 480 QCP at 60% Pd-for-Pt substitution [278]
AuesGenYbia 0.68 Tsai-type crystalline approximants of [69]
quasicrystals
NaAlGe 2.8 100 Zn-for-Al substitution [365]
f-electron systems
CeCu2Si> 0.7 AFM 0.8-2 SDW stabilized in CeCux(Si, Ge)2 [295]
CeCusSiz 2.5 Valence fluctuations P=4GPa [284]
CeCuGen 0.6, 1.5 AFM, Valence 4 P=8GPa, P=16 GPa [286, 287]
fluctuations
Celns 0.19 AFM 10.2 P=2.65GPa [296]
CeRhlns 2.1 AFM 3.8 P=1.7GPa [297]
CeColns 2.3 AFM [50, 450]
UPts 0.54 AFM 5 P=25GPa [451]
UBe3 0.85 [452]
UGe2 0.8 FM 52 P=1.6GPa [291]
UTez 1.6 F fluctuation [65, 321, 327]
URhGe 0.25 FM 9.5 [328, 330]
UCoGe 0.8 FM 2.5 [329]
B-YbAIB4 0.080 Valence fluctuation? [20]
PrOssSbi> 1.85 AF quandupole order 1.3 B=4-14T [371, 372]
PuCoGas 18.5 AF spin fluctuations [453]
Oxides
TiO 23 Phonon NaCl structure; Ti** (3d) [454]
BaTixSb,O 1.2 CDW/SDW 50 Ti** (3d"); a square lattice of Ti [377]
a-TizOs 7.1 Phonon Magnéli phase; Ti**" (3d°7); thin film [455]
TisO7 3.5 Phonon Magnéli phase; Ti*>" (3d*); thin film [455]
LiTi2O4 13.7 Phonon 630 Li1+Tiz«O4; near Ti**" (3d™) [456]
SrTiOs- 0.25 Phonon Perovskite structure; near Ti*" (3d°) [18]
7. = 0.4 K by EDL doping [213]
B-Nao33V20s 8 CDW 135 P =8 GPa; V*5* (3d*%) [277]
Nag35C00:- 4 2D SC; Co**" (3d°%) [378,379]
1.3H,0
NdosSr02NiOz 12 Mott insulator 200 Thin film; Ni'?" (3d*%) [382]
La;PrNi2O7 75 P =20 GPa; Ni**" (3d"*); C2-B2-NC type [383][17]
structure; Orthorhombic-to-tetragonal transition
at 11 GPa
Ba(Pb:1Bi,)Os 13 Breathing phonon / 195" BPBO [14]
Valence fluctuation
(BaiK)BiO3 30 Breathing phonon / 210" BKBO; x=0.4 [86, 349]
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Sr2RuO4 1.0 Ru** (4d%) [114, 386]
K:WO; 1.7 242" [457, 458]
(Sr, Ca)14sCu24041 | 12 P =3 GPa; spin ladder [338]
a-Cd2Re207 0.97 Electric troidal 200 Noncentrosymmetric SC; spin—orbit-coupled [43]
quadrupole order metal
B-KOs206 9.6 Rattling phonons 57 Rattling-induced SC [41]
12Ca0-7ALOs 0.2 Phonon [21]
Iron-based
compounds
LaOFeP 5 Fe*' (3d°) [304]
LaFeAs(O1-.Fx) 26 AFM 150 x=0.1-0.2; Tc =43 K at P=4 GPa [306, 307]
SmFeAs(O1.Fy) | 55 AFM 130 x~0.2 [317,318]
LaFeAs(O1Hx) 36 AFM 160 Double 7. domes at x = 0.1 and 0.4 [285]
(Bai.Ki)FeAsy 38 AFM 135 x =0.5; hole doping [308]
Ba(Fe1«Coi)2Asy | 22 AFM 135 x = 0.2; electron doping [309]
a-FeSe 8 Orbital fluctusation? Fe** (3d°) [312]
T.=27KatP=15GPa [313]
Tkt =23 or 100 K in a one-unit-cell thick film [404, 405]
on a SrTiO; substrate
(Cai«Las)FeAs> 34 x=0.10 [459]
T. =47 K in (CaiLay)Fe(Asi,Sby). [460]
Organics
(SN)« 0.26 Quasi-1D SC [19]
(TMTSF),PFs 1.2 AFM 12 P=0.9 GPa [298,299]
(BEDT- 10.4 [461]
TTF)>Cu(SCN)>
k-(BEDT- 4 Spin liquid 250" P=0.4GPa [332]
TTF)2Cu2(CN)s
a-(BEDT-TTF)l3 | 7 Charge order 135 Uniaxial pressure of 0.2 GPa [346]
Chalcogenides
PbMosSs 15 Phonon 140 Strong-coupling BCS type [49, 322]
1T-TaS: 5 CDW 350 P=5GPa [274]
LaOBiS 10 HP synthesis [462]
Bi404S3 4.5 [463]
BaFe:S; 14 P =11 GPa; Fe*' (3d°) [464]
MoS: 11 EDL doping [406]
NbSe: 7.2 CDW 335 Bulk [465]
145 T. = 3 K in a monolayer [402]
NbSe; 2.5 CDW 59 P =0.7 GPa; quasi-1D [76]
Cu,TiSex 4.2 CDW 220 x = 0.08; Ti***" (3d"%) [275]
Ta;NiSes 1.2 Excitonic fluctuation? 328 P =8 GPa [364]
Cu.BixSe; 3.8 0.12<x<0.15 [466]
(Pb1,Tl)Te 1.5 Valence fluctuation? TI1-for-Pb substitution; x = 0.015 [350]
IrTex 3.1 CDW 250 QCP at 3.5% Pt-for-Ir substitution [276]
WTe2 7 P=17GPa [467, 468]
Tekr ~ 0.5 K in a monolayer [469]
MoTe, 8.2 T.=0.10K at APand 8.2 Kat P=11.7 GPa [470]
SceFeTer 4.7 [471]
Pnictides
MnP 1 FM/Helical AFM 290 P =8 GPa; Mn** (3d%) [302, 303]
StNipP» 1.4 [472]
CrAs 2.2 Helical AFM 265 P=0.7 GPa; Cr’" (3d%) [300, 301]
K2Cr3As;3 6.1 Cr*¥3" (3d*%); Quasi-1D; Strong electron [473, 474]
correlations
CsV;3Sbs 2.5 CDW 94 V4t (3d%3); double T domes at P = 0.6 and 2 [279, 280,
GPa; T ~ 0.9 K for the K and Rb analogues 282]
KMn¢Bis 9 AFM 75 Mn*¥" (3d*%); P =14 GPa [475]
Mixed anions
Li,ZrNCl 19.0 Charge fluctuation? Te=11.5K (x=0.3) and 15.2 K (x = 0.06) with [226, 353,
Li intercalation; 19.0 K (p = 0.011) by EDL 355]
doping
Li,HfNCI 25.5 Charge fluctuation? [354]
La»IOs2 12 5d electrons of La and anionic Os; LaxIRu, with [376]
T.=48K
Na>CoSe20 5.4 [381]
Ultrahigh pressure
HsS ~200 Hydrgen honon s P =150 GPa [388]
LaHio ~240 Hydrgen honon s P =150 GPa [389]

*logarhithmically averaged phonon frequency (K); “Debye temperature (K);

Antiferromagnetic interaction (K);

wkk

Pseudogap energy (K)
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